МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теория вероятностей и математическая статистика Кафедра прикладной математики факультета математики и компьютерных наук

Образовательная программа бакалавриата 01.03.05 - Статистика

Направленность (профиль) программы *Анализ больших данных.*

Форма обучения *Очная*

Статус дисциплины: входит в обязательную часть ОПОП.

Махачкала, 2023

Рабочая программа дисциплины «Теории вероятностей и математическая статистика» составлена в 2023 году в соответствии с требованиями $\Phi \Gamma OC$ ВО по направлению подготовки 01.03.05. <u>Статистика</u>
Приказ Минобрнауки России от 14.08.2020 №1032.

Разработчик: кафедра прикладной математики, Ризаев М.К., к.фм.н., доцент.
Рабочая программа дисциплины одобрена: на заседании кафедры прикладной
математики от «ДО» 0/ ₂₂ 2023 г., протокол № 5
математики от «Д» 0/ 2023 г., протокол № <i>Б</i> Зав. кафедрой Кадиев Р.И.
на заседании Методической комиссии факультета математики и
компьютерных наук от «Дъливарф 2023г., протокол № 4
Председатель Ризаев М.К.
Рабочая программа дисциплины согласована с учебно-методическим
управлением « <u>20</u> » <u>феврели</u> 2023г.
^г Начальник УМУ Гасангаджиева А.Г.
(подпись)

Аннотация рабочей программы дисциплины

Дисциплина «Теория вероятностей и математическая статистика» входит в обязательную часть ОПОП образовательной программы бакалавриата по направлению подготовки 01.03.05 – Статистика.

Дисциплина реализуется на факультете математики и компьютерных наук кафедрой прикладной математики.

Содержание дисциплины охватывает круг вопросов, связанных классической теорией вероятностей ознакомлением современным Учитывая подходом. важность численных аксиоматическим методов статистического моделирования, даются также основы моделирования на ЭВМ случайных величин и некоторых процессов, в частности, марковских процессов, процессов массового обслуживания, моделирования надежности сложных технических систем, а также основы методов Монте-Карло.

Дисциплина нацелена на формирование следующих компетенций выпускника: универсальных-УК-1; общепрофессиональных — ОПК-3. Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия, лабораторные занятия, самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости: контрольная работа и промежуточный контроль в форме экзамена.

Объем дисциплины 8 зачетных единиц, 288 академических часов, в том числе по видам учебных занятий

Семес			Форма					
тр				промежуточной				
	K	Сонтактн	ая работа обуч	ающихся с і	преподав	ателем	CPC,	аттестации (зачет,
	Всег			из них			в том	дифференцирован
	o	Лекц	Лабораторн	Практиче	КСР	консульта	числе	ный зачет,
		ИИ	ые занятия	ские		ции	экзам	экзамен
				занятия			ен	
4	180	28		28			88+36	экзамен
5	108	16 14 16					26+36	экзамен
ИТОГО	288	44	14	44			186	

1. Цели освоения дисциплины

Цель изучения курса «Теория вероятностей и математическая статистика» состоит в получении базовых знаний и формирование основных навыков по теории вероятностей, необходимых для решения задач; развитии понятийной теоретико-вероятностной базы и формирование уровня математической подготовки, необходимых для понимания основ математической статистики и её применения.

2.Место дисциплины в структуре ОПОП бакалавриата

Дисциплина «Теория вероятностей и математическая статистика» входит в обязательную часть образовательной программы бакалавриата по направлению подготовки 01.03.05 - Статистика.

Курс по дисциплине «Теория вероятностей и математическая статистика» вводится после изучения дисциплин алгебра, математический анализ, дифференциальные уравнения, так как для успешного усвоения этого курса студентам необходимы знания по указанным дисциплинам.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения и процедура освоения).

Код и наименование компетенции из ОПОП	Код и наименование индикатора достижения компетенций (в соответствии с ОПОП	Планируемые результаты обучения	Процедура освоения
УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.1.Знает принципы сбора, отбора и обобщения информации.	Знает: структуру задач в области математики, теоретической механики и физики, а также базовые, составляющие таких задач. Умеет: анализировать постановку данной математической задачи, необходимость и (или) достаточность ин-формации для ее решения. Владеет: навыками сбора, отбора и обобщения научной ин-формации в	Участие в коллективной разработке проектов, в процессе прохождения практики
	УК-1.2.Умеет соотносить разнородные явления и систематизировать их в рамках из-бранных видов профессиональной деятельности.	области математических дисциплин Знает: принципы математического моделирования разнородных явлений, систематизации научной информации в области математики и компьютерных наук. Умеет: системно	

1	1		
		подходить к решению	
		задач на разнородные	
		явления в области	
		математики и	
		компьютерных наук.	
		Владеет: навыками	
		систематизации	
		разнородных явлений	
		путем математических	
		интерпретаций и оценок.	
VI	К-1.3.Имеет практический	Знает: современные	
	пыт работы с	методы сбора и анализа	
	нформационными	научного материала с	
		использованием	
	сточниками, опыт аучного поиска, создания	информационных	
I I	-		
На	аучных текстов.	технологий; основные	
		методы работы с	
		ресурсами сети Интернет.	
		Умеет: применять	
		современные методы и	
		средства	
		автоматизированного	
		анализа и систематизации	
		научных данных;	
		практически	
		использовать научно-	
		образовательные ресурсы	
		Интернет в научных	
		исследованиях и в	
		деятельности педагога.	
		Владеет: навыками	
		использования	
		информационных	
		технологий в	
		организации и	
		проведении научного	
		исследования; навыками	
		использования	
		современных баз данных;	
		навыками применения	
		мультимедийных	
		технологий обработки и	
		представления	
		информации; навыками	
		автоматизации	
		подготовки документов в	
		различных текстовых и	
		графических редакторах.	
		графилеских редакторах.	

