Приложения к модулю 4

 

I. Нервная система животного возникла в процессе его эволюции как инструмент, специализированный на объединении огромного количества структур многоклеточного организма в единое целое.

Важнейшая задача нервной системы заключается в поддержании постоянной связи животного со средой обитания и поддержании гомеостаза организма, адекватного изменениям, происходящим во внешней среде.

С позиции этологии можно рассматривать нервную систему как аппарат хранения опыта (исторического и личного) и инструмент научения под влиянием стимулов из внешнего мира.

Реактивность организма к факторам среды существовала и в донервный период. Так, у простейших, например амебы или инфузории туфельки, существует реактивность по отношению к изменениям среды (температуры, химического состава, освещенности). Однако их реакция на стимул чаще всего избыточно велика. Из-за отсутствия специализированных органов рецепции простейшие вынуждены реагировать на стимул всем организмом, т. е. с позиции многоклеточного животного неадекватно, с чрезмерными затратами энергии и (что не менее важно) времени.

Появление нервной системы в процессе эволюционного развития позволило животным оптимизировать свои отношения со средой обитания, сделать реакции организма более экономными и биологически более эффективными. Появление "многоклеточности" неизбежно привело к формированию нервной системы. Для слаженной работы многоклеточного организма химической регуляции недостаточно: она медлительна, требует больших затрат энергии и жестких стабильных условий (рН, температура, содержание кислорода).

У многоклеточных животных регуляцию физиологических функций осуществляет сложная система нейрогуморальных механизмов. Гуморальная (химическая) регуляция досталась им от низших форм жизни. Нервная регуляция - собственное эволюционное приобретение многоклеточных, обусловившее быстрое эволюционно-адаптивное развитие многоклеточных животных. Эволюция сохранила химическое звено, поскольку в определенных ситуациях химическая регуляция незаменима. Это прежде всего касается метаболической регуляции, регуляции процессов хранения генетической информации, дифференцировки клеток и тканей, органогенеза, иммунной защиты животного.

Основные свойства нервных клеток - чувствительность, раздражимость и возбудимость -позволяют нервной системе чутко реагировать на изменения среды, анализировать стимулы, оценивать состояние собственного организма и быстро принимать оптимальные решения при крайне малых затратах энергии. Нервная система призвана обеспечивать срочную регуляцию.

И. П. Павлов создал учение о нервизме, в соответствии с которым каждая клетка организма независимо от того, в составе соматического или висцерального органа она находится, является подконтрольной нервной системе. В то же время он подчеркивал, что между гуморальной и нервной регуляцией сохраняется тесная многоуровневая связь даже у высших позвоночных животных. Однако чаще всего в этом гармоничном ансамбле регуляторных механизмов лидирующую позицию занимает нервная система.
В своем эволюционном развитии нервная система прошла путь от малоэффективной диффузной структуры до сложнейшего трубчатого образования, строение и функции которого еще долго будут оставаться предметом напряженного изучения человеком.

II. Промежуточное положение между примитивной нервной системой бесчерепных и развитой системой черепных рыб занимает нервная система круглоротых. У миног и миксин наблюдается дифференцирование головного и спинного мозга. Головной мозг у круглоротых достаточно примитивен.

В нем уже можно выделить передний, средний и задний отделы. Для круглоротых уже применимо понятие "нервный центр" как совокупность нейронов, отвечающих за определенную функцию. Однако для круглоротых все еще характерна высокая степень диффузности мозга.

В мозге круглоротых выявлены примитивные нисходящие проводящие пути, начало которых лежит в продолговатом мозге. Их основу составляют гигантские клетки, появившиеся у ланцетника.

У круглоротых можно найти хоть и примитивно устроенные, но уже настоящие сенсорные органы. Так, у миноги фоторецепция производится глазом, масса которого составляет более 20 % массы головного мозга. У миног и миксин хорошо развито обоняние, что подтверждается наличием специфических центральных нервных структур: габенулярного узла и обонятельных луковиц.

Для круглоротых применим термин "ганглионарный" тип строения вегетативного отдела периферической нервной системы.

У круглоротых интегрирующую функцию выполняют так называемый габенулярный узел (передний мозг), ретикулярная формация среднего мозга и подбугорная область. Сюда поступает вся афферентация. Габенулярный узел получает информацию от чувствительных нервных окончаний, отвечающих за химическую рецепцию. Средний мозг и гипоталамус соответственно осуществляют афферентный синтез световой рецепции и рецепции гидродинамических полей. На этих участках головного мозга сходятся и все эфферентные соматические и вегетативные влияния.

Таким образом, на стадии круглоротых эволюция совершает существенный шаг вперед по пути цефализации нервной системы.

Дифференциация отделов головного мозга вызвана, скорее всего, развитием сенсорных систем у рыб. Если у ланцетника отсутствует дифференциация мозга на головной и туловищный отделы при отсутствии сенсорных органов, то у круглоротых уже имеется сильно развитый передний мозг, обслуживающий афферентный анализ и синтез ольфакторной сенсорики. Средний мозг развит слабо, поскольку фоторецепция примитивна.

У хрящевых рыб (акулы, скаты, химеры) есть три группы хорошо развитых сенсорных органов: химической рецепции, фоторецепции и органы акустико-латеральной системы. Соответственно происходит дифференциация головного мозга на три хорошо различимых отдела: передний (обонятельная луковица и обонятельная доля), средний (зрительные бугры) и задний (продолговатый мозг, мозжечок - отделы, собирающие афферентацию с органов акустико-латеральной системы). Степень развития того или иного отдела головного мозга отражает экологическую роль соответствующего сенсорного комплекс.