МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (Физический факультет)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Радиофизика и электроника

Кафедра физической электроники

Образовательная программа бакалавриата

03.03.02- Физика

Направленность профиль/специализация программы:

Фундаментальная физика

Форма обучения: очная

Статус дисциплины: входит в часть, формируемую участниками образовательных отношений

Махачкала, 2022 год

Рабочая программа дисциплины Радиофизика и электроника составлена в 2022 году в соответствии с требованиями ФГОС ВО – бакалавриат по направлению подготовки 03.03.02 – Физика, от «07» 08 2020 г. №891.

Разработчик: кафедра физической электроники, Закарьяева М.З., ст. преподаватель <u>баееу</u>

Рабочая программа дисциплины одобрена: на заседании кафедры физической электроники от «3» марта 2022 г., протокол № 4

Зав. кафедрой Соро Ашурбеков Н.А.

на заседании Методической комиссии физического факультета от «23» марта 2022 г., протокол №7.

Председатель

Мурлиева Ж.Х.

Рабочая программа дисциплины согласована с учебно-методическим управлением «31» марта 2022 г.

Начальник УМУ _____ Гасангаджиева А.Г.

Аннотация рабочей программы дисциплины «Радиофизика и электроника»

Дисциплина входит в вариативную часть образовательной программы бакалавриата по направлению 03.03.02- Физика. Дисциплина реализуется на физическом факультете кафедрой физической электроники. Содержание дисциплины охватывает круг вопросов, связанных с физикой процессов, протекающих в радиоэлектронных элементах и устройствах, применяемых в физическом эксперименте, в технике радиосвязи, в том числе спутниковой, оптоволоконной и сотовой. В курсе радиофизики и электроники студент должен получить сведения о принципах работы основных радиоэлектронных элементов и устройств, приобрести навыки работы с основными радиотехническими приборами, монтажа и наладки несложных радиоэлектронных устройств. При этом бакалавр должен получить не только теоретические знания, но и навыки их дальнейшего пополнения, научиться пользоваться современной литературой, в том числе электронной Задачами курса также являются - научить студентов методам расчета радиоэлектронных схем, чтению схем, ознакомить с современной элементной базой радиоэлектроники.

Дисциплина нацелена на формирование следующих компетенций выпускника: универсальные: (УК-3); общепрофессиональные ОПК-1, ОПК-3; профессиональных: ПК-3, ПК-9. Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, лабораторные занятия, самостоятельная работа. Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме: контрольная работа, коллоквиум и пр.) и промежуточный контроль в форме экзамена. Объем дисциплины 4 зачетных единиц, в том числе в академических часах по видам учебных занятий 144 ч.

	Учебные занятия								Форма
	в том числе:								промежуточно
д	Контактная работа обучающихся с СРС, в том						й аттестации		
Loa			преподавателем числе зачет,						(зачет,
Семестр)LO			из них				дифференци	дифференциро
\mathcal{C}	всего	SI O	Лек	Лаборат	Практич			рованный	ванный зачет,
		всего	ции	орные	* *			зачет,	экзамен)
				занятия	занятия занятия		экзамен		
7	144	108	32	48				28+36	Экзамен

1. Цели освоения дисциплины.

Целью освоения дисциплины «Радиофизика и электроника» является ознакомление студентов с физикой процессов в основных радиоэлектронных элементах и устройствах, с современной элементной базой электроники, с методами анализа электрических цепей и сигналов, с физическими принципами работы базовых радиоэлектронных цепей и схем. При этом бакалавр должен получить не только теоретические знания, но и навыки их дальнейшего пополнения, научиться пользоваться современной литературой, в том числе электронной.

Задачи дисциплины:

- ознакомить с современной элементной базой радиоэлектроники;
- дать сведения о принципах работы основных радиоэлектронных устройств
- формирование у студентов умения оценивать возможности применения радиоэлектронных устройств в физическом эксперименте, в технике радиосвязи и др. областях техники;
- получение навыков работы с основными радиотехническими приборами;
- получение практических навыков монтажа и наладки несложных радиоэлектронных устройств;
- научить студентов методам расчета радиоэлектронных схем и чтению схем;

• сформировать основные умения и навыки работы с измерительными приборами, обработки результатов лабораторных работ и их анализа, решения прикладных задач, применения физических законов для объяснений природных процессов и явлений.

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина «Радиофизика и электроника» входит в модуль профильной направленности образовательной программы (ФГОС ВО) бакалавриата по направлению 03.03.02- Физика. Для изучения дисциплины «Радиофизика и электроника» ее успешного усвоения студент должен электричества, основные понятия и методы математического анализа, линейной алгебры, дифференциальное дискретной математики; интегральное исчисления; гармонический анализ; дифференциальные уравнения; численные методы; функции комплексного переменного и др. разделы физики и самостоятельной учебной математики. Являясь дисциплиной, «Радиофизика и электроника», не оторван от других дисциплин. Наоборот, существуют междисциплинарные связи с такими частями и разделами физики, как «Переменный электрический ток», «Электродинамика и распространение радиоволн», «Колебания и волны», «Теорию колебаний» и др. Дисциплина "Радиофизика и электроника" связана с аппаратным и метрологическим обеспечением физического эксперимента, закладывает основы для дальнейшего обучения на специализациях факультета. Материал, изучаемый в дисциплине «Радиофизика и электроника» может использоваться студентами при изучении дисциплин, например: «Физика газового разряда», «Медицинская электроника», «Электронные твердотельные приборы и микроэлектроника», «Физика контактных явлений», а также будет полезен при изучении дисциплин, связанных с вопросами применения радиоэлектронных средств сигналов, а также измерения и обработки при выполнении курсовых и дипломных работ,

связанных с изготовлением и эксплуатацией радиоэлектронных устройств и экспериментальных установок.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Код и	Код и	Планируемые результаты обучения	Процедура
наименование	наименование		освоения
компетенции из	индикатора		
ОПОП	достижения		
	компетенций		
УК-3. Способен	Б-УК-3.1.	Знает:	Устный
осуществлять	Определяет свою	общие формы организации	опрос,
социальное	роль в социальном	деятельности коллектива; основы	письменный
взаимодействие	взаимодействии и	стратегического планирования	опрос
и реализовывать	командной работе,	работы	
свою роль в	исходя из стратегии	коллектива для достижения	
команде	сотрудничества для	поставленной цели.	
	достижения	Владеет:	
	поставленной цели	навыками постановки цели в	
		условиях командой работы.	
	Б-УК-3.2. При	Знает:	
	реализации своей	психологию межличностных	
	роли в социальном	отношений в группах разного	
	взаимодействии и	возраста.	
	командной работе	Умеет:	
	учитывает	создавать в коллективе	
	особенности	психологически безопасную	
	поведения и	доброжелательную среду.	
	интересы других	Владеет:	
	участников.	способами управления командной	
		работой в решении поставленных	
		задач.	
	Б-УК-3.3.	Умеет:	
	Анализирует	учитывать в своей социальной и	
	возможные	профессиональной деятельности	
	последствия личных	интересы коллег; предвидеть	
	действий в	результаты (последствия) как	
	социальном	личных, так и коллективных	
	взаимодействии и	действий.	
	командной работе, и		
	с учетом этого		
	строит продуктивное		
	взаимодействие в		
	коллективе.		

Б-УК	C 2 4	Varaam	
		Ymeet:	
1	цествляет обмен	планировать командную работу,	
_	рмацией,	распределять поручения и	
	иями и опытом с	делегировать полномочия членам	
члена		команды.	
	ивает идеи	Владеет:	
други		навыками преодоления возникающих	
комал		в коллективе разногласий, споров и	
	ижения	конфликтов на основе учета	
	авленной цели.	интересов всех сторон.	
Б-УК		Умеет:	
	юдает нормы и	анализировать, проектировать и	
1	новленные	организовывать межличностные,	
прави		групповые и организационные	
работ	•	коммуникации в команде для	
личн		достижения поставленной цели.	
	тственность за	Владеть:	
резул	іьтат.	методами организации и управления	
		коллективом.	
ОПК-1.		Знает:	Устный
Способен Выяг	вляет и	- физико-математический аппарат,	опрос,
-	изирует	необходимый для решения задач	письменный
базовые знания в пробл	лемы,	профессиональной деятельности	опрос
_	икающие в ходе	- тенденции и перспективы развития	
математических проф	ессиональной	современной физики, а также	
и (или) деяте	ельности,	смежных областей науки и техники.	
естественных основ	вываясь на	Умеет:	
наук в сфере совре	еменной	- выявлять естественнонаучную	
своей научн	ной картине	сущность проблем, возникающих в	
профессиональн мира		ходе профессиональной	
ой деятельности;		деятельности, анализировать и	
		обрабатывать соответствующую	
		научнотехническую литературу с	
		учетом зарубежного опыта.	
		Владеет:	
		- навыками находить и критически	
		анализировать информацию,	
		выявлять естественнонаучную	
		сущность проблем.	
ОПК	C-1.2.	Знает:	
	изует и	- основные понятия, идеи, методы,	
	ошенствует	подходы и алгоритмы решения	
1 -	е методы, идеи,	теоретических и прикладных задач	
подхо		физики; - новые методологические	
	ритмы решения	подходы к решению задач в области	
1 -	етических и	профессиональной деятельности.	
1	ладных задач в	Умеет:	
облас		- реализовать и совершенствовать	
	ессиональной	новые методы, идеи, подходы и	
	ельности.	алгоритмы решения теоретических и	
		прикладных	