ОПКЗСпособен	ОПК-3.1.Знает общую	Знает: общую методику	Участие в
осознанно применять	методику статистического	статистического	Участие в коллективной
методы математической и	исследования и способы	исследования и способы	разработке
дескриптивной статистики	количественной	количественной	
1 -	формализации объекта	формализации объекта	проектов, в процессе
' '	наблюдений	наблюдений.	•
количественных данных, в	наолюдении	l	прохождения
том числе с применением		1	практики
необходимой		общую методику	
вычислительной техники и		статистического	
стандартных		исследования и способы количественной	
компьютерных программ,			
содержательно		l * 5	
интерпретировать		наблюдений при	
полученные результаты,		решении	
готовить статистические		профессиональных	
материалы для докладов,		задач.	
публикаций и других		Владеет: навыками	
аналитических материало		применения общей	
		методики	
		статистического	
		исследования и способы	
		количественной	
		формализации объекта	
		наблюдений при решении	
		прикладных задач.	
	ОПК-3.2. Умеет применять	Знает: как применить	
	математический и	математический и	
	эконометрический	эконометрический	
	инструментарий для анализа	инструментарий для	
	количественных данных, в	анализа количественных	
	том числе с применением	данных, в том числе с	
	информационных систем и	применением	
	технологий	информационных	
		систем и технологий.	
		Умеет:применять	
		математический и	
		эконометрический	
		инструментарий для	
		анализа количественных	
		данных, в том числе с	
		применением	
		информационных	
		систем и технологий.	
		Владеет:математическим	
		и эконометрическим	
		инструментарий для	
		анализа количественных	
		данных, в том числе с	
		применением	
		информационных систем	
		и технологий	
		вычислительной	
		техникой.	

ОПК-3.3. Владеет навыками	Знает как примения	
	Знает: как применить	
выбора и применения	математические и	
инструментальных средств	статистические	
для обработки	инструментария и	
количественных данных,	современную	
навыками	вычислительную	
интерпретации результатов	технику для решения	
и формулирования выводов	прикладных задач.	
и рекомендаций для	Умеет: применить	
подготовки аналитических	математические и	
материалов.	статистические	
•	инструментария и	
	современную	
	вычислительную	
	технику для решения	
	прикладных задач.	
	Владеет: навыками	
	применения	
	математического и	
	статистического	
	инструментария для	
	решения прикладных	
	задач, методами	
	работы с современной	
	вычислительной	
	техникой.	

- **4. Объем, структура и содержание дисциплины.** 4.1. Объем дисциплины составляет 8 зачетных единиц, 288 академических часов.
- 4.2. Структура дисциплины.

Nº	Раздел Дисциплины		семестра	включа самост	оятельну гов и тру,	ю рабо	оту	эльная	Формы текущего контроля успеваемости (по неделям семестра) Форма		
		Семестр	Неделя	Лекции	Практич еские	Лаборат. занятия	Контр. сам.раб	Самостоятельная работа	промежуточной аттестации (по семестрам)		
MC	ДУЛЬ 1: Основы то	еории	т вероят	гностей							
1	Классическое, статистическое и геометрическое определения	3	1	2	2			6	Индивидуальный фронтальный опрос, тестирование Контрольная работа		

	вероятности.							
	0	2					 0	
2	.Основные формулы	3	2	2	2		8	
	исчисления							
2	вероятностей.	-					10	
3	Последовательнос ть независимых	3	3	2	2		10	
	испытаний,							
	предельные							
	теоремы. Итого по	36		6	6		24	
	модулю 1:	50			J		2.	
	ДУЛЬ 2:Случайны						 	
4.	Случайная	3	4	2	2		6	Индивидуальный
	величина. Функция							фронтальный опрос, тестирование
	распределения.							Контрольная работа
	случайной		ļ					
	величины		Ī					
	Функции от	3	5	2	2		6	
5.	случайных							
	величин. Распределения		ļ					
	сумм случайных							
	величин.						 	
6.	Числовые	3	6-7	4	4		 8	
	характеристики случайных							
	величин.		ļ					
	1							
	Итого по	3		8	8		20	
	модулю:							
	МОДУЛЬ 3	3.Сис	темы сл	 тучайных	велич	<u></u> ин.	 	
				_				

7.	Система случайных	3	8	2	2			12	
	величин. Функция и плотность								
	распределения, их								
	свойства.								
8.	Числовые характеристики системы случайных величин, коррелированност ь и зависимость.	3	9-10	4	4			12	
	Итого по модулю 3:	36		6	6			24	
	МОДУЛЬ 4.		н больц	 их чисел	 Центра	альная	предел	ьная т	георема.
9	Характеристическ	4	11	2	2		-	4	
	ие функции случайных величин	·		2	_			·	
10	Закон больших чисел. Усиленный закон больших чисел.	4	12-13	4	4			10	Индивидуальный фронтальный опрос, тестирование Контрольная работа
11	Центральная предельная теорема.	4	14	2	2			6	
	Итого по модулю 4:	36		8	8			20	
	МОДУЛЬ 5: Подготовка к экзамену	4						36	Экзамен
	Итого по	4		28	28			124	
MC	семестру: ДУЛЬ 6: Статистич	16CK3	а опент	ca Hensbec	ГИЬІХ П	์ ลทลพยา	mar ng	спред	епений
12	Выборка и ее	5	1	2	2	арамсі	ров ра	<u>спред</u> 4	Индивидуальный
	характеристики. Статистические ряды, распределения								фронтальный опрос, тестирование Контрольная работа
13	Точечные оценки. Свойства оценок	5	2-3	2	2	2		6	
14	Интервальные	5	4-5	2	2	4		8	

	оценки								
	параметров								
	распределений.								
	Итого по			6	6	6		18	
				U	0			10	
	модулю 6:								
	•	ровер	ки статі	истически	х гипо	тез. Ко	рреляі	ционн	ый и регрессионный
	ллиз.		1		1	T	1	1	
15	Постановка	5	6	2	2			4	Индивидуальный
	задачи проверки								фронтальный опрос,
	гипотез. Общие								тестирование
	принципы								Контрольная работа
	проверки гипотез.								
	Виды гипотез.								
16	Проверка гипотез	5	7-8	2	2	4		4	
	о неизвестных								
	параметрах								
	распределений								
17	Проверка гипотез	5	9-10	2	2			6	
	о неизвестных								
	распределениях								
18	Основы	5	11-12	2	2	2		6	Индивидуальный
	корреляционного								фронтальный опрос,
	анализа								тестирование
19	Основы	5	13-14	2	2	2		6	Контрольная работа
	регрессионного			_					
	анализа								
	Итого по			10	10	8		8	
	модулю 7:								
	МОДУЛЬ 8:	5						36	Экзамен
	Подготовка к								
	экзамену								
	Итого по	5		<i>16</i>	16	14		62	
	семестру:								
	ИТОГО по	3-4	288	44	44	14		186	
	дисциплине:								

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине

Модуль 1. Основы теории вероятностей

Тема 1. Классическое, статистическое и геометрическое определения вероятности.

