Лекция 4. Средства и методы измерений.

 

 

1.     Средства измерений

2.     Метрологические характеристики средств измерений

 

 

1.     Средства измерений

 

Классификация и общая характеристика средств измерений

Как отмечалось выше, средством измерений (СИ) называют техническое средство (или их комплекс), используемое при измерениях и имеющее нормированные метрологические характеристики. В отличие от таких технических средств, как индикаторы, предназначенных для обнаружения физических свойств (компас, лакмусовая бумага, осветительная электрическая лампочка), СИ позволяют не только обнаружить физическую величину, но и измерить ее, т.е. сопоставить неизвестный размер с известным. Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения (измерение плоского угла транспортиром, массы — с помощью весов с гирями). Если же физической величины известного размера в наличии нет, то сравнивается реакция (отклик) прибора на воздействие измеряемой величины с проявившейся ранее реакцией на воздействие той же величины, но известного размера (измерение силы тока амперметром). Для облегчения сравнения еще на стадии изготовления прибора отклик на известное воздействие фиксируют на шкале отсчетного устройства, после чего наносят на шкалу деления в кратном и дольном отношении. Описанная процедура называется градуировкой шкалы. При измерении она позволяет по положению указателя получать результат сравнением непосредственно по шкале отношений. Итак, СИ (за исключением некоторых мер — гирь, линеек) в простейшем случае производят две операции: обнаружение физической величины; сравнение неизвестного размера с известным или сравнение откликов на воздействие известного и неизвестного размеров.

Другими отличительными признаками СИ являются, во-первых, "умение" хранить (или воспроизводить) единицу физической величины; во-вторых, неизменность размера хранимой единицы. Если же размер единицы в процессе измерений изменяется более, чем установлено нормами, то с помощью такого средства невозможно получить результат с требуемой точностью. Отсюда следует, что измерять можно только тогда, когда техническое средство, предназначенное для этой цели, может хранить единицу, достаточно неизменную по размеру (во времени).

СИ можно классифицировать по двум признакам: 1) конструктивное исполнение; 2) метрологическое назначение.

По конструктивному исполнению СИ подразделяют (рис. 26) на меры, измерительные преобразователи; измерительные приборы, измерительные установки, измерительные системы, технические системы и устройства с измерительными функциями.

Меры величины — СИ, предназначенные для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров. Различают меры: однозначные (гиря 1 кг, калибр, конденсатор постоянной емкости); многозначные (масштабная линейка, конденсатор переменной емкости); наборы мер (набор гирь, набор калибров). Набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях, называется магазином мер. Примером такого набора может быть магазин электрических сопротивлений, магазин индуктивностей. Сравнение с мерой выполняют с помощью специальных технических средств — компараторов (рычажные весы, измерительный мост и т.д.).

Описание: Классификация средств измерений

Рис. 26. Классификация средств измерений

К однозначным мерам можно отнести стандартные образцы (СО). Существуют стандартные образцы состава и стандартные образцы свойств.

СО состава вещества (материала) — стандартный образец с установленными значениями величин, характеризующих содержание определенных компонентов в веществе (материале).

СО свойств веществ (материалов) — стандартный образец с установленными значениями величин, характеризующих физические, химические, биологические и другие свойства.

Новые СО допускаются к использованию при условии прохождения ими метрологической аттестации. Указанная процедура — это признание этой меры, узаконенной для применения на основании исследования СО. Метрологическая аттестация проводится органами метрологической службы.

Примером СО состава является СО состава углеродистой стали определенной марки. Примером СО свойств является так называемая шкала твердости Мооса, которая представляет собой набор 10 эталонных минералов для определения числа твердости но условной шкале. Каждый последующий минерал этой шкалы является более твердым, чем предыдущий. Эту шкалу используют для оценки относительной твердости стекла и керамики.

Одна из главных функций СО состава и свойств — контроль методики выполнения измерений (МВИ) в порядке внутреннего контроля испытательных лабораторий и внешнего контроля, в частности в рамках "раунд-тестирования" (см. введение, разд. 3 настоящего учебника). Па-пример, если аналитическая лаборатория металлургического предприятия располагает аттестованным СО углеродистой стали конкретной марки, то она на указанном СО может проверить надежность методики качественного и количественного химического анализа.

В зависимости от уровня признания (утверждения) и сферы применения различают категории СО — межгосударственные, государственные, отраслевые и СО предприятия (организации).

В практике метрологическими службами используются СО разной категории для выполнения различных задач.