		задач в области профессиональной	
		деятельности.	
		Владеет:	
		-навыками реализовать и	
		совершенствовать новые методы,	
		идеи, подходы и алгоритмы решения	
		теоретических и прикладных задач в	
		области профессиональной	
		деятельности.	
	ОПК-1.3.	Знает:	
	Проводит	-основы качественного и	
	качественный и		
	качественный	количественного анализа методов решения выявленной проблемы.	
	_	Умеет:	
	-	_	
	методов решения выявленной	-выбирать метод решения выявленной проблемы, проводить его	
	_	качественный и количественный	
	проблемы, при необходимости		
	вносит необходимые	анализ, при необходимости вносить необходимые коррективы для	
	' '	1	
	коррективы.	достижения оптимального	
		результата.	
		Владеет:	
		-навыками проводить качественный и количественный анализ методов	
		решения выявленной проблемы,	
		оценивать эффективность	
ОПК-3.	ОПК-3.1.	выбранного метода.	V
		Знает:	Устный
Способен пони	1 1 1	-современные принципы поиска,	опрос,
мать принципы	1 *	хранения, обработки, анализа и	письменный
работы	использовать новые	представления информации из	опрос
современных и	знания в области	различных источников и баз данных в	
информационны	профессиональной	требуемом формате с использованием	
х технологий и	деятельности, в том числе в	информационных, компьютерных и	
использовать их	числе в		
		сетевых технологий.	
для решения за	междисциплинарном	Умеет:	
дач		Умеет: -получать и использовать новые	
дач профессиональн	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной	
дач	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной деятельности, в том числе в	
дач профессиональн	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте, с	
дач профессиональн	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте, с использованием	
дач профессиональн	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте, с использованием информационнокоммуникационных	
дач профессиональн	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте, с использованием информационнокоммуникационных технологий.	
дач профессиональн	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте, с использованием информационнокоммуникационных технологий. Владеет:	
дач профессиональн	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте, с использованием информационнокоммуникационных технологий. Владеет: -навыками использовать современные	
дач профессиональн	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте, с использованием информационнокоммуникационных технологий. Владеет: -навыками использовать современные информационные технологии для	
дач профессиональн	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте, с использованием информационнокоммуникационных технологий. Владеет: -навыками использовать современные информационные технологии для приобретения новых знаний в области	
дач профессиональн	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте, с использованием информационнокоммуникационных технологий. Владеет: -навыками использовать современные информационные технологии для приобретения новых знаний в области профессиональной деятельности, в	
дач профессиональн	междисциплинарном	Умеет: -получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте, с использованием информационнокоммуникационных технологий. Владеет: -навыками использовать современные информационные технологии для приобретения новых знаний в области	

ОПК-3.2.	Знает:	
Предлагает новые		
<u> </u>	- типовые процедуры применения	
идеи и подходы к	проблемно ориентированных	
решению	прикладных программных средств в	
инженерных задач с	сфере профессиональной	
использованием	деятельности	
современных	Умеет:	
информационных	- генерировать новые идеи и подходы	
технологий	к решению инженерных задач с	
	использованием современных	
	информационных и компьютерных	
	технологий, средств коммуникаций	
	Владеет:	
	- навыками предлагать новые идеи и	
	подходы к решению инженерных	
	задач с использованием современных	
	информационных технологий	
ОПК-3.3.	Знает:	
Разрабатывает	-основы информационных	
эффективные	технологий, основные возможности и	
алгоритмы решения	правила работы со стандартными	
инженерных задач с	программными продуктами при	
использованием	решении профессиональных задач -	
современных языков	методы вычислительной физики и	
программирования и	математического моделирования	
математического	Умеет:	
моделирования	-разрабатывать эффективные	
	алгоритмы решения инженерных	
	задач с использованием современных	
	языков программирования и	
	математического моделирования	
	Владеет:	
	-навыками разрабатывать	
	специализированные программные	
	средства и методы математического	
	моделирования для проведения	
	исследований и решения инженерных	
	задач	
ОПК-3.4.	Знает:	
Применяет	-требования к	
специализированное	программноматематическому	
программноматемат	обеспечению для эффективного	
ическое обеспечение	проведения исследований и решения	
для проведения	инженерных задач	
исследований и	Умеет:	
решения	- подобрать и применять наиболее	
инженерных задач.	оптимальное программно-	
пписперных зада 1	математическое обеспечение для	
	проведения исследований и решения	
	инженерных задач	
	владеет:	
<u> </u>	владеет.	

		-навыками применять	
		специализированное	
		программноматематическое	
		обеспечение для проведения	
		исследований и решения инженерных	
		задач	
ПК-3.	ПК-3.1.	Знает:	Устный
Способен	Использует	содержание, сущность,	опрос,
осваивать и	теоретические и	закономерности, принципы и	письменный
использовать	практические знания	особенности изучаемых явлений и	опрос
базовые	для постановки и	процессов, базовые теории в	1
научнотеоретиче	решения	предметной области;	
ские знания и	педагогических	закономерности, определяющие	
практические	задач в предметной	место предмета в общей картине	
умения по	области и в области	мира; программы и учебники по	
предмету в	образования	преподаваемому предмету; основы	
профессиональн	ПК-3.2.	общетеоретических дисциплин в	
ой деятельности	Способен соотносить	объеме, необходимом для решения	
	основные этапы	педагогических, научнометодических	
	развития предметной	и организационно-управленческих	
	области с ее	задач (педагогика, методика	
	актуальными	преподавания предмета.)	
	задачами, методами	Умеет:	
	и концептуальными	анализировать базовые предметные	
	подходами,	научнотеоретические представления	
	тенденциями и	о сущности, закономерностях,	
	перспективами ее	принципах и особенностях изучаемых	
	современного	явлений и процессов.	
	развития	Владеет:	
	ПК-3.3.	навыками понимания и системного	
	Способен выделять	анализа базовых научно-	
	структурные	теоретических представлений для	
	элементы, входящие	решения профессиональных задач.	
	в систему познания		
	предметной области,		
	анализировать их в		
	единстве		
	содержания, формы		
	и выполняемых		
	функций		
ПК-9.	ПК-9.1.	Знает:	Устный
Способен	Проводит поиск	специализированные информации в	опрос,
проводить	специализированной	патентноинформационных базах	письменный
патентноинформ	информации в	данных; методы анализа и обобщения	опрос
ационные	патентноинформаци	результатов патентного поиска по	_
исследования в	онных базах данных	тематике проекта в выбранной	
выбранной	ПК-9.2.	области физики.	
области физики	Способен	Умеет:	
и/или смежных	анализировать и	проводить поиск	
наук	обобщать результаты	специализированной информации в	
	патентного поиска по	патентно-информационных базах	
-		-	

тематике проекта в	данных; применять основные законы	
области	физики при обсуждении получены	
фундаментальной	результатов, в том числе с	
физики	привлечением информационных баз	
	данных.	
	Владеет:	
	навыками анализа и обобщения	
	результатов патентного поиска по	
	тематике проекта в выбранной	
	области физики и/или смежных наук.	

4. Объем, структура и содержание дисциплины.

- 4.1. Объем дисциплины составляет 4 зачетных единиц, 144 академических часов.
- 4.2. Структура дисциплины.

Объем, структура и содержание дисциплины.

					ной работ ную работ часах)			
№ п/п	Разделы и темы дисциплины по модулям	Семестр	Лекции	Практические занятия	Лабораторные занятия		Самостоятельная работа в т.ч. зачет, экзамен	Формы текущего контроля успеваемости и промежуточной аттестации
	Модуль 1. Принцип мод	уляц	ии в ра	диофиз	ике. Рас	диотех	ническі	ие цепи
1.	Тема 1.	7	2		4		2	Устный
	Основные задачи							опрос
	радиофизики и							
	электроники. Принцип							
	модуляции в							
	радиофизике.							
2.	Тема 2.		2		4		2	Устный
	Спектры							опрос
	периодических и							
	непериодических							
	сигналов.							
	Радиоэлектронные							
3.	цепи. Тема 3.		2		4		2	Устный
3.	3.6		2		4		2	
	Ü							опрос
	линеиных и нелинейных ЭЦ.							
4.	Тема 4.		2		2		2	Устный
7.	Электрические цепи		2				2	опрос
	при гармоническом							onpoc
	воздействии.							