Классическое определение вероятности. Статистическое и геометрическое определения вероятности.. Аксиоматика теории вероятностей.

Тема 2.Основные формулы исчисления вероятностей.

Теоремы сложения и умножения вероятности. Условная вероятность. Формулы полной вероятности и Байеса. Независимость случайных событий.

Тема 3. Последовательность независимых испытаний, предельные теоремы.

Последовательность независимых испытаний. Схема испытаний Бернулли, предельные теоремы . Приближенные формулы для оценки вероятности Pn (k). Закон больших чисел в форме Бернулли.

Модуль 2. Случайные величины

Тема 4. Случайная величина. Функция распределения. случайной величины Случайные величины и их распределения. Функция распределения. случайной величины и ее свойства. Дискретные и непрерывные случайные величины.

Тема 5. Функции от случайных величин

Функции распределения суммы и частного двух случайных величин. Распределение суммы двух нормальных случайных величин. Многомерные случайные величины.

Тема 6. Числовые характеристики случайных величин.

Математическое ожидание и дисперсия случайной величины и их свойства. Вычисление математического ожидания и дисперсии основных дискретных и непрерывных случайных величин..

Модуль 3. Системы случайных величин.

Тема 7. Система случайных величин. Функция и плотность распределения, их свойства.

Векторная случайная величина и ее функция распределения. Независимость компонент системы. Совместная функция распределения системы случайных величин.

Teма 8. Числовые характеристики системы случайных величин, коррелированность и зависимость.

Система случайных величин. Смешанные моменты. Корреляция. Корреляционная матрица и коэффициент корреляции. Примеры

Модуль 4.Закон больших чисел Центральная предельная теорема

Тема 9. Характеристические функции случайных величин

Характеристические функции и их свойства. Связь с моментами. Примеры. Производящие функции. Формула обращения и теорема единственности. Характеристические функции многомерных случайных величин.

Тема 10. Закон больших чисел. Усиленный закон больших чисел.

Закон больших чисел в форме Бернулли, Чебышева. Теорема Бернулли и Пуассона. Понятие об усиленном законе больших чисел. Приложения закона больших чисел.

Тема 11. Центральная предельная теорема.

Классическое определение центральной предельной теоремы. Правило трех сигм. Прикладные аспекты центральной предельной теоремы.

Модуль 5. Подготовка к экзамену.

Модуль 6. Статистическая оценка неизвестных параметров распределений.

Тема 12. Выборка и ее характеристики. Статистические ряды, распределения..

Основные понятия и элементы выборочной теории. Статистические ряды. Эмпирическая функция распределения. Выборочные моменты.

Тема 13. Точечные оценки. Свойства оценок

Постановка задачи. Оценки и их свойства. Функция правдоподобия. Информационное количество Фишера. Неравенство Рао-Крамера. Эффективные оценки.

Тема 14. Интервальные оценки параметров распределений. Постановка задачи. Доверительные интервалы для параметров нормального закона распределения, распределений χ^2 и Стьюдента.

МОДУЛЬ 7: Теория проверки статистических гипотез. Корреляционный и регрессионный анализ.

Тема 15. Статистических теория гипотез.

Постановка задачи. Примеры статистических гипотез. Общие принципы проверки статистических гипотез.

Тема 16. Проверка гипотез о неизвестных параметрах распределений Параметрические гипотезы. Выбор из двух простых гипотез. Критерий Неймана – Пирсона. Примеры применения.

Тема 17. Проверка гипотез о неизвестных распределениях

Последовательный критерий отношения правдоподобия, Критерии однородности. Критерии независимости, случайности.

Тема 18. Основы корреляционного анализа.

Задачи корреляционного анализа, выборочный коэффициент корреляции, его свойства, и вычисления.

Тема 19. Основы регрессионного анализа.

Метод наименьших квадратов. Уравнения линейной регрессии, оценивание параметров регрессии. М.Н.К.

4.3.2. Содержание практических занятий по дисциплине

Модуль 1. Основы теории вероятностей

Тема 1. Классическое, статистическое и геометрическое определения вероятности.

Классическое определение вероятности. Статистическое и геометрическое определения вероятности.. Аксиоматика теории вероятностей.

Тема 2.Основные формулы исчисления вероятностей.

Теоремы сложения и умножения вероятности. Условная вероятность. Формулы полной вероятности и Байеса. Независимость случайных событий.

Тема 3. Последовательность независимых испытаний, предельные теоремы.

Последовательность независимых испытаний. Схема испытаний Бернулли, предельные теоремы . Приближенные формулы для оценки вероятности Pn (k). Закон больших чисел в форме Бернулли.

Модуль 2. Случайные величины

Тема 4. Случайная величина. Функция распределения. случайной величины Случайные величины и их распределения. Функция распределения. случайной величины и ее свойства. Дискретные и непрерывные случайные величины.

Тема 5. Функции от случайных величин

Функции распределения суммы и частного двух случайных величин. Распределение суммы двух нормальных случайных величин. Многомерные случайные величины.

Тема 6. Числовые характеристики случайных величин.

Математическое ожидание и дисперсия случайной величины и их свойства. Вычисление математического ожидания и дисперсии основных дискретных и непрерывных случайных величин..

Модуль 3. Системы случайных величин.

Тема 7. Система случайных величин. Функция и плотность распределения, их свойства.

Векторная случайная величина и ее функция распределения. Независимость компонент системы. Совместная функция распределения системы случайных величин.

Teма 8. Числовые характеристики системы случайных величин, коррелированность и зависимость.

Система случайных величин. Смешанные моменты. Корреляция. Корреляционная матрица и коэффициент корреляции. Примеры

Модуль 4.Закон больших чисел Центральная предельная теорема

Тема 9. Характеристические функции случайных величин

Характеристические функции и их свойства. Связь с моментами. Примеры. Производящие функции. Формула обращения и теорема единственности. Характеристические функции многомерных случайных величин.

Тема 10. Закон больших чисел. Усиленный закон больших чисел.

Последовательность независимых испытаний. Биномиальное и полиномиальное распределения. Использование производящей функции. Приближенные формулы Лапласа и Пуассона.

Модуль 5. Подготовка к экзамену.

Модуль 6. Статистическая оценка неизвестных параметров распределений.

Тема 12. Выборка и ее характеристики. Статистические ряды, распределения..

Основные понятия и элементы выборочной теории. Статистические ряды. Эмпирическая функция распределения. Выборочные моменты.