Так, создаваемые в Центральном институте агрохимического обслуживания сельского хозяйства государственные и отраслевые образцы состава почв аттестованы на содержание макро- и микроэлементов (марганца, кобальта, цинка, меди, молибдена, бора) и другие характеристики (величина рН и др.). Эти СО были аттестованы в межлабораторном эксперименте и предназначаются для градуировки приборов, поверки СИ, для контроля правильности анализов почв но аттестованным в СО показателям, для аттестации СО предприятий методом сличения.

Измерительные преобразователи (ИИ) — СИ, служащие для преобразования измеряемой величины в другую величину или сигнал измерительной информации, удобный для обработки, хранения, дальнейших преобразований. По характеру преобразования различают аналоговые (АП), цифроаналоговые (ЦАП), аналого-цифровые (АЦП) преобразователи. По месту в измерительной цепи различают первичные (ИП, на который непосредственно воздействует измеряемая физическая величина) и промежуточные (ИП, занимающий место в измерительной цепи после первичного ИП) преобразователи (рис. 27).

Конструктивно обособленный первичный ИП, от которого поступают сигналы измерительной информации, является датчиком. Датчик может быть вынесен на значительное расстояние от СИ, принимающего его сигналы. Например, датчики запущенного метеорологического радиозонда передают информацию о температуре, давлении, влажности и других параметрах атмосферы.

Если преобразователи не входят в измерительную цепь и их метрологические свойства не нормированы, то они не относятся к измерительным. Таковы, например, силовой трансформатор в радиоаппаратуре, термопара в термоэлектрическом холодильнике.

Измерительный прибор — СИ, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Прибор, как правило, содержит устройство для преобразования измеряемой величины и ее индикации в форме, наиболее доступной для восприятия. Во многих случаях устройство для индикации имеет шкалу со стрелкой или другим устройством, диаграмму с пером или цифроуказатель, с помощью которых может быть про

Описание: Измерительная цепь:

Рис. 27. Измерительная цепь:

1 — первичный измерительный преобразователь; 2— чувствительный элемент; 3 — промежуточные измерительные преобразователи

изведен отсчет или регистрация значений физической величины. В случае сопряжения прибора с мини-ЭВМ отсчет может производиться с помощью дисплея.

В отличие от меры прибор не воспроизводит известное значение физической величины. Измеряемая величина должна подводиться к прибору и воздействовать на сто первичный преобразователь.

По степени индикации значений измеряемой величины измерительные приборы подразделяют на показывающие и регистрирующие. Показывающий прибор допускает только отсчитывание показаний измеряемой величины (микрометр, аналоговый или цифровой вольтметр). В регистрирующем приборе предусмотрена регистрация показаний — в форме диаграммы, путем печатания показаний (термограф или, например, измерительный прибор, сопряженный с ЭВМ, дисплеем и устройством для печатания показаний).

Измерительная установка — совокупность функционально объединенных элементов — мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенных для измерения одной или нескольких физических величин и расположенных в одном месте. Примером являются установка для измерения удельного сопротивления электротехнических материалов, установка для испытаний магнитных материалов. Измерительную установку, предназначенную для испытаний каких-либо изделий, иногда называют испытательным стендом.

Измерительная система — совокупность функционально объединенных элементов — мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого пространства с целью измерений одной или нескольких физических величин, свойственных этому пространству. Примером может служить радионавигационная система для определения местоположения судов, состоящая из ряда измерительных комплексов, разнесенных в пространстве на значительном расстоянии друг от друга.

В [22] приводится другой пример измерительной системы — система АМУР (автоматизированное машинное управление режимом), которая применяется на распределительных холодильниках для измерения параметров и систематического контроля за температурным режимом хранения во всех холодильных камерах.

"Лицо" современной измерительной техники определяется автоматизированными измерительными системами (АИС), информационно-измерительными системами (ИИС), измерительно-вычислительными комплексами (ИВК). Типичная ИИС содержит в своем составе ЭВМ и обеспечивает сбор, обработку и хранение информации, поступающей от многочисленных датчиков, характеризующих состояние объекта или процесса. При этом результаты измерений выдаются как по заранее заданной программе, так и по запросу.

Применение новейших измерительных систем позволяет не только ускорить процесс измерения (что немаловажно для скоропортящихся товаров), но и дать более объективную характеристику качества конкретной партии товара.