5.	Тема 5.		2	2	2	Устный
	Активные и					опрос
	реактивные элементы в					
	цепи переменного					
	тока.					
	Модуль 1		10	16	10	Письменная
						контрольная
						работа,
						коллоквиум
	2. Установившиеся прог					
1.	Тема 6.	7	2	4	2	Устный опрос
	Уравнения Кирхгофа					
	для связанных					
	контуров					
2.	Тема 7.		2	4	2	Устный опрос
	Переходные процессы					
	в линейных цепях					
3.	Тема 8.		2	4	2	Устный опрос
	Собственная и					
	примесная					
	проводимость					
	полупроводников,					
	явления переноса					
4.	Тема 9.		2	2	2	Устный опрос
	Неравновесные					_
	носители заряда в					
	полупроводниках					
5.	Тема 10.		2	2	2	Устный опрос
	Электрические поля в					_
	полупроводниках,					
	формирование диода					
	Шоттки и электронно-					
	дырочного перехода					
	Итого по модулю 2:		10	16	10	Письменная
						контрольная
						работа,
						коллоквиум
Модуль	3 Полупроводниковые р	ади		ронные устройс		
1.	Тема 11.		2	4	2	Устный опрос
	Контактная разность					
	потенциалов, процессы					
	в равновесном и					
	неравновесном					
	переходе, барьерная					
	емкость					
2.	Тема 12.		2	4		Устный опрос
	Теория ВАХ тонкого и					
	толстого р-п перехода.					
	<u> </u>	1	1	1 1	1	ı

	Физика процессов					
	пробоя					
3.	Тема 13.	2	2		2	Устный опрос
	Специальные типы					
	диодов, их свойства,					
	параметры и					
	применение в					
	электронике					
4.	Тема 14.	2	2		2	Устный опрос
	Структура и принцип					
	работы биполярного и					
	полевого транзистора					
5.	Тема 15. Усиление	2	4			Устный опрос
	электрического сигнала					
6.	Тема 16. Генераторы	2	2		2	Устный опрос
	электрических					
	колебаний					
	Итого по модулю 3:	12	16		8	Письменная
						контрольная
						работа,
	11			2.5		коллоквиум
	Итого по модулю 4:			36		Экзамен
	ИТОГО:	32	48	36	28	

4.3. Содержание дисциплины, структурированное по темам (разделам).

Модуль1. Принцип модуляции в радиофизике. Радиотехнические пепи

Тема 1. Введение. Предмет радиофизики. Основные задачи радиофизики. Радиофизика - наука о физических явлениях, методах и системах передачи, приема и обработки информации. Общая схема радиосвязи. Классификация диапазонов радиоволн. Излучение и распространение радиоволн. Сигналы и помехи. Понятие информации и сигнала в радиофизике.

Принции модуляции в радиофизике. Радиоэлектронные системы передачи, приема и обработки информации. Роль гармонических колебаний в радиосвязи. Виды модуляции сигнала. коэффициент модуляции. Частотная селекция, демодуляция и детектирование радиосигнала. Случайные колебания, шумы и помехи в радиосвязи.

- **Тема 2.** Спектры периодических и непериодических сигналов. Спектральная плотность $S(\omega)$ непериодического сигнала. Свойства преобразований Фурье. Символическое изображение переменных составляющих сложного метод комплексных амплитуд. сигнала, Различные формы колебаний. представления периодических Распределение энергии И мощности спектре периодических В непериодических колебаний.
- Тема 3. Радиоэлектронные Основные цепи. понятия радиоэлектронных цепей, идеальные элементы. Модели пассивных и радиоэлектронных цепе Эквивалентные активных элементов преобразования электрических цепей (ЭЦ). Линейные системы. Принципы линейности и инвариантности во времени. Резистор (R), конденсатор(C) индуктивность (L) и трансформатор как линейные элементы цепи. Закон Ома. Источники напряжения и тока. Законы Кирхгофа.
- **Тема 4.** *Методы анализа линейных и нелинейных ЭЦ*. Виды, характеристики и параметры нелинейных элементов. Графические методы анализа нелинейных ЭЦ. Аналитические методы анализа нелинейных ЭЦ. Метод узловых напряжений.
- **Тема 5**. Электрические цепи при гармоническом воздействии. Гармоническое воздействие на идеализированные элементы. Формы представления гармонического воздействия. Комплексные сопротивления и проводимости ЭЦ.

Модуль 2 Элементы полупроводниковой электроники

- **Тема 6.** Активные и реактивные элементы в цепи переменного тока. Векторная диаграмма напряжений. Резистивный, индуктивный и емкостной элементы в цепи переменного тока, активное и реактивные сопротивления, диаграмма напряжений. Энергетический анализ линейных электрических цепей. Виды мощностей в электрических цепях и их баланс. Комплексное представление мощностей. Треугольник и коэффициент мощности.
- **Тема 7.** Векторные диаграммы. Цепь переменного тока, содержащий последовательно включенные R, L, C. Полное сопротивление цепи переменному току. Фазы токов и напряжений, разность фаз ф. Векторные диаграммы напряжений и токов, сопротивлений и проводимостей последовательно и параллельно соединенных R, L, C. Эквивалентное сопротивление и проводимость.
- **Тема 8**. Векторные диаграммы. Цепь переменного тока, содержащий последовательно включенные R, L, C. Полное сопротивление цепи

переменному току. Фазы токов и напряжений, разность фаз ф. Векторные диаграммы напряжений и токов, сопротивлений и проводимостей последовательно и параллельно соединенных R, L, C. Эквивалентное сопротивление и проводимость.

Тема 9. Установившиеся процессы в цепи. Введение эквивалентного генератора при расчете сложной цепи. Схема дифференцирования входного сигнала, точность выполнения операции дифференцирования. Схема интегрирования входного сигнала, точность выполнения операции интегрирования. Установившиеся процессы в цепи, содержащей последовательное соединение источника переменной ЭДС и элементов R, L, C. Резонанс напряжений.

Тема 10. Резонанс токов - параллельный резонанс. Эквивалентное характеристическое сопротивление колебательного контура и зависимость его от частоты. Использование резонанса токов.

Резонансные кривые для последовательного контура и зависимость вида их от частоты и добротности контура. Частотные зависимости тока и напряжения в параллельном и последовательном контурах, резонансные кривые и добротность контура. Применение колебательного контура в физических измерениях. Основы полупроводниковой электроники. Предмет полупроводниковой электроники. Основные типы примесей в полупроводнике, примесные уровни и энергия их ионизации. Собственная и примесная проводимость. Положение уровня Ферми и концентрация носителей заряда в собственном и примесном полупроводниках. Генерация и рекомбинация носителей заряда в полупроводнике. Равновесные и концентрации носителей неравновесные заряда. Релаксации неравновесной концентрации, максвелловская релаксация.

Модуль 3 Полупроводниковые радиоэлектронные устройства

Тема 11. Барьерные структуры в полупроводниках. Токи и поля в полупроводниках, дрейфовые и диффузионные токи. Полупроводник во внешнем электрическом поле. Обогащение, обеднение и инверсия поверхностной проводимости. Длина экранирования Дебая. Уравнения для зарядов, токов и полей в полупроводниках. Электрические переходы, классификация электрических переходов. Технологические методы формирования p-n — переходов, сплавные, диффузионные, эпитаксиальные и имплантированные p-n — переходы.

Тема 12. *Процессы в равновесном р-п – переходе*. Энергетическая диаграмма р - п -перехода при равновесии, высота потенциального барьера и контактная разность потенциалов. Законы распределения заряда,

напряженности поля и потенциала на переходе. Процессы переноса носителей заряда через равновесный p - n — переход, диффузионные и дрейфовые токи.

Тема 13. *Процессы в неравновесном p-n — переходе.* Обратное смещение. Прямое смещение. Вольтамперная характеристика p-n—перхода. Инжекция и экстракция носителей заряда. Распределение концентрации неравновесных и неосновных носителей заряда в объеме базы диода. Идеальный p-n-переход Шокли. ВАХ реального p-n — перехода. Пробой p-n — перехода. Ёмкостные свойства p-n — перехода и их применение в электронике.

Тема 14. *МДП – структуры. Контакт «металл-диэлетрик-полупроводник (МДП)*. Особенности строения поверхности полупроводников, причины возникновения поверхностных уровней (состояний), искривление энергетических зон у поверхности. Зависимость поверхностной электропроводности от поверхностного потенциала. Структура и технология изготовления контакта МДП. Эффект поля и его применение.