Тема 13. Точечные оценки. Свойства оценок

Постановка задачи. Оценки и их свойства. Функция правдоподобия. Информационное количество Фишера. Неравенство Рао-Крамера. Эффективные оценки.

Тема 14. Интервальные оценки параметров распределений. Постановка задачи. Доверительные интервалы для параметров нормального закона распределения, распределений χ^2 и Стьюдента.

МОДУЛЬ 7: Теория проверки статистических гипотез. Корреляционный и регрессионный анализ.

Тема 15. Статистических теория гипотез.

Постановка задачи. Примеры статистических гипотез. Общие принципы проверки статистических гипотез.

Тема 16. Проверка гипотез о неизвестных параметрах распределений Параметрические гипотезы. Выбор из двух простых гипотез. Критерий Неймана – Пирсона. Примеры применения.

Тема 17. Проверка гипотез о неизвестных распределениях

Последовательный критерий отношения правдоподобия, Критерии однородности. Критерии независимости, случайности.

Тема 18. Основы корреляционного анализа.

Задачи корреляционного анализа, выборочный коэффициент корреляции, его свойства, и вычисления.

Тема 19. Основы регрессионного анализа.

Метод наименьших квадратов. Уравнения линейной регрессии, оценивание параметров регрессии. М.Н.К.

Модуль 8. Подготовка к экзамену.

4.3.3. Содержание лабораторных занятий по дисциплине

Модуль 6. Статистическая оценка неизвестных параметров распределений

N	Задание	Кол-во	Порядок сдачи
		часов	
6.1 лб	Выборка и ее характеристики. С помощью моделирующей формулы получить на ПЭВМ выборку из показательного и нормального распределений объема п (параметр $^{\lambda}$ разный: несколько вариантов). Построить характеристики этой выборки: эмпирическую функцию распределения, x , S^{2} . Сравнить с соответствующими характеристиками генеральной совокупности.	4	Описание алгоритма, программа, графики, числовые данные.
6.2 лб	Оценка параметров распределений. По выборкам, полученным в задании 1 построить доверительные интервалы для m и σ^2 (нормальное распределение). Составить программу метода наименьших квадратов.	2	Описание алгоритма, программа, графики, числовые данные.

Модуль 7. Теория проверки статистических гипотез. Корреляционный и регрессионный анализ.

N	Задание	Кол-во	Порядок сдачи
		часов	
7.1 лб	Проверка гипотез.		
	Получить выборку объема п из генеральной	4	Описание

совокупности, равномерно распределенной в [a, b]. Затем с помощью критерия χ^2 проверить гипотезу о равномерности. Для	алгоритма, программа, графики, числовые
выборки $N(m,\sigma)$ из задания 1 проверить гипотезу $m=m_0$. в) Для этой же выборки проверить с помощью критерия Колмогорова соответствие эмпирической функции распределения $F_n^*(x)$ гипотетической $F(x)$.	данные.

7.2 лб	Корреляционный анализ. Регрессия.	4	Описание
	Пусть на 200 ГА пахотной земли внесены		алгоритма,
	удобрения: на 11 га по $x_1 = 10$ ц. на га, на 31		программа,
	га по $x_2 = 20$ ц на га, на 32 га по $x_3 = 30$		графики,
	2		числовые
	ц/га, на 45 га по $x_4 = 40$ ц/га и на 81 га по		данные.
	$x_5 = 50$ ц/га.		
	Полученные при этом значения		
	урожайности с 1 га Y_j , $j = 1,2,,8$ и с		
	какой площади (в га) получены эти		
	урожайности n_{xy} приведены в следующей		
	корреляционной таблице:		

5. Образовательные технологии

Лекции проводятся с использованием меловой доски и мела. Параллельно материал транслируется на экран с помощью мультимедийного проектора. Семинарские занятия проводятся с использованием мела и меловой доски. Для проведения лекционных занятий необходима аудитория, оснащенная мультимедиа-проектором, экраном, стандартной доской, ноутбуком (с программным обеспечение для демонстрации слайд-презентаций).

Для проведения семинарских занятий необходима аудитория на 25 человек, оснащена доской.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

6.1.Учебно- методические пособия для самостоятельной работы.

- 1.Свешников А.А. Прикладные методы теории марковских процессов. СП(б).:Изд. Лань,2007.
- 2. Свешников А.А. и др.. Сборник задач по теории вероятностей, математической статистике и теории случайных функций. СП(б).: Изд. Лань, 2007.
- 3.Вентцель Е.С., Овчааров Л.А. Прикладные задачи теории вероятностей, М., Изд. «Радио и связь», 1983 416 с..
- 4. Вентцель Е.С., Овчааров Л.А. Теория случайных процессов и ее инженерные приложения. М.: Высш.шк., 2000. -383 с.
- 5. Климов Г.П. Теория вероятностей и математическая статистика [Электронный ресурс] : учебник / Г.П. Климов. Электрон.текстовые данные. М. : Московский государственный университет имени М.В. Ломоносова, 2011. 368 с. 978-5-211-05846-0. Режим доступа: http://www.iprbookshop.ru/13115.html.

6.2. Темы для самостоятельного изучения и виды и содержание самостоятельной работы.

Название раздела и	ние раздела и Перечень рассматриваемых		Литература
темы	вопросов для самостоятельного	часов	
	изучения		
Модуль 1. Основы теор	ии вероятностей		
Элементы теории множеств. Комбинаторика	Теория вероятностей, как важнейший раздел математики. Различные подходы к	6	Основная: 2, 3 Дополнительная: 1, 2,
Комоинаторика	определению вероятности. События и действия над ними. Примеры. Комбинаторика. Сочетания, размещения, перестановки.		J
Классическая теория вероятностей. Основные формулы исчисления вероятностей.	Вероятности событий. Классическое и геометрическое определения вероятности случайного события. Примеры: схема равновозможных исходов, геометрические вероятности.	8	Основная: 2, 3 Дополнительная: 1, 2, 3