Рассмотрим эффективность новейших измерительных систем на примере швейцарской системы анализа хлопка. При традиционном контроле на наших хлопковых заводах (проба от кипы партии) одни образец проверяется не менее 8—12 ч. В случае измерительной системы за 20—25 с проверяется не выборочно (4%, каждая 24-я кипа), а вся партия! 100%-ная проверка показывает, что в каждой из кип в среднем 12—15% хлопка оказывается более высокого качества, чем отражается в заводских протоколах испытаний при выборочном контроле. Если эти теряемые 12% умножить на объемы ежегодно экспортируемого волокна и перевести все это в валюту, то получится большая сумма потерь.

Технические системы и устройства с измерительными функциями — технические системы и устройства, которые наряду с основными выполняют и измерительные функции. Они имеют один или несколько измерительных каналов.

Примерами таких систем являются игровые автоматы, диагностическое оборудование.

По метрологическому назначению все СИ подразделяются на два вида: рабочие СИ и эталоны.

Рабочие СИ (РСИ) предназначены для проведения технических измерений. По условиям применения они могут быть: 1) лабораторными, используемыми при научных исследованиях, проектировании технических устройств, медицинских измерениях; 2) производственными, используемыми для контроля характеристик технологических процессов, контроля качества готовой продукции, контроля отпуска товаров; 3) полевыми, используемыми непосредственно при эксплуатации таких технических устройств, как самолеты, автомобили, речные и морские суда и др.

К каждому виду РСИ предъявляются специфические требования: к лабораторным — повышенная точность и чувствительность; к производственным — повышенная стойкость к ударно-вибрационным нагрузкам, высоким и низким температурам; к полевым — повышенная стабильность в условиях резкого перепада температур, высокой влажности.

Эталоны являются высокоточными СИ, а поэтому используются для проведения метрологических измерений в качестве средств передачи информации о размере единицы. Размер единицы передается "сверху вниз", от более точных СИ к менее точным "по цепочке": первичный эталон — вторичный эталон — рабочий эталон 0-го разряда — рабочий эталон 1-го разряда... — рабочее средство измерений.

Передача размера осуществляется в процессе поверки СИ. Целью поверки является установление пригодности СИ к применению.

Соподчинение СИ, участвующих в передаче размера единицы от эталона к РСИ, устанавливается в поверочных схемах СИ.

Многообразие СИ обусловливает необходимость применения специальных мер по обеспечению единства измерений. Как указывалось выше, одно из условий соблюдения единства измерений — установление для СИ определенных (нормированных) метрологических характеристик.

 

 

2.     Метрологические характеристики средств измерений

 

Метрологические свойства СИ — это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками.

Метрологические характеристики, устанавливаемые НД, называют нормируемыми метрологическими характеристиками.

Все метрологические свойства СИ можно разделить на две группы:

1) свойства, определяющие область применения СИ;

2) свойства, определяющие точность результатов измерения.

К основным метрологическим характеристикам, определяющим свойства первой группы, относятся диапазон измерений и порог чувствительности.

Диапазон измерений — область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значения величины, ограничивающие диапазон измерений снизу или сверху (слева и справа), называют соответственно нижним или верхним пределом измерений.

Порог чувствительности — наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала. Например, если порог чувствительности весов равен 10 мг, то это означает, что заметное перемещение стрелки весов достигается при таком малом изменении массы, как 10 мг.

К метрологическим свойствам второй группы относятся два главных свойства точности: правильность и прецизионность результатов.

К метрологическим характеристикам, определяющим свойства второй группы, относятся погрешности СИ.

Погрешность средства измерений — это разность между показаниями СИ и истинным (действительным)" значением измеряемой величины. Поскольку истинное значение физической величины неизвестно, то на практике пользуются ее действительным значением. Для рабочего СИ за действительное значение принимают показания рабочего эталона низшего разряда (допустим, 4-го), для эталона 4-го разряда, в свою очередь, — значение величины, полученное с помощью рабочего эталона 3-го разряда. Таким образом, за базу для сравнения принимают значение СИ, которое является в поверочной схеме вышестоящим по отношению к подчиненному СИ, подлежащему поверке:

Описание: https://studme.org/imag/econom/lif_stmet/image035.jpg

где ДХп — погрешность поверяемого СИ; Хп — значение той же самой величины, найденное с помощью поверяемого СИ; Х0 — значение СИ, принятое за базу для сравнения, т.е. действительное значение.

