Тема
5.
Интервальные
оценки
1.
Понятие
доверительного
интервала
Пусть
необходимо оценить
неизвестный
параметр
распределения
.
Имеется
выборка .
Пусть
построена
оценка для
параметра .
Значение
оценки отличается,
естественно,
от значения
параметра , т. е. –
приближенная
оценка.
Значит необходимо
указать
границы
погрешности
этого
приближения
и тем самым
надежность
оценки .
В
математической
статистике
этот вопрос решается
путем
определения
таких величин
и , чтобы
интервал с
заданной
вероятностью
содержал
искомый
параметр , т. е.
. (1)
Здесь
( - малая
величина).
Величины
и являются
случайными
величинами, значит
и интервал является
случайным.
Определение.
Вероятность называется
доверительной
вероятностью
или уровнем
доверия;
она
определяет
надежность
выполнения
неравенства
после
вычисления и .
Определение.
Интервал ,
удовлетворяющий
условию (1),
называется
доверительным
интервалом с
заданным
уровнем
доверия .
Величина называется
уровнем
значимости.
Иногда
определяют
симметричный
интервал
.
Практически
поступают
следующим
образом: по
выборке ,
полученной
для величины с
функцией
распределения
, находят
значения
доверительного
интервала с
уровнем
доверия и
считают, что
истинное
значение параметра
с
надежностью попадает
в этот
интервал. Так
как при
конкретной
выборке величины
и не
являются
случайными
величинами,
то здесь уже
не говорят о
вероятности.
Рассмотрим
общий подход
для
определения доверительного
интервала. По
данной выборке
надо
построить
такую
монотонную
по функцию
с
известным
распределением,
что для нее
можно
разрешить
относительно
неравенство
.
Решение
этого
неравенства
дает и , которые
и определяют
доверительный
интервал с
заданным
уровнем доверия,
равным
вероятности
исходного
неравенства.
При этом
можно
варьировать и так,
чтобы
получить
наиболее
узкий интервал:
.
Пример.
Построим
доверительный
интервал для
математического
ожидания
нормально
распределенной
случайной
величины при
известном .
Пусть
имеется
выборка для
нормально
распределенной
случайной
величины с параметрами
.
Обозначим: .
Случайная
величина (где )
распределенная
нормально с
параметрами
(0,1), т. е. . Таким
образом, в
качестве
функции используется
функция .
Для
всякого можно
найти такое , что
. (2)
Здесь
использован
симметричный
интервал,
потому что
для при
заданном он
минимален.
Выражение (2)
можно переписать
так:
(3)
Неравенство
определяет
доверительный
интервал для
неизвестного
параметра с
уровнем
доверия или
доверительной
вероятностью
.
Как
определить ?
Выражение
(3)
равносильно
.
Так
как распределен
нормально с
параметрами и , т. е. , то
Делая
замену и
учитывая (3)
получим, что
.
Таким
образом, для
определения получаем:
.
(4)
Существуют
таблицы
интегралов, с
помощью которых
и находят при
заданном значение
. Они
составлены
для функции
Лапласа
.
Интеграл
в (4) можно
написать в
следующем виде
.
Отсюда . Используя таблицы, находим .