. Последовательность независимых испытаний, предельные теоремы.	Условная вероятность события. Условная вероятность. Теорема умножения. Формулы полной вероятности и Байеса. Независимость случайных событий. Испытания Бернулли. Схема Бернулли. Формула Бернулли. Биномиальное распределение. Теоремы Лапласа и Пуассона. Приближенные формулы для оценки вероятности Рп (k). Закон больших чисел в форме Бернулли.	10	Основная: 2, 3, Дополнительная: 1, 2, 3			
Модуль 2. Случайные в	· епичины	<u> </u>				
лодуль 2. Случайные в .Случайная величина. Функция распределения. случайной величины	Случайные величины и их распределения. Дискретный и непрерывный типы распределений. Функция распределения и плотность распределения, их свойства. Примеры дискретных и непрерывных случайных величин.	6	Основная: 1, 2, 3, Дополнительная: 1, 2, 3			
Функции от случайных величин.	.Функция от случайной величины, ее функция и плотность распределения. Примеры функций от случайных величин.	6	Основная: 1, 2, 3, Дополнительная: 1, 2, 3			
Числовые характеристики случайных величин.	Математическое ожидание и дисперсия. Определения. Формулы расчета. Вычисление математического ожидания и дисперсии основных непрерывных случайных величин.	8	Основная: 1, 2, 3, Дополнительная: 1, 2, 3			
МОДУ	МОДУЛЬ 3.Системы случайных величин.					
Система случайных величин. Функция и плотность распределения, их свойства.	Понятие случайного вектора, пример случайных векторов. Функция распределения системы случайных величин. Основные сведения из теории совместных распределений	12	Основная: 1, 2, 3, Дополнительная: 1, 2, 3			
Числовые характеристики системы случайных величин,	Математическое ожидание многомерной случайной величины. Ковариационная матрица и ее	12	Основная: 1, 2, 3, Дополнительная: 1, 2, 3			

коррелированность	свойства.			
и зависимость				
МОДУЛЬ 4. Закон больших чисел Центральная предельная теорема.				
Характеристические функции случайных величин	Понятие характеристической функции и ее смысл. Основные свойства характеристической функции, приложения.	4	Основная: 1, 2, 3, Дополнительная: 1, 2, 3	
Закон больших чисел. Усиленный закон больших чисел.	Закон больших чисел, различные ее формулировки. Усиленный закон больших чисел, условия его приложения к задачам.	10	Основная: 1, 2, 3, Дополнительная: 1, 2, 3	
Центральная предельная теорема.	Центральная предельная теорема и ее фундаментальный смысл. Условия ее выполнения.	6	Основная: 1, 2, 3, Дополнительная: 1, 2, 3	
	гическая оценка неизвестных і			
Введение в математическую статистику. Выборка и ее характеристики. Распределения.	Генеральная и выборочная совокупности. Вариационный ряд, интервальный вариационный ряд. Полигон, гистограмма. Статистические	4	Основная: 2, 3, Дополнительная: 1, 2, 3	
Точечная оценка. Свойства оценок	ряды. Оценка неизвестного параметра Свойства оценок: состоятельность, несмещенность, эффективность. Несмещенность и состоятельность оценок некоторых параметров. Функция правдоподобия	6	Основная: 2, 3, Дополнительная: 1, 2, 3	
Интервальная оценка	Метод моментов. Метод максимального правдоподобия. Метод минимума χ -квадрат (хиквадрат). Понятие доверительного интервала. Уровень значимости.	6	Основная: 2, 3, Дополнительная: 1, 2, 3	
МОДУЛЬ 5: Теория проверки статистических гипотез				
Постановка задачи проверки гипотез. Общие принципы проверки гипотез. Виды гипотез.	Общие принципы проверки статистических гипотез. Критерии значимости и согласия: χ -квадрат – критерий	4	Основная: 2, 3, Дополнительная: 1, 2, 3	
Проверка гипотез о неизвестных параметрах	Проверка гипотезы о равенстве дисперсий нормальных генеральных совокупностей	4	Основная: 2, 3, Дополнительная: 1,	

распределений	Проверка гипотезы о равенстве выборочной средней гипотетической генеральной средней нормальной совокупности		2, 3
Проверка гипотез о неизвестных распределениях	Гипотезы о функции распределения Критерий Пирсона в случае, когда функция полностью определена	6	Основная: 2, 3, Дополнительная: 1, 2, 3
МОДУЛЬ 6: Корреляци	і нный и регрессионный анализ. Теој	ия массового	обслуживания
Основы корреляционного анализа	Задачи корреляционного анализа, выборочный коэффициент корреляции, его свойства, и вычисления.	6	Основная: 2, 3, Дополнительная: 1, 2, 3
Основы регрессионного анализа	Практическое применение основ регрессионного анализа	6	Основная: 2, 3, Дополнительная: 1, 2, 3
Системы массового обслуживания	Теория массового обслуживания. Задачи СМО.	6	Основная: 2, 3, Дополнительная: 1, 2, 3

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины. 7.1 Типовые контрольные задания

Контрольные работы по теории вероятностей:

Контрольная работа № 1

- 1. В мешочке 5 одинаковых кубиков. На всех гранях каждого кубика написана одна из следующих букв: о,п,р,с,т. Найти вероятность того, что на вынутых по одному и расположенных «в одну линию» кубиков можно будет прочесть слово «спорт».
- 2. Вероятность того, что стрелок при одном выстреле выбьет 10 очков равна 0,1; вероятность выбить 9 очков равна 0,3; вероятность выбить 8 или меньше очков равна 0,6. Найти вероятность того, что при одном

выстреле стрелок выбьет не менее 9 очков.

- 3. Чему равна вероятность того, что при бросании трех игральных костей 6 очков появится хотя бы на одной из костей.
- 4. При отключении от нормального режима работы автомата срабатывает сигнализатор с-1 с вероятностью 0.8, а сигнализатор с-11 срабатывает с вероятностью 1. Вероятности того, что автомат снабжен сигнализатором с -1 или с-11 соответственно равны 0,6 и 0,4. Получен сигнал о разделке автомата. Что вероятнее: автомат снабжен сигнализатором с-1 или с-11?
- 5. Событие В появится в случае, если событие А появится не менее двух раз. Найти вероятность того, что наступит событие В, если будет произведено 6 независимых испытаний, в каждом из которых вероятность появления события А равна 0,4.

Контрольная работа № 2

- 1. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартное равна 0,9. В каждой партии содержится пять изделий. Найти математическое ожидание дискретной случайной величины X- числа партий, в каждой из которых окажется ровно четыре стандартных изделия, если проверке подлежат 50 партий.
- 2. Найти дисперсию дискретной случайной величины X- числа появлений события A в двух независимых испытаниях, если вероятности появления события в этих испытаниях одинаковы и известно, что M(X)=0,9.
- 3. Дискретная случайная величина X имеет только три возможных значения: x1, x2, и x3, причем x1 < x2 < x3. Вероятности того, что X примет значения x1 и x2 соответственно равны. 0,3 и 0,2. Найти закон распределения величины X, зная ее математическое ожидание M(X) = 2,2 и дисперсию D(X) = 0,76.
- 4. Случайная величина имеет плотность вероятностей

$$f(x) = \begin{cases} 0, x < 0; \\ c/(1+x^2), \ 0 \le x \le 1; \\ 0, \ x > 1. \end{cases}$$

Найти постоянный параметр с, математическое ожидание и дисперсию.