Тема 15. Специальные диоды. Лавинно- пролетные и туннельные диоды, структура, принцип действия и энергетические диаграммы. Свойства, параметры и характеристики диодов. Структура, принцип действия и параметры и характеристики варикапа.

Тема 16. Биполярные и полевые транзисторы. Интегральные схемы. Принцип действия, приближенная теория, учет рекомбинации и ширины базы биполярного транзистора. Управление током базы. Проводимость эмиттерного и коллекторного переходов, объемное сопротивление базы. Схемы включения, параметры и усилительные свойства транзистора. Полевые транзисторы с управляющим р-п- переходом и со структурой металлдиэлектрик полупроводник. Параметры и свойства полевых транзисторов. Интегральные микросхемы, их классификация и параметры.

Тема 18. Оптические свойства p-n-перехода. Полупроводниковые Внутренний фотоэффект фотоприемники светодиоды. uфотопроводимость полупроводников. Влияние света на р-п-переход, вольтамперные, световые и спектральные характеристики фотодиодов. Нагрузочные характеристики и эффективность фотопреобразования. Инжекционная электролюминесценция, коэффициент инжекции. Внутренний и внешний квантовые выходы, КПД светодиода.

Характеристики светодиода, технология получения и материалы для светодиодов.

Наименование тем лабораторных работ

Наименование тем лабораторных работ						
названия разделов и	Цель и содержание	Результаты				
тем	лабораторной работы	лабораторной				
		работы				
Модуль 1 Принцип	 подуляции в радиофизике. Радиот	_				
	учение стенда ЛУЧ-1 и электронног					
Темы № 1-3 Спектры		Получение практических				
периодических и	блоками лабораторного стенда	навыков работы с				
непериодических сигналов,	ЛУЧ-1 и осциллографа, с их	приборами,				
гармонические колебания в	назначением, принципом	представление				
радиофизике.	действия, функциональными	результатов				
r Marie Processor	возможностями и	упражнений, ответы на				
	характеристиками.	контрольные вопросы				
Лабораторная работа № 2. Ис	следование полупроводникового ди					
- F F	,,урозодиниозого да					
Темы № 13-14. Процессы в	Ознакомление с основными	Оформление таблиц,				
неравновесном р-п -	параметрами и	построение графиков,				
переходе. Вольтамперная	характеристиками	выводы или				
характеристика, инжекция и	полупроводниковых выпрями	заключения. Защита				
экстракция носителей	тельных диодов и исследование	работы.				
заряда.	их электрических свойств.					
Темы № 6-8,14.	Изучение принципов работы и	Вычисление				
Электрические цепи при	сравнение основных параметров	основных				
гармоническом	и характеристик однофазных	параметров,				
воздействии. Выпрямители	выпрямителей переменного	графическое				
переменного тока	тока.	представление				
		сигналов, выводы и				
		защита работы.				
Модуль 2 Элементы полупр	оводниковой электроники					
Лабораторная работа № 4. Из	учение характеристик частотно-изб	, ри п ательных				
цепей(фильтров).	, mpp moromo no	L				
(A						
Темы №7-8. Гармоническое	Изучение принципа построения	Графическое				
воздействие на	и характеристик различных	представление				
идеализированные	вариантов фильтров	частотной зависимости				
элементы. Спектральный и	электрических колебаний и	коэффициентов				
энергетический анализ	экспериментальное	пропускания фильтров.				
линейных электрических	исследование частотной	Вычисление параметров				
цепей.	зависимости передаточных	различных фильтров,				
	характеристик на примере RC	сравнение				
	фильтров.	экспериментальных и				
		теоретических				
		результатов и выводы.				

Лабораторная работа № 5. Из	учение лабораторного стенда «Элен	строника».
Темы № 4-6, 17-18. Радиоэлектронные цепи и их эквивалентные преобразования. Полупроводниковые приборы -диоды и транзисторы.	Ознакомление с назначением и принципом действия основных миниблоков стенда. Проведение тестовых упражнений для проверки работоспособности генераторов напряжений и измерительных приборов.	Получение практических навыков работы и представлений о функциональных возможностях радиофизических приборов. Защита работы.
Темы № 4-6, 17-18. Радиоэлектронные цепи и их эквивалентные преобразования. Полупроводниковые приборы -диоды и транзисторы.	Ознакомление с назначением и принципом действия основных миниблоков стенда. Проведение тестовых упражнений для проверки работоспособности генераторов напряжений и измерительных приборов.	Получение практических навыков работы и представлений о функциональных возможностях радиофизических приборов. Защита работы
	овые радиоэлектронные устройс епь синусоидального тока при посл	
Темы № 7-9. Электрические цепи при гармоническом воздействии. Активные и реактивные элементы в цепи переменного тока. Векторные диаграммы.	Экспериментальное определение параметров цепей с последовательным соединением R , L и C для трёх случаев $X_L > X_C$, $X_L < X_C$ и $X_L = X_C$. Построение векторных диаграмм. Расчёт цепи при резонансе.	Сравнение результатов расчёта резонансных цепей с экспериментальными данными. Таблицы, графики и выводы.
Лабораторная работа № 7. Ис	сследование двухкаскадного транзи	сторного усилителя.
Темы №12-14 Барьерные структуры в полупроводниках и их применение для усиления электрических сигналов. Биполярные транзисторы. Лабораторная работа № 8. одновибратора.	Экспериментальное определение основных параметров и снятие характеристик двухкаскадного транзисторного усилителя и исследование влияние на них отрицательной обратной связи. Ознакомление с работой RS-триг	Ознакомление с основными параметрами и характеристиками усилителя. Таблицы, графики и выводы.
Тема №17-18. Полупроводниковые приборы.	Определение частоты переключений мультивибратора и исследование влияния на неё величин ёмкостей в обратных связях. Исследование влияние ёмкости обратной связи на	представлений с функциональных возможностях радиофизических схем с

	длительность импульса одновибратор	выходного ра.	переключения. выводы, защита	
Лабораторная работа № 9. Ис	слелование операционно	ого усилите	ля.	
The operation and passing the principle	эледование операдионие	910 JUINIII 0		
Темы №. 7. Транзисторы и	1. Исследование	цепей с	Таблицы,	графики.
интегральные микросхемы.	операционными		Сравнение свой	іств ОУ с
	усилителями(ОУ).	Основные	разными	входами,
	свойства опер	оационных	выводы.	
	усилителей с инвертирующим и			
	неинвертирующим вхо	дом.		

5. Образовательные технологии: активные и интерактивные формы, лекции, лабораторные занятия, контрольные работы, коллоквиумы и экзамены, компьютеры. В течение семестра преподаватель нацеливает студентов относится к решаемой экспериментальной задаче как к научному позволит исследованию. Такой подход выработать необходимые исследователю и современному инженеру навыки: понимать роль модели, т.е. уметь абстрагироваться от второстепенных эффектов; делать качественные оценки и выводы. В рамках лабораторного практикума используется умение студентов производить расчеты с помощью средств вычислительной техники. Это позволяет существенно приблизить уровень статистической культуры обработки результатов измерений в практикуме к современным стандартам, принятым в науке и в производственной деятельности.

При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа проекционным оборудованием и интерактивной доской. По всему лекционному материалу подготовлен конспект лекций в электронной форме и на бумажном носителе, большая часть теоретического материала излагается с применением слайдов (презентаций) в программе **Power Point**, а также с использованием интерактивных досок.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

В рамках учебного процесса предусмотрено приглашение для чтения лекций специалистов профиля данной дисциплины - ведущих преподавателей радиотехнического факультета Дагестанского государственного политехнического университета (ДГПТУ).

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов включает:

- 1. проработка учебного материала, пройденного на лекциях и предлагаемого для самостоятельного изучения (по конспектам лекций учебной и научной литературе);
- 2. поиск и обзор научных публикаций и электронных источников по тематике дисциплины;
- 3. подготовка докладов к лабораторным занятиям (по актуальным темам дисциплины, предложенным преподавателем);
- 4. работа с тестами и вопросами для самопроверки;
- 5. подготовка к лабораторным занятиям, к контрольным работам, текущим аттестациям и к экзамену.