Например, при измерении барометром атмосферного давления получено значение Хи =1017 гПа. За действительное значение принято показание рабочего эталона, которое равнялось Х0 = 1020 гПа. Следовательно, погрешность измерения барометром составила:

Описание: https://studme.org/imag/econom/lif_stmet/image036.jpg

Погрешности СИ могут быть классифицированы по ряду признаков, в частности:

по способу выражения — абсолютные, относительные;

по характеру проявления — систематические, случайные;

по отношению к условиям применения — основные, дополнительные.

Наибольшее распространение получили метрологические свойства, связанные с нерпой группировкой — с абсолютными и относительными погрешностями.

Определяемая по формуле (5) ДХм является абсолютной погрешностью. Однако в большей степени точность СИ характеризует относительная погрешность (8), т.е. выраженное в процентах отношение абсолютной погрешности к действительному значению величины, измеряемой или воспроизводимой данным СИ:

Описание: https://studme.org/imag/econom/lif_stmet/image037.jpg

Точность может быть выражена обратной величиной относительной погрешности — 1/. Если погрешность =0,1%, или 0,001=10 3, то точность равна 103.

В стандартах нормируют характеристики, связанные с другими погрешностями.

Систематическая погрешность — составляющая погрешности результата измерения, остающаяся постоянной (или же закономерно изменяющейся) при повторных измерениях одной и той же величины. Ее примером может быть погрешность градуировки, в частности погрешность показаний прибора с круговой шкалой и стрелкой, если ось последней смещена на некоторую величину относительно центра шкалы. Если эта погрешность известна, то ее исключают из результатов разными способами, в частности введением поправок". При химическом анализе систематическая погрешность проявляется в случаях, когда метол измерений не позволяет полностью выделить элемент или когда наличие одного элемента мешает определению другого.

При нормировании систематической составляющей погрешности СИ устанавливают пределы допускаемой систематической погрешности СИ конкретного типа — В.

Величина систематической погрешности определяет такое метрологическое свойство, как правильность измерений СИ, — это первая составляющая точности.

Случайная погрешность — составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. В появлении этого вида погрешности не наблюдается какой-либо закономерности. Они неизбежны и неустранимы, всегда присутствуют в результатах измерения. При многократном и достаточно точном измерении они порождают рассеяние результатов.

Характеристиками рассеяния являются средняя арифметическая погрешность, средняя квадратическая погрешность, размах результатов измерений. Поскольку рассеяние носит вероятностный характер, то при указании на значения случайной погрешности задают вероятность.

Величина случайной погрешности определяет вторую составляющую точности — прецизионность.

Оценка погрешности измерений СИ, используемых для определения показателей качества товаров, определяется спецификой применения последних. Например, погрешность измерения цветового тона керамических плиток для внутренней отделки жилища должна быть по крайней мере на порядок ниже, чем погрешность измерения аналогичного показателя серийно выпускаемых картин, сделанных цветной фотопечатью. Дело в том, что разнотонность двух наклеенных рядом на стену кафельных плиток будет бросаться в глаза, тогда как разнотонность отдельных экземпляров одной картины заметно не проявится, так как они используются разрозненно.

Номенклатура нормируемых метрологических характеристик СИ определяется назначением, условиями эксплуатации и многими другими факторами. У СИ, применяемых для высокоточных измерений, нормируется до десятка и более метрологических характеристик в стандартах технических требований (технических условий) и ТУ. Нормы на основные метрологические характеристики приводятся в эксплуатационной документации на СИ. Учет всех нормируемых характеристик необходим при измерениях высокой точности и в метрологической практике. В повседневной производственной практике широко пользуются обобщенной характеристикой лассом точности.

Класс точности СИ — обобщенная характеристика, выражаемая пределами допускаемых (основной и дополнительной) погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в НД. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса.

Например, для вольтметров нормируют: предел допускаемой основной погрешности и соответствующие нормальные условия; пределы допускаемых дополнительных погрешностей; пределы допускаемой вариации показаний; невозвращение указателя к пулевой отметке. У плоскопараллельных концевых мер длины такими характеристиками являются пределы допускаемых отклонений от номинальной длины и плоскопараллельности; пределы допускаемого изменения длины в течение года. У мер электродвижущей силы (нормальных элементов) нормируют пределы допускаемой нестабильности ЭДС в течение года.

Обозначение классов точности осуществляется следующим образом.

Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности СИ, то класс точности обозначается прописными буквами римского алфавита. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, присваиваются буквы, находящиеся ближе к началу алфавита.