5. Случайная величина X распределена равномерно в интервале [-1,4]. Найти P(X>0).

Контрольные работы по математической статистике:

Контрольная работа № 1

- 1. Пусть $X = (X_1,...,X_n)$ выборка из совокупности с распределением $N(\mu,\delta^2)$. Исследовать свойство несмещенности параметров $\mu \ \hat{e} \ \delta^2$.
- 2. Пусть $X = (X_1, ..., X_n)$ выборка из совокупности с равномерным на (Q_1, Q_2) распределением. Найти оценку параметров Q_1, Q_2 методом моментов.
- 3. Пусть $X = (X_1, ..., X_n)$ выборка из распределения $\Gamma\left(\frac{1}{\theta}, 1\right)$. Доказать, что $T(X) = \frac{1}{n} \sum_{i=1}^n X_i$ является эффективной оценкой θ .
- 4. Показать эффективность выборочной средней $\bar{x} = \sum_{i=1}^{n} X_i$ выборки из совокупности с нормальным законом распределения $N(\Theta, \delta^2)$ Доказать, что $T(X) = \sum_{i=1}^{n} X_i$ полная достаточная статистика.
- 5. Найти количество информации содержащей в выборке из распределения Пуассона относительно неизвестного параметра.

Контрольная работа № 2

- 1. Найти байесовскую оценку параметра θ нормальной модели $N(\theta,1)$ при условии, что априорным распределение параметра θ является нормальное распределение N(0,1).
 - 2. Пусть $X_1,...,X_n$ независимы и одинаково равномерно распределены на

- $(0,\theta),\; \theta>0$. Построить доверительный интервал для θ с помощью статистики $X_{(n)}=\max_{k}X_{k}\,.$
- 3. Пусть $X_1,...,X_n$ независимы и имеют нормальное распределение $N(\theta,1)$. Построить доверительный интервал для θ с коэффициентом доверия α , основанный на центральной статистике $\sqrt{n} \cdot (\overline{X} \theta)$.
- 4. Пусть $X_1,...,X_n$ независимы и имеют плотность распределения $p(x,\theta) = \begin{cases} \exp\{-\left(x-\theta\right)\}, x > \theta, \\ 0, x \leq \theta \end{cases}.$ Построить наиболее мощный критерий размера α для проверки гипотезы $H_0: \theta = \theta_0$ при альтернативе $H_1: \theta = \theta_1 < \theta_0$. Найти функцию мощности.
- 5. Пусть $X_1,...,X_n$ независимы и имеют распределение Пуассона $\Pi(\theta)$. Построить равномерно наиболее мощный критерий размера α для проверки гипотезы $H_0:\theta=\theta_0$ при альтернативе $H_1:\theta>\theta_0$. Найти функцию мощности.

Вопросы к экзамену

Вопросы к экзамену по теории вероятностей:

- 1. Аксиомы теории вероятностей. Свойства вероятностей.
- 2. Геометрические вероятности. Свойство вероятностей.
- 3. Дисперсия и ее свойства.
- 4. Дисперсия основных дискретных распределений.
- 5. Дисперсия основных непрерывных распределений.
- 6. Закон больших чисел. Следствие из теоремы Чебышева: теорема о среднем. Теорема умножения вероятностей. Независимость событий.
- 7. Интегральная теорема Муавра-Лапласа. Применение.
- 8. Классические определения вероятности. Свойства вероятности.
- 9. Коэффициент корреляции и его свойства.
- 10. Локальная теорема Муавра-Лапласа. Применение.
- 11. Математические ожидания основных непрерывных распределений.
- 12. Математическое ожидание и его свойства.
- 13. Математическое ожидание основных дискретных распределений.
- 14. Многомерные случайные величины. Независимость случайных величин.
- 15. Независимость случайных величин.
- 16. Неравенство Чебышева.

- 17. Нормальный закон распределения, его параметры. Графики плотности и функции распределений.
- 18. Основные непрерывные случайные величины. Их числовые характеристики.
- 19. Основные формулы комбинаторики. Примеры.
- 20. Последовательности независимых испытаний. Формула Бернулли.
- 21. Распределение суммы двух независимых величин.
- 22. Распределение суммы двух независимых нормальных случайных величин.
- 23. Случайные величины. Основные дискретные случайные величины.
- 24. События и действия над ними.
- 25. Статистическое определение вероятности. Свойства вероятности.
- 26. Теорема Пуассона.
- 27. Теорема сложения вероятностей.
- 28. Теорема умножения вероятностей. Независимость случайных событий.
- 29. Условная вероятность.
- 30. Формула Байеса.
- 31. Формула Бернулли. Свойства вероятностей $P_n(m)$.
- 32. Формула полной вероятности
- 33. Функция распределения и ее свойства.
- 34. Характеристическая функция и ее свойства.
- 35. Характеристическая функция. Вычисление моментов случайной величины с помощью характеристической функции. Пример.
- 36. Характеристические функции основных дискретных распределений.
- 37. Центральная предельная теорема.

Вопросы к экзамену по математической статистике:

- 1. F- распределение и его следствия.
- 2. Выборочные характеристики и их асимптотические свойства.
- 3. Двумерная случайная величина. Независимость случайных величин. Коэффициент корреляции. Выборочный коэффициент корреляции.
- 4. Доверительное оценивание параметров. Доверительный интервал для М.О. нормального закона распределения.
- 5. Доверительный интервал для дисперсии нормального закона распределения.
- 6. Достаточные статистики. Критерий факторизации.
- 7. Задача оценивания параметров. Оценки и их свойства.