Разде	елы и темы для самостоятельного изучения	Виды контроля
		самостоятельной
		работы студента
1.	Зарождение и развитие радиотехники и	Фронтальный опрос;
	радиоэлектроники. Связь радиофизики с другими	коллективный разбор
	областями науки и техники	отдельных вопросов и
		обсуждение докладов
2.	Линейные системы с сосредоточенными параметрами.	Фронтальный опрос;
	Двухполюсники.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
3.	Собственные колебания в реальном контуре.	Фронтальный опрос;
	Вынужденные колебания в последовательном	коллективный разбор
	RLСконтуре.	отдельных вопросов и
		обсуждение докладов
4.	Резонанс. Входное сопротивление последовательного	Фронтальный опрос;
	RLC-контуреа.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
5.	Амплитудно-частотная и фазочастотная	Фронтальный опрос;
	характеристики. Полоса пропускания, ее связь с	коллективный разбор
	добротностью.	отдельных вопросов и
		обсуждение докладов
6.	Вынужденные колебания в параллельном RLСконтуре,	Фронтальный опрос;
	входное сопротивление.	коллективный разбор

		отдельных вопросов и
		обсуждение докладов
7.	Коэффициент передачи параллельного контура.	Фронтальный опрос;
, •	Параллельный контур, как фильтр.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
8.	Связанные колебательные контуры. Свободные	Фронтальный опрос;
	колебания связанных контуров.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
9.	Коэффициент связи. Частоты связи. Вынужденные	Фронтальный опрос;
	колебания в связанных контурах. Коэффициент	коллективный разбор
	передачи системы связанных контуров.	отдельных вопросов и
		обсуждение докладов
10.	Четырехполюсники. Фильтры. Линейные цепи с	Фронтальный опрос;
	распределенными параметрами	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
11.	Нелинейные элементы. Характеристики нелинейных	Фронтальный опрос;
	элементов. Графический метод анализа нелинейных	коллективный разбор
	характеристик	отдельных вопросов и
		обсуждение докладов
12.	Электронные приборы. Электронные лампы.	Фронтальный опрос;
	Электронно-лучевые приборы. Осциллографы.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
13.	Полупроводниковые компоненты электронных	Фронтальный опрос;
	схем. Диоды, вольтамперная характеристика диодов.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
14.	Классификация диодов, обозначение на электронных	Фронтальный опрос;
	схемах. Основные схемы с применением диодов:	коллективный разбор
	выпрямители, диодные ограничители	отдельных вопросов и
	D C	обсуждение докладов
15.	Транзисторы. Режимы работы и схемы включения	Фронтальный опрос;
	биполярных транзисторов.	коллективный разбор
		отдельных вопросов и
1.6	П	обсуждение докладов
16.	Параметры и входные, и выходные вольтамперные	Фронтальный опрос;
	характеристики биполярных транзисторов	коллективный разбор
		отдельных вопросов и
1.7	П	обсуждение докладов
17.	Полевые транзисторы. Принцип действия и схемы	Фронтальный опрос;
	включения полевых транзисторов с р-п-переходом.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов

10	Поромотры и усроительностики полоры у троиристоров с	Фронтальный опрос;
18.	Параметры и характеристики полевых транзисторов с	коллективный разбор
	р-п-переходом	• •
		отдельных вопросов и
10	211	обсуждение докладов
19.	Эффект поля в полупроводниках и его применение в	Фронтальный опрос;
	структурах МДП (Металл-Диэлектрик-	коллективный разбор
	Полупроводник).	отдельных вопросов и
•	H	обсуждение докладов
20.	Принцип действия и схемы включения полевых	Фронтальный опрос;
	транзисторов с МДП-структурой	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
21.	Параметры и входные, и выходные вольтамперные	Фронтальный опрос;
	характеристики полевых транзисторов на базе МДП-	коллективный разбор
	структур	отдельных вопросов и
		обсуждение докладов
22.	Классификация усилителей. Коэффициент усиления.	Фронтальный опрос;
	Частотная и передаточная характеристики	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
23.	Амплитудная характеристика и коэффициент	Фронтальный опрос;
	нелинейных искажений.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
24.	Особенности усилителя низких частот и высоких	Фронтальный опрос;
	частот. Усилители постоянного тока.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
25.	Резонансные усилители. Полосовые усилители.	Фронтальный опрос;
	Дифференциальные усилители. Другие типы	коллективный разбор
	усилителей.	отдельных вопросов и
		обсуждение докладов
26.	Обратная связь в усилителях. Влияние обратной связи	Фронтальный опрос;
	на параметры усилителей.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
27.	Повторители напряжения. Фазоинверсный каскад.	Фронтальный опрос;
		коллективный разбор
		отдельных вопросов и
		обсуждение докладов
28.	Операционный усилитель: структура, принцип	Фронтальный опрос;
	действия и основные параметры. Частотные свойства	коллективный разбор
	операционных усилителей.	отдельных вопросов и
	1 ,	обсуждение докладов
29.	Построение аналоговых электронных схем с	Фронтальный опрос;
	применением операционных усилителей.	коллективный разбор
	inprimentation onepathonining yendintenen.	Komieki nbiibin pasoop

		отдельных вопросов и
		обсуждение докладов
30.	Инвертирующие и неинвертирующие усилители.	Фронтальный опрос;
	Сумматоры и дифференциальные усилители.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
31.	Интеграторы и дифференциаторы на операционных	Фронтальный опрос;
	усилителях. Активные фильтры	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
32.	Функциональные преобразователи на основе	Фронтальный опрос;
	операционных усилителей.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
33.	Принципы генерации электромагнитных колебаний.	Фронтальный опрос;
	Автогенераторы.	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
34.	Мягкий и жесткий режимы работы генератора. Условия	Фронтальный опрос;
	устойчивости в работе генератора	коллективный разбор
		отдельных вопросов и
		обсуждение докладов
35.	Генераторы колебаний сверхвысоких частот.	Фронтальный опрос;
	(Клистрон, магнетрон, диод Ганна).	коллективный разбор
		отдельных вопросов и
2.5	m v	обсуждение докладов
36.	Тенденции развития современной радиоэлектроники.	Фронтальный опрос;
	Квантовая электроника. Оптоэлектроника.	коллективный разбор
	Функциональная электроника	отдельных вопросов и
27		обсуждение докладов
37.	Элементы и принципы построения цифровых	Фронтальный опрос;
	электронных устройств. Понятие о цифровых	коллективный разбор
	устройствах.	отдельных вопросов и
20	П	обсуждение докладов
38.	Понятие о цифровых интегральных схемах.	Фронтальный опрос;
	Интегральные схемы малой степени интеграции.	коллективный разбор
		отдельных вопросов и
20	Y-1	обсуждение докладов
39.	Цифровые электронные схемы с использованием	Фронтальный опрос;
	памяти. Понятие о триггерах, основные виды	коллективный разбор
	триггеров. Электронные схемы с использованием	отдельных вопросов и
40	Триггеров.	обсуждение докладов
40.	Вопросы сопряжения цифровых и аналоговых	Фронтальный опрос;
	устройств. Основные методы аналого-цифрового и	коллективный разбор
	цифроаналогового преобразования.	отдельных вопросов и
		обсуждение докладов

Промежуточный контроль. В течение семестра студенты выполняют: - домашние задания, выполнение которых контролируется и при необходимости обсуждается на лабораторных занятиях;

• промежуточные контрольные работы во время лабораторных занятий для выявления степени усвоения пройденного материала;

Итоговый контроль. Экзамен в конце 7 семестра, включающий проверку теоретических знаний и умение выполнения заданий по всему пройденному материалу.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Типовые контрольные задания

7.1.1. Вопросы и задания к входной контрольной работе

- 1. Перечислите основные свойства электрического заряда, а также электрического и магнитного полей.
- 2. Дайте определение напряженности электростатического поля, потенциала и связи между ними. Единицы измерения величин.
- 3. Изобразите картину эквипотенциальных линий электростатического поля для следующих распределений зарядов:
- 4. a) электрический диполь; б) система двух точечных зарядов; в) система двух равных отрицательных зарядов; г) плоский конденсатор.
- 5. Объясните на примере, почему напряженность электрического поля направлена в сторону наибыстрейшего убывания потенциала.
- 6. В чем заключается метод электростатической защиты? На каком физическом явлении этот метод основан?
- 7. Какой физический смысл вкладывается в понятие сторонних сил? Где действуют эти силы?
- 8. Какой физический смысл вкладывается в понятие ЭДС? Как может быть измерена ЭДС батарейки?
- 9. Изобразите картину линий магнитной индукции для следующих про водников с током и постоянных магнитов: (а) прямолинейный магнит, (б) круговая рамка, (в) соленоид, (г) Земля.
- 10. Чем вихревое поле отличается от потенциального?