Пределы допускаемой основной для тех СМ, у которых их принято выражать в форме относительной погрешности, обозначаются числами, которые равны этим пределам, выраженным в процентах. Так, класс точности 0,001 нормальных элементов свидетельствует о том, что их нестабильность за год не превышает 0,001%. Обозначения класса точности наносят на циферблаты, щитки и корпуса СИ, приводят в НД. СИ с несколькими диапазонами измерений одной и той же физической величины или предназначенных для измерений разных физических величин могут быть присвоены различные классы точности для каждого диапазона или для каждой измеряемой величины. Так, электроизмерительному прибору, предназначенному для измерений напряжения и сопротивления, могут быть присвоены два класса точности: один — как вольтметру, другой — как омметру.

Присваиваются классы точности СИ при их разработке (по результатам приемочных испытаний). В связи с тем что при эксплуатации их метрологические характеристики обычно ухудшаются, допускается понижать класс точности по результатам поверки (калибровки).

Итак, класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.

В подразд. 1.1 было указано, что в ключевом определении понятия "единство измерений" действующего ФЗ о техническом регулировании появились (но сравнению с прежней редакцией закона) слова "... а показатели точности измерений не выходят за установленные границы" вместо слов "... погрешности не выходят за установленные границы...", данных в старом законе. Эти изменения носят принципиальный характер, поскольку точность измерения определяется не только характеристиками погрешности, но и характеристиками неопределенности, широко используемыми в международных метрологических документах (2.16.)

Современная международная метрология опирается не только па традиционную концепцию погрешности измерений, но и концепцию неопределенности измерений.

Неопределенность измерений — рассеяние значений, которые могли быть обоснованно приписаны измеряемой величине. На совместное использование понятий "погрешность измерения" и "неопределенность измерения" направлены Рекомендации (4.8). Стандарт на точность измерений подробно прокомментирован.

Примером практического применения характеристик неопределенности является перечень характери -стик точности усовершенствованного Государственного первичного эталона массы по результатам его сличения с Международным прототипом килограмма в МБМВ (Международное бюро мер и весов). В перечне характеристик выступают как характеристики погрешности, так и характеристика неопределенности — "расширенная неопределенность измерений"...

Точность и методика производимых измерений требуют специального рассмотрения

 

Литература

 

1.     Анисимов, В.П. Метрология, стандартизация и сертификация (в сфере туризма): Учебное пособие / В.П. Анисимов, А.В. Яцук. - М.: Альфа-М, НИЦ ИНФРА-М, 2013. - 253 c.

2.     Аристов, А.И. Метрология, стандартизация и сертификация: Учебник для студентов учреждений высшего профессионального образования / А.И. Аристов, Л.И. Карпов, В.М. Приходько. - М.: ИЦ Академия, 2013. - 416 c.

3.     Аристов, А.И. Метрология, стандартизация, сертификация: Учебное пособие / А.И. Аристов, В.М. Приходько, И.Д. Сергеев, Д.С. Фатюхин. - М.: НИЦ ИНФРА-М, 2013. - 256 c.

4.     Архипов, А.В. Метрология. Стандартизация. Сертификация: Учебник для студентов вузов / А.В. Архипов, А.Г. Зекунов, П.Г. Курилов; Под ред. В.М. Мишин. - М.: ЮНИТИ-ДАНА, 2013. - 495 c.

5.     Басаков, М.И. Основы стандартизации, метрологии, сертификации: 100 экзаменационных ответов / М.И. Басаков. - Рн: Феникс, ИКЦ МарТ, 2010. - 224.

6.     Берновский, Ю.Н. Стандартизация: Учебное пособие / Ю.Н. Берновский. - М.: Форум, 2012. - 368 c.

7.     Боларев, Б.П. Стандартизация, метрология, подтверждение соответствия: Учебное пособие / Б.П. Боларев. - М.: НИЦ ИНФРА-М, 2013. - 254 c.

8.     Вдовин, С.М. Система менеджмента качества организации : [учеб. пособие] / С.М. Вдовин, Т.А. Салимова, Л.И. Бирюкова. - М. : ИНФРА-М, 2012 - 297 с.

9.     Димов, Ю.В. Метрология, стандартизация и сертификация: Учебник для вузов. Стандарт третьего поколения / Ю.В. Димов. - СПб.: Питер, 2013. - 496 c.

10.                       Дубовой, Н.Д. Основы метрологии, стандартизации и сертификации: Учебное пособие / Н.Д. Дубовой, Е.М. Портнов. - М.: ИД ФОРУМ, НИЦ ИНФРА-М, 2013. - 256c.