- 8. Интервальная оценка для неизвестного математического ожидания нормально распределенной генеральной совокупности (σ неизвестно).
- 9. Интервальная оценка для неизвестной вероятности события.
- 10. Исследование зависимостей. Простое линейное уравнение регрессии.
- 11. Коэффициент корреляции и его свойства. Выборочный коэффициент корреляции. Проверка значимости выборочного коэффициента корреляции.
- 12. Критерий независимости хи-квадрат.
- 13. Критерий однородности Смирнова.
- 14. Критерий проверки гипотезы о равенстве дисперсий двух нормально распределенных совокупностей.
- 15. Метод Байеса оценивания параметров.
- 16. Метод максимального правдоподобия.
- 17. Метод максимального правдоподобия. Оценить параметры нормального закона распределения.
- 18. Метод моментов оценивания параметров. Оценить параметры равномерного распределения.
- 19. Методы нахождения оценок. Метод моментов. Пример.
- 20.Методы нахождения оценок. Найти методом моментов неизвестные параметры *m* и о нормального распределения.
- 21. Моделирование непрерывных случайных величин. Моделирование равномерного распределения.
- 22.Моделирование равномерной на (a, e). Случайной величины.
- 23. Неравенство Рао-Крамера. Эффективные оценки.
- 24. Несмещенность и состоятельность оценки \bar{x} .
- 25. Основные распределения вероятностей, используемые в матстатистике. x^2 распределение. Приложения.
- 26. Оценивание параметров методом хи-квадрат.
- 27. Оценивание параметров регрессии методом наименьших квадратов.
- 28. Понятие функции правдоподобия. Информационное количество Фишера.
- 29.Последовательный критерий Вальда.
- 30.Предмет математической статистики и ее основные задачи.
- 31. Пример применения критерия Неймана-Пирсона.
- 32. Проверка гипотез о дисперсиях.
- 33. Простые и сложные гипотезы. Критерий Немана-Пирсона.
- 34. Равномерное распределение вероятностей (плотность, функция распределения, $M\xi$, $D\xi$). Применения.
- 35. Стандартный метод моделирования дискретной случайной величины.
- 36. Теорема и критерии Колмогорова.

- 37. Теорема Фишера об \overline{X} и S^2 .
- 38. Эмпирическая функция распределения и ее свойства.

Задания для самостоятельной работы студентов Задания для самостоятельной работы к модулю 1.

- 1. В клубе присутствуют 12 мужчин и 12 женщин. Сколько различных танцевальных пар можно организовать из них?
- 2. Из группы в 20 студентов для участия в олимпиаде выбирается 5 человек. Сколько различных команд можно организовать?
- 3. Опыт состоит в бросании 3 монет. (Г "выпадение герба", Р "выпадение решки"):
- 1) Описать пространство элементарных событий, связанное с этим опытом (выписать все исходы).

Пусть событие А - "герб выпал на двух монетах", В - " герб выпал хотя бы на 2 монетах".

Выписать события:

- 2)А и В
- 3) C = A + B4) $D = A \cdot B$
- 4. Сколькими способами можно составить волейбольную команду в 6 игроков из 12 игроков, среди которых 8 классных ?
- 5. Сколько можно составить таких команд, в которых половина классных игроков?
- 6. Сколькими способами можно рассадить 6 игроков команды на скамейку по местам с номерами от 1 до 6?
- 7. Что такое размещения, сочетания, чем они отличаются? Что такое перестановки? Напишите соответствующие формулы подсчета.
- 8. Найти вероятность событий A, B, C, D из примера 3.
- 9. Студент знает 10 из 15 вопросов коллоквиума. Чему равна вероятность того, что он ответит на 2 из заданных 3 вопросов.
- 10. В 1-ой урне имеются 4 б. и 6 ч. шаров, во 2-ой соответственно 4 б. и 2 ч. Из каждой урны случайно выбирают по одному шару.
- 1) Найти вероятности следующих событий:
- а) "оба шара белые"-А;
- б) "хотя бы 1 из них белый"-В;
- с) "оба шара черные"-С.
- 11. Что такое событие? Что такое сумма двух событий? Произведение? Разность?
- 12. Составляют или нет события A, B, C из примера 10 полную группу событий, полную группу попарно несовместимых событий? Определите эти понятия.

13. В ящике 3 белых и 2 черных шара. Из ящика вытаскивают 1 шар отмечает цвет и возвращают обратно. Затем берут второй шар.

Событие А - " 1 - белый шар", событие В - " второй - белый шар". Найти вероятности событий:

- 1) А и В
- 2) C = A + B
- 3) $D = A \cdot B$
- 14. В ящике 3 белых и 2 черных шара. Из ящика вытаскивают 1 шар. Затем берут второй шар. Событие А " 1 белый шар",

событие В - " второй - белый шар". Найти вероятность событий:

- 1) A · B
- 2) B
- 3) C = A + B
- 8. Карточки с буквами a, κ , p, ψ , y располагают в случайном порядке.

Чему равна вероятность того, что при этом

- 1) образуется слово "ручка"?
- 2) образуется слово "ручка" или "чурка"?
- 16. Из урны с 2 белыми и 3 черными шарами двое игроков случайно берут по 1-му шару: сначала 1-ый игрок, затем из оставшихся шаров 2-ой игрок. Чему равна вероятность вытащить белый шар для 1-игрока? для 2-го игрока?
- 17. Дайте определение независимости двух событий А и В. Что такое условная вероятность?
- 18. Напишите формулу полной вероятности.
- 19. Формула Байеса. Условия применения.
- 20. Определите схему Бернулли. Формула Бернулли.
- 21. Из урны примера 16 пять раз вытаскивают по 1 шару, каждый раз возвращая шар обратно. Чему равна вероятность того, что белый шар появится: 1) равно 2 раза? 2) хотя бы 2 раза?

Задания для самостоятельной работы к модулю 2.

- 1. Случайная величина ξ распределено по показательному закону с параметром $\lambda=0,2$. Написать выражение для плотности распределения вероятностей.
- 2. Случайная величина ξ распределено по показательному закону с параметром $\lambda = 0.2$. Найти функцию распределения.
- 3. Случайная величина ξ распределено по показательному закону с параметром $\lambda = 0.2$. Найти математическое ожидание и дисперсию.

- 4. Напишите выражение для плотности распределения случайной величины, распределенной равномерно в интервале (2,4).
- 5. Напишите выражение для функции распределения случайной величины, распределенной равномерно в интервале (0,5).
- 6. Найти математическое ожидание и дисперсию случайной величины, распределенной равномерно в интервале (-1,1).
- 7. Имеется партия деталей некоторого производства. Вероятность для каждой детали быть бракованной одинакова и равна 0,01. Из партии на сборку выбрали 10 деталей. Случайная величина ξ -число бракованных среди этих 10 выбранных.
- а) Напишите ряд распределения ξ .
- б). Найти M^{ξ} и D^{ξ} .
- 8) Какие бывают случайные величины? Как они задаются? Дайте определение функции распределения.
- 9. Случайная величина ξ имеет плотность распределения

$$f(x) = \begin{cases} 0, & x \in [0,2] \\ \frac{1}{c}x, & x \in [0,2] \end{cases}$$

Найти постоянную с. Найти функцию распределения F(x). Построить графики f(x) и F(x). Найти M^{ξ} и D^{ξ} .