- 11. Почему заряженные частицы двигаются в магнитном поле по спирали? 11. В чем сходство или различие между током проводимости и индукционным током?
- 12. Как формулируются закон электромагнитной индукции и правило Ленца? 13. Почему переменный электрический ток проходит по цепи, содержащий конденсатор, а постоянный не проходит?
- 13. Что нового наблюдается в выражении для циркуляции вектора магнитной индукции по замкнутому контуру (закон полного тока) в том случае, когда в пространстве возникает переменное электрическое поле?
- 14.В чем сходство и в чем различие между током проводимости и током смешения?
- 15. Какие экспериментальные законы электричества и магнетизма легли в основу системы уравнений Максвелла?
- 16.Составить таблицу "Классификация ЭМ по диапазонам". Указать название диапазона, длины и частоты волн диапазонов, характер действия на живые организмы".
- 17. Чем отличаются ЭМ волны, излучаемые антенной радио передатчика, и световые волны, излучаемые сильно нагретым телом?
- 18. Что такое монохроматическая ЭМ волна? Что такое длина волны? Как длина волны связана с частотой? В чем заключается свойство поперечности ЭМ волн?
- 19. Написать формулы для плотности энергии электрического и магнитного полей ЭМ волны.
- 20. Какое выражение описывает период собственных колебаний идеального колебательного контура?
- 21. Какое выражение описывает собственную частоту идеального колебательного контура?
- 22. Какое выражение описывает частоту затухающих колебаний в колебательном контуре?
- 23.По какому закону происходят изменения заряда на конденсаторе в идеальном контуре?
- 24.По какому закону происходит изменения амплитуды затухающих колебаний в колебательном контуре?
- 25.По какому закону происходят изменения заряда при затухающих колебаниях в колебательном контуре?

- 26. Участок цепи переменного тока состоит из последовательно соединенных резистора с сопротивлением R, катушки с индуктивностью L и конденсатора с емкостью C. Чему равно падение напряжения на индуктивном сопротивлении?
- 27. Участок цепи переменного тока состоит из последовательно соединенных резистора с сопротивлением R, катушки с индуктивностью L и конденсатора с емкостью C. Чему равно падение напряжения на емкостном сопротивлении?
- 28. Участок цепи переменного тока состоит из последовательно соединенных резистора с сопротивлением R, катушки с индуктивностью L и конденсатора с емкостью C. Каким выражением определяется полное сопротивление участка цепи переменному току?
- 29. Участок цепи переменного тока состоит из последовательно соединенных резистора с сопротивлением R, катушки с индуктивностью L и конденсатора с емкостью C. Каким выражением определяется реактивное сопротивление участка?
- 30.Идеальный колебательный контур содержит два одинаковых конденсатора, соединенных параллельно. Как изменится резонансная частота контура, если конденсаторы соединить последовательно?
- 31. Какова резонансная частота колебательного контура, если амплитуда заряда на конденсаторе $q_m = 1.0 \cdot 10^{-7} K_{\pi}$, а максимальный ток в цепи $I_m = 1.0$ A,
- 32. На какую длину волны будет резонировать контур, состоящий из катушки с индуктивностью L и конденсатора с емкостью С?
- 33.Индуктивность колебательного контура L. Какова должна быть емкость контура, чтобы он резонировал на длину волны λ?
- 34. Колебательный контур состоит из конденсатора с площадью пластин по S и катушки с индуктивностью L. Контур резонирует на длину волны λ. Каким выражением определяется расстояние между плоскостями конденсатора? 320. Катушка индуктивностью L и конденсатор, состоящий из двух круглых пластин диаметром D каждая, соединены параллельно. Расстояние между пластинами d. Чему равен период Т колебаний?
- 35. Конденсатор емкостью C соединен с катушкой длиной l и сечением S, содержащей N витков. Чему равен период T колебаний?

- 36.В идеальном электрическом колебательном контуре емкость конденсатора 1 мкФ, а амплитуда напряжения на нем 10 В. Чему равна максимальная энергия магнитного поля катушки?
- 37. Написать уравнение Максвелла для циркуляции вектора напряженности электрического поля.
- 38. Написать уравнение Максвелла для циркуляции вектора напряженности магнитного поля.
- 39. Написать уравнение Максвелла для потока вектора индукции магнитного поля.
- 40. Написать уравнение Максвелла для потока вектора индукции электрического поля.

7.1.2. Вопросы и задания к контрольной работе

№1

- 1. Блок-схема радиоканала и преобразование в нем сообщения.
- 2. Спектры непрерывных и дискретных сигналов.
- 3. Две формы представления гармонического сигнала
- 4. Основные соотношения для С и L
- 5. Комплексные сопротивления Z_C и Z_L
- 6. Резистор и конденсатор в цепи синусоидального тока.
- 7. Резистор и индуктивность в цепи переменного тока.
- 8. Закон Ома для цепи переменного тока, содержащего R, C и L.
- 9. Эквивалентное сопротивление последовательной и параллельной цепей из 3 резисторов R
- 10. Основные соотношения для колебательного контура.
- 11. Следствиями каких законов физики являются законы Кирхгофа?
- 12. Закон Кирхгофа для токов (пример применения для вашей схемы)
- 13. Закон Кирхгофа для напряжений (пример применения).
- 14. Источники напряжения и тока.
- 15. Внутренние сопротивления идеальных ИН и ИТ (источники напряжения и тока).

- 16. Выражения для действующего и среднего значений гармонического напряжения.
- 17. Выражения для взаимной индуктивности L и коэффициента трансформации К трансформатора.
- 18. Размерность и физический смысл параметров 4-полюсника
- 19. АЧХ и ФЧХ для RLC-четырехполюсника (С||Вых).
- 20. АЧХ и ФЧХ интегрирующего RC-четырехполюсника.
- 21. АЧХ и ФЧХ дифференцирующего RC-четырехполюсника.
- 22. АЧХ и ФЧХ для RLC-четырехполюсника (L||Вых)
- 23. В чем отличие преобразований Фурье и Лапласа?
- 24. Свойства δ-импульса (функции Дирака)
- 25. ВАХ биполярных и полевых транзисторов
- 26. Преобразование спектра сигнала при амплитудной модуляции
- 27. Механизмы модуляции сопротивления канала полевых транзисторов
- 28. Схема замещения биполярного транзистора
- 29. Тиратрон, тиристор и транзистор в качестве ключей
- 30. ВАХ туннельного диода, транзистора и тиристора.
- 31. Умножение сигналов с помощью дифференциального усилителя 32. Преимущества и недостатки использования АМ и ЧМ сигналов
- 33. Спектры непрерывных и дискретных сигналов.
- 34. Влияние отрицательной обратной связи (ООС) на характеристики усилителя.
- 35. Какие операции используются в импульсно-кодовой модуляции?
- 36. Критерий устойчивости систем с обратной связью
- 37. Преимущества дифференциального усилителя
- 38. Стабилизация амплитуды и частоты колебаний RC-генератора?

7.1.3. Вопросы и задания к контрольной работе №2

1. На каких основных положениях базируется зонная теория твердого тела? Зонные диаграммы металла и полупроводника (собственного и примесного).

- 2. Зонная диаграмма барьера Шоттки, р n перехода и биполярного транзистора.
- 3. Работа устройств на основе p-n перехода (выпрямительного диода и моста).
- 4. Принципы работы и ВА-характеристики полупроводникового стабилитрона и варикапа.
- 5. Туннельный диод и генератор на его основе.
- 6. ВАХ идеальных ключа и выпрямителя
- 7. Выражения для крутизны S и внутреннего сопротивления r.
- 8. Уравнения нагрузочной характеристики для R и R к
- 9. ВАХ идеальных выпрямителя и параметрического стабилизатора напряжения
- 10. Какими элементами замещается транзистор в схемах замещения? Выражения, связывающие. Коэффициенты усиления каскадов ОЭ и ОК
- 11. Перечислить приборы с отрицательными участками ВАХ
- 12.Коэффициент усиления каскада ОЭДН (с общим эмиттером и динамической нагрузкой)
- 13.Преимущества дифференциального усилителя (ДУ) по сравнению с каскадом ОЭ
- 14. Какие 2 типа сигналов различают в ДУ?
- 15. Спектры прямоугольного импульса $\Pi(t,Tu)$ и δ -импульса $\delta(t)$.
- 16. Какие каскады включает в себя операционный усилитель (ОУ)?
- 17. Коэффициент передачи и условие устойчивости систем с обратными связями
- 18. При каких Кβ работают гармонический и релаксационный генераторы?
- 19.С помощью каких элементов стабилизируют амплитуду и частоту гармонического генератора?
- 20.Найти $U_C(t)$ при переключении интегрирующей RC-цепи с E_1 на E_2 .
- 21. Какие операции включает в себя импульсно-кодовая модуляция?
- 22. Импульсная характеристика h(t) оптимального фильтра для сигнала x(t).
- 23. Условие отсутствия искажений при передаче сигнала через длинную линию.
- 24. Какая из характеристик волны не зависит от геометрии волновода?
- 25. Что происходит с волновым пакетом в диспергирующей среде?
- 26. Найти выражения для АЧХ и ФЧХ дифференцирующей RC-цепи.

