§1. Понятие корректно поставленных и некорректно поставленных задач.

Решение любой количественной задачи, как правило, состоит в нахождении решения z по заданным исходным данным u, z = R(u). Пусть F и U метрические пространства соответственно с метриками $\rho_F(z_1, z_2)$ и $\rho_U(u_1, u_2)$, $z_1, z_2 \in F$, $u_1, u_2 \in U$. Выбор метрики определяется постановкой задачи.

Предположим каждому элементу $u \in U$ соответствует единственное решение $z = R(u), z \in F$. Приведем некоторые определения [1].

Задача определения решения z=R(u) из пространства F по исходным данным $u\in U$ называется *устойчивой* на пространствах (F,U), если для любого числа $\varepsilon>0$ можно указать такое число $\delta(\varepsilon)>0$, что из неравенства $\rho_U(u_1,u_2)\leq \delta(\varepsilon)$ следует $\rho_F(z_1,z_2)\leq \varepsilon$, где

$$z_1 = R(u_1),$$
 $z_2 = R(u_2);$ $u_1, u_2 \in U,$ $z_1, z_2 \in F.$

Задача определения решения z из пространства F по «исходным данным» u из пространства U называется κ корректной поставленной на паре метрических пространств (F, U), если удовлетворяются требования (условия):

- 1) для всякого элемента $u \in U$ существует решение z из пространства F;
- 2) решение определяется однозначно;
- 3) задача устойчива на пространствах (F, U).

Задачи, не удовлетворяющие перечисленным требованиям, называются *некорректно поставленными*.

Рассмотрим пример некорректно поставленной задачи. Пусть $z_1(t)$ - производная функции $u_1(t)$. Возьмем функцию $u_2(t) = u_1(t) + N sin \omega t$. В метрике пространства C она отличается от $u_1(t)$ на величину $\rho_C(u_1,u_2) = |N|$ при любых значениях ω . В то же время производная $z_2(t) = u_2'(t)$ разнится от $z_1(t)$ в метрике C на величину $|N\omega|$, которая может быть сколь угодно большой за счет выбора больших значений $|\omega|$.

Заметим, что при других метриках множеств F и U выше рассмотренная задача дифференцирования, может быть и корректно поставленной на паре метрических пространств (F, U).

Возьмем в качестве U пространство $C^1[a,b]$, а в роли F пространство C[a,b]. Тогда, как известно [6],

$$\rho_U(u_1, u_2) = \sum_{k=0}^{1} \max_{[a,b]} \left| u_1^{(k)}(t) - u_2^{(k)}(t) \right|,$$

$$\rho_F(z_1, z_2) = \max_{[a,b]} |u_1(t) - u_2(t)|.$$

Очевидно, задача дифференцирования на такой паре метрических пространств (F, U) будет корректно поставленной.