- 27. Показать, что при внутреннем сопротивлении генератора $r_1 \neq 0$ отдаваемая генератором в нагрузку мощность максимальна при RH= r_1 .
- 28.Можно ли заменить транзистор парой диодов база-эмиттер и база-коллектор?
- 29. Найти спектр треугольного импульса, полученного сверткой 2-х одинаковых прямоугольных импульсов Π (t, T)
- 30.Вывести выражение для тока коллектора, при котором каскад с ОЭ имеет минимальные шумы (учитывать только тепловые и дробовые шумы).
- 31.Определить частоту резонанса ω_0 и добротность Q кварцевого резонатора, в схеме замещения которого L=100 мГн, C=0.015 пФ, r=100 Ом.
- 32.Счетчики и регистры.
- 33. Назначение и принцип действия триггера.
- 34. Назначение и принцип действия мультивибратора.
- 35. Назначение и принцип действия селектора импульсов.
- 36. Цифро-аналоговый преобразователь.
- 37.Основные блоки электронного осциллографа, объяснить принцип работы ЭЛТ (пользуясь его принципиальной схемой).
- 38.Вывести выражение для чувствительности электронного осциллографа по напряжению.

7.1.4. Итоговый контроль (вопросы к экзамену)

- 1. Основные задачи радиофизики. Общая схема радиосвязи.
- 2. Понятие «сигнала» в радиофизике. Принцип модуляции, роль гармонических колебаний в радиосвязи.
- 3. Виды модуляции сигнала, коэффициент модуляции.
- 4. Спектры периодических и непериодических сигналов, спектральная плотность $S(\omega)$ непериодического сигнала.
- 5. Символическое изображение составляющих сложного сигнала.
- 6. Активное и индуктивное сопротивления в цепи переменного тока, векторная диаграмма напряжений.

- 7. Конденсатор в цепи переменного тока, емкостное сопротивление, диаграмма напряжений.
- 8. Цепь переменного тока, содержащая последовательно включенные R, L, C. Полное сопротивление цепи переменному току. Фазы токов и напряжений, разность фаз φ.
- 9. Векторные диаграммы напряжений и сопротивлений, последовательно соединенных R, L, C. Эквивалентное сопротивление.
- 10.Параллельное соединение элементов R, L, C в цепи переменного тока. Векторная диаграмма токов и проводимостей.
- 11. Применение метода векторных диаграмм для получения разности потенциалов с регулируемым сдвигом фаз.
- 12. Применение метода векторных диаграмм для определения условий выделения максимальной мощности в нагрузке.
- 13.Замена сложной цепи эквивалентной для установившегося синусоидального процесса.
- 14. Комплексные изображения физических величин тока, напряжения, сопротивления.
- 15. Эквивалентная замена соединения треугольником соединением звездой.
- 16. Эквивалентная замена соединения звездой соединением треугольником.
- 17. Введение эквивалентного генератора при расчете сложной цепи.
- 18.Схема дифференцирования входного сигнала, точность выполнения операции дифференцирования.
- 19. Схема интегрирования входного сигнала, точность выполнения операции интегрирования.
- 20. Установившиеся процессы в цепи, содержащей последовательное соединение источника переменной ЭДС и элементов R, L, C. Резонанс напряжений.
- 21. Резонанс токов параллельный резонанс.
- 22. Эквивалентное характеристическое сопротивление колебательного контура и зависимость его от частоты. Использование резонанса токов.
- 23. Резонансные кривые для последовательного контура и зависимость вида их от частоты и добротности контура.

- 24. Установившиеся процессы в четырехполюсниках. Коэффициент передачи четырехполюсника, частотная и фазовая характеристики.
- 25. Коэффициент передачи и амплитудно-частотная характеристики RCфильтра.
- 26.RCL фильтры электрических колебаний, коэффициенты передачи КL и КС для RCL –четырехполюсника.
- 27. Параллельный контур в виде четырехполюсника, коэффициенты передачи Кz. Сопротивление Z₁₁ параллельного контура.
- 28. Сопротивление Z₁₁ параллельного контура и токи при резонансе. Амплитудно-частотные характеристики. Особенность параллельного контура и его использование.
- 29. Ширина полосы пропускания частот и зависимость его от добротности контура. Условие возникновения свободных колебаний в контуре.
- 30. Уравнения Кирхгофа для связанных контуров. Виды связи в контурах. Эквивалентное сопротивление контура.
- 31. Условие резонанса в связанных контурах, коэффициент связи κ , резонансные кривые при различных коэффициентах κ .
- 32. Переходные процессы в линейных цепях с конденсатором. Решение уравнения Кирхгофа для процесса зарядки конденсатора.
- 33. Переходные процессы в линейных цепях с конденсатором. Решение уравнения Кирхгофа для процесса разрядки конденсатора.
- 34.Переходные процессы в цепи с R L C, подключенных к источнику постоянной ЭДС.
- 35.Изолированный атом как гиперболическая потенциальная яма для электронов, спектр энергии электронов в атоме. Следствия сближения атомов при образовании кристалла.
- 36. Образование энергетических зон и характер их заполнения в металле, полупроводнике и диэлектрике.
- 37. Основные типы примесей в полупроводнике, примесные уровни и энергия их ионизации. Собственная и примесная проводимость.
- 38.Положение уровня Ферми и концентрация носителей заряда в собственном и примесном полупроводниках.

- 39. Основные и неосновные носители заряда в полупроводнике, закон действующих масс. Зависимость электропроводности полупроводника от температуры, графическое определение ширины запрещенной зоны.
- 40. Причины существования работы выхода электронов из твердого тела. Внешняя и термодинамическая работа выхода. Зависимость работы выхода от состояния поверхности твердого тела.
- 41. Процессы переноса в неоднородном полупроводнике с одним типом проводимости, диффузионные и дрейфовые потоки, полная плотность тока через полупроводник.
- 42. Распределение электрического поля в объеме полупроводника при линейном и экспоненциальном распределении примеси, искривление энергетических зон.
- 43. Контакт двух полупроводников с разными типами проводимости, формирование p-n-перехода, симметричный и несимметричный переходы.
- 44. Процессы переноса носителей заряда через p-n-переход, плотность тока через p-n-переход при равновесии.
- 45. Вывод выражения для контактной разности потенциалов на p-n-переходе и высоты энергетического барьера для основных носителей заряда.
- 46.Зависимость высоты барьера на р-п-переходе и концентрации неосновных носителей заряда от внешнего напряжения.
- 47. Уравнение для вольт- амперной характеристики (BAX) для p-n-перехода, прямые и обратные ветви BAX, ток насыщения.
- 48. Распределения объемного заряда, напряженности поля и потенциала в области p-n-перехода.
- 49. Расчет толщины слоя объемного заряда в р-п-переходе. Барьерная ёмкость р-п-перехода и зависимость её от напряжения.
- 50.Специальные типы диодов, импульсные диоды, характер изменения напряжения и тока через диод при включении, выключении и переключении диода. Времена установления прямого падения напряжения на диоде и восстановления обратного сопротивления.
- 51.Стабилитроны (опорные диоды), напряжение стабилизации и виды пробоя в диоде. Схема включения стабилитрона.
- 52. Варикап- нелинейная емкость, его эквивалентная схема и добротность.

- 53. Туннельные диоды, зонная схема и ВАХ туннельного диода при равновесии, прямом и обратном смещениях. Быстродействие диода.
- 54. Структура и режимы работы биполярного транзистора.
- 55. Активный режим работы биполярного транзистора, электронные процессы в транзисторе. Схема включения с общей базой и коэффициент передачи тока эмиттера α.
- 56.Схема включения с транзистора общим эмиттером и коэффициент передачи тока базы β. Связь коэффициентов α и β.
- 57. Входные и выходные характеристики транзистора. Нагрузочная прямая и рабочая точка транзистора.
- 58.Структура и принцип работы полевого транзистора с управляющим р-ппереходом. Входные и выходные характеристики полевого транзистора.
- 59. Структура и принцип работы полевых транзисторов с индуцированным и встроенным каналами. Условные графические обозначения полевых транзисторов.
- 60.Виды и принцип работы и ВАХ тиристоров.
- 61. Усиление электрического сигнала, структурная схема усилительного каскада, коэффициент усиления. Усилитель постоянного тока.
- 62. Усилитель низкой частоты. Режимы работы транзистора.
- 63. Роль источника постоянного смещения базы транзистора, варианты подачи напряжения смещения.
- 64. Устройства с обратной связью, электронный стабилизатор напряжения.
- 65. Принцип действия и схема генератора гармонических колебаний.
 - 7.2. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Примерная оценка по 100 бальной шкале форм текущего и промежуточного контроля

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Лекции - Текущий контроль включает:

посещение занятий
 10 бал.

- активное участие на лекциях ____ 15__ бал.
 устный опрос, тестирование, коллоквиум ___ 60__ бал.
- и др. (доклады, рефераты)___15__ бал.

Физический практикум - Текущий контроль включает:

(от 51 и выше - зачет)

- посещение занятий и наличие конспекта ___15__ бал.
- получение допуска к выполнению работы ___20__бал.
- выполнение работы и отчета к ней
 25 бал.
- защита лабораторной работы __40__бал.

Промежуточный контроль по дисциплине включает:

- устный опрос 60 баллов,
- письменная контрольная работа 30 баллов,
- тестирование 10 баллов.

8. Учебно-методическое обеспечение дисциплины.

а) основная литература:

- 1. Белокопытов Г.В. Основы радиофизики. М.: ВШ, 1996
- 2. Минаев Е.И. Основы радиоэлектроники М.: «Радио и связь», 1985
- 3. Каяцкас А.А. Основы радиоэлектроники М.: ВШ, 1988
- 4. Основы радиофизики Под ред. Логинова А.С М.: УРСС, 1996
- 5. Потемкин В.В. Радиофизика М.: МГУ, 1988
- 6. Догадин, Николай Борисович. Основы радиотехники: учеб. пособие / Догадин, Николай Борисович. СПб. и др.: Лань, 2007. 270 с.
- 7. Бороздов В.М. Основы радиоэлектроники Минск, БГУ, 2003

б) дополнительная литература:

- **1.** Николаенко М.Н. Самоучитель по радиоэлектронике М.: НТ Пресс, 2006
- 2. Нефедов В.И. Основы радиоэлектроники и связи. М.: Высшая школа, 2000.
- **3.** Молчанов А.П., Занадворов П.Н. Курс электротехники и радиотехники М.: Наука, 1969

- **4.** Федотов Я.Ф. Основы физики полупроводниковых приборов. М.: Высшая школа, 1970
- **5.** Епифанов Г.И. Физические основы микроэлектроники. М.: Высшая школа, 1987
- **6.** Джонс М.Х. Электроника. Практический курс. М.: ВШ, 2000. 527 с.
- 7. Пассивные элементы радиоэлектронной аппаратуры: метод. пособие. Ч.2: Индуктивные элементы электронной аппаратуры / [сост.; Н.В.Офицерова и др.]. Махачкала: Изд-во ДГУ, 2011. 28-50.
- **8.** Плотников А.И. Радиофизика и электроника. УМП. Кемерово: Кузбассвузиздат, 2007, 68 с.; электронная версия на сервере факультета.

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. Электронно-библиотечная система (ЭБС) IPRbooks (<u>www.iprbookshop.ru</u>). Лицензионный договор № 6984/20 на электронно-библиотечную систему IPRbooks от 02.10.2020 г.
- 2. Лицензионное соглашение № 6984/20 на использование адаптированных технологий ЭБС IPRbooks (<u>www.iprbookshop.ru</u>) для лиц с OB3 от 02.10.2020.
- 3. Электронно-библиотечная система (ЭБС) «Университетская библиотека онлайн»: www.biblioclub.ru. Договор об оказании информационных услуг № 131-09/2010 от 01.10.2020г. 537наименований.
- 4. Электронно-библиотечная система «ЭБС ЛАНЬ https://e.lanbook.com/. Договор №СЭБ НВ-278 на электронно-библиотечную систему ЛАНЬ от 20.10.2020 г. Срок действий договора со 20.10.2020 г. по 31.12.2023г.
- 5. Научная электронная библиотека http: //elibrary.ru. Лицензионное соглашение № 844 от 01.08.2014 г. Срок действия соглашения с 01.08.2014 г. без ограничения срока.
- 6. Национальная электронная библиотека https://нэб.рф/. Договор №101/НЭБ/101/НЭБ/1597 о предоставлении доступа к Национальной электронной библиотеке от 1 августа 2016 г. Срок действия договора с 01.08.2016 г. без ограничения срока. Договор может пролонгироваться неограниченное количество раз, если ни одна из сторон не желает его расторгнуть.

7. Scopus

Scopus издательства Elsevier B.V. Письмо РФФИ от 19.10.2020 г. № 1189 о предоставлении лицензионного доступа к содержанию базы данных Scopus издательства Elsevier B.V. в 2022 г. https://www.scopus.com

8. Wiley Online Library

Коллекция журналов Freedom Collection издательства Elsevier. Письмо РФФИ от 17.07.2010 г. № 742 о предоставлении лицензионного доступа к электронному ресурсу Freedom Collection издательства Elsevier в 2022 г. https://onlinelibrary.wiley.com/

9. Международное издательство Springer Nature

Коллекция журналов, книг и баз данных издательства Springer Nature. Письмо РФФИ от 17.07.2020 г. № 743 о предоставлении лицензионного доступа к содержанию баз данных издательства Springer Nature в 2022 г. на условиях национальной подписки https://link.springer.com/

10.Журналы American Physical Society

Базы данных APS (American Physical Society). Письмо РФФИ от 10.11.2020 г. № 1265 о предоставлении лицензионного доступа к содержанию баз данных American Physical Society в 2022 г. http://journals.aps.org/about

11.Журналы Royal Society of Chemistry

База данных RSC DATABASE издательства Royal Society of Chemistry Письмо РФФИ от 20.10.2020 г. № 1196 о предоставлении лицензионного доступа к содержанию баз данных Royal Society of Chemistry в 2022 г. http://pubs.rsc.org/

- 12. Журнал Science (AAAS) http://www.sciencemag.org/
- 13.Единое окно http://window.edu.ru/ (интернет ресурс)
- 14. Дагестанский региональный ресурсный центр http://rrc.dgu.ru/
- 15. Нэикон http://archive.neicon.ru/

10.Методические указания для обучающихся по освоению дисциплины.

Вид учебных занятий	Организация деятельности студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на лабораторных занятиях.

Лабораторные занятия	Проработка рабочей программы, уделяя особое внимание целям и задачам структуре и содержанию дисциплины. Работа с конспектом лекций, с литературными источниками и с описаниями к лабораторным работам. Получение допуска к выполнению лабораторной работы, выполнение измерений (упражнений) и расчетно-графических заданий к работе, использование средств вычислительной техники при статистической обработке результатов измерений и расчетах. Составление отчета по работе. Просмотр рекомендуемой литературы, подготовка ответов к контрольным вопросам и защита работы.	
Реферат	Поиск литературы и составление библиографии, использование от 3 до 5 научных работ, изложение мнения авторов и своего суждения по выбранному вопросу; изложение основных аспектов проблемы. Кроме того, приветствуется поиск информации по теме реферата в Интернете, но с обязательной ссылкой на источник, и подразумевается не простая компиляция материала, а самостоятельная, творческая, аналитическая работа, с выражением собственного мнения по рассматриваемой теме и грамотно сделанными выводами и заключением. Ознакомиться со структурой и оформлением реферата.	
Подготовка к экзамену	При подготовке к экзамену необходимо ориентироваться на конспекты лекций, рекомендуемую литературу и др.	

Самостоятельная работа студентов реализуется в виде:

- 1. подготовки к контрольным работам;
- 2. подготовки к лабораторным работам (получение допуска к работам),
- 3. подготовка к лабораторным занятиям включает проработку материалов лекций, рекомендованной учебной литературы.
- 4. оформления лабораторно-практических работ (выполнение вычислений и расчетов, заполнение таблиц, построение графиков, написание выводов);
- 5. подготовки к защите лабораторных работ;
- 6. выполнения индивидуальных заданий по основным темам дисциплины;
- 7. написание рефератов по проблемам дисциплины;
- 8. обязательное посещение лекций ведущего преподавателя;
- 9. лекции основное методическое руководство при изучении дисциплины, наиболее оптимальным образом структурированное и скорректированное на современный материал;
- 10. в лекции глубоко и подробно, аргументировано и методологически строго рассматриваются главные проблемы темы;

- 11. в лекции даются необходимые разные подходы к исследуемым проблемам.
- 11.Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Чтение лекций с использованием мультимедийных презентаций. Использование анимированных интерактивных компьютерных демонстраций и практикумов-тренингов по ряду разделов дисциплины.

12.Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

- 1. Закрепление теоретического материала и ознакомление с физическими принципами работы базовых радиоэлектронных цепей и приобретение практических работы навыков c основными радиотехническими приборами, несложных монтажа И наладки устройств обеспечивается радиоэлектронных проведением лабораторного практикума, проводимого специализированной В 1-13 «Физические лаборатории основы электротехники радиоэлектроники» кафедры Физической электроники. Лаборатория оснащена современными радиоэлектронными стендами и макетами, источниками питания и генераторами, контрольно – измерительными приборами и необходимыми электро- и радиоэлементами.
- 2. При проведении расчетов и обработке экспериментальных данных студенты могут использовать компьютерные классы, оснащенные современной компьютерной техникой.
- 3. При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа проекционным оборудованием и интерактивной доской.