10. Найти M^{ξ} и D^{ξ} случайной величины ξ :

ξ	0	1	2	3
p_{i}	0.1	p_2	0.3	0.15

- 11. Случайная величина ξ распределена равномерно в интервале [0,2]. Написать выражение:
- 1) для плотности f(x)
- 2) для функции распределения F(x)
- 3) Найти M^{ξ} и D^{ξ} .
- 12. Производятся три независимых выстрела по цели. Вероятность попадания при каждом выстреле одинакова и равна 1/3. Найти вероятность того, что будут
- 1) попадания
- 2) ни одного попадания
- 3) Пусть случайная величина ξ число попаданий в условиях примера 11. Написать ряд распределения, этой случайной величины.

- 13. Для случайной величины ξ из 12 найти M^{ξ} и D^{ξ} .
- 14. Написать правило «трех сигм».

Задания для самостоятельной работы к модулю 3.

- 1. Что выражает неравенство Чебышева.
- 2. Смысл закона Больших чисел.
- 3. Сформулируйте теорему Чебышева о законе Больших чисел.
- 4. Закон больших чисел в форме Бернулли.
- 5. Центральная предельная теорема. Смысл.
- 6. Написать моделирующую формулу для случайной величины, равномерной в интервале (2,5).

Задания для самостоятельной работы к модулю 5.

- 1. Каков предмет мат. статистики и ее основные задачи.
- 2. Что называется вариационным рядом, порядковой статистикой, эмпирической функцией распределения.
- 3. Как строится интервальный статистический ряд, как называется изображение интервального статистического ряда.
- 4. Укажите основные выборочные характеристики (Выборочные начальные центральные моменты, выборочная среда и выборочная дисперсия).
- 5. Распределение какой сл.в. называется X^2 распределением. Укажите параметры этого распределения (М.О. и дисперсия).
- **6.** Какое распределение называется *t*-распределением. Привести статистику распределения которых связаны с *t* распределением.
- **7.** Какое распределение называется F распределением. Приведите пример статистики, распределение которых связаны с F распределением. Приведите пример статистики, распределение которых связаны с F -распределением.
- 8. В чем состоит задача оценивания параметров распределений. Какие оценки называются несмещенными оценками параметров. Приведите примеры несмещенных оценок.
- 9. Какие оценки называются состоятельными оценками. Приведите примеры о состоятельности оценки.
- 10.В чем выражается эффективность оценки. Какова нижняя граница дисперсии оценки.
- 11. Какая функция называется функцией правдобоподобия. Как определяется функция вклада выборки.
- 12. Что называется информационное количество Фишера. Приведите его различные выражения.
- 13. Что называется неравенство Рао Крамера и как оно задается.

- 14. Какие модели распределений имеют эффективные оценки для своих параметров.
- 15. Какие статистики называются достаточными относительно оцениваемых параметров. В чем критерий факторизации?
- 16. Как оцениваются параметры по методу моментов?
- 17. Как оцениваются параметры по методу максимального правдоподобия. Какими свойствами эти оценки обладают?
- 18. Как приближенно можно оценить параметры распределений.
- 19. Метод минимума X^2 Пирсона для оценивания параметров.
- 20. Определение доверительного интервала. Построить доверительные интервалы для $M\xi_{\text{ если}} \xi e' N(\mu, \delta^2)_{\text{ когда}} \delta^2$ известно.
- 21. Что называется доверительной вероятностью.
- 22. Постройте доверительный интервал для параметра μ распределения $N(\mu, \delta^2)$ при неизвестном.
- 23. Построить доверительный интервал для параметра δ^2 распределения $N(\mu, \delta^2)$
- 24. Как строится доверительный интервал для параметров распределений отличных от $N(\mu, \delta^2)$.
- 25. По выборочным данным построить доверительный интервал для разности между средними значениями двух нормальных распределений $N(\mu_1, \delta_1^2)_{
 m II}$ $N(\mu_2, \delta_2^2)_{
 m II}$
- 26. Постройте доверительный интервал для неизвестной вероятности случайного события.
- 27. Проверка статистических гипотез. Перечислить основные типы статистических гипотез, дать их формулировки.
- 28. Что называется стат. критерием, критической областью уровнем значимости. Дайте математическую формулировку вероятностям ошибок 1,2 родов и мощности критерия.
- 29. Приведите общую логическую схему проверки статистических гипотез.

Задания для самостоятельной работы к модулю 6.

- 1. Опишите применение критерия X^2 для проверки гипотезы о типе распределения.
- 2. Опишите критерий согласия Колмогорова.
- 3. Сформулируйте гипотезы однородности и приведите критерий проверки таких гипотез.

- 4. Гипотезы независимости. Критерий X^2 для проверки гипотезы о независимости.
- 5. Понятие параметрической гипотезы. Лемма Неймана-Пирсона. Критерий отношения.
- 6. Проверка гипотезы о параметре μ нормального закона распределения.
- 7. Проверка гипотезы о параметре δ^2 нормального закона распределения.
- 8. Проверка гипотезы о существенности различия средних двух нормальных распределений $N(\mu_1, \delta_1^2)_{_{\rm I\! I}} \ N(\mu_2, \delta_2^2)_{_{\rm I\! I}}$
- 9. Проверка гипотезы о дисперсии распределения $N(\mu, \delta^2)$.
- 10. Проверка гипотезы о равенстве дисперсий двух нормально распределенных интегральных совокупностей.
- 11. Последовательный критерий Вельда.
- 12. Выборочный коэффициент регрессии, его вычисление и значение.

Задания для самостоятельной работы к модулю 7.

- 1. Выборочный коэффициент регрессии, его вычисление и значение.
- 2. Уравнение линейной регрессии и метод наименьших квадратов.

Темы рефератов

- 1. История возникновения теории вероятностей. Классическая задача Шевалье де Мере.
- 2. Комбинаторные методы в теории вероятностей.
- 3. Геометрическая вероятность как расширение классического определения вероятностей.
- 4. Классическая задача о разорении игрока и ее моделирование на ЭВМ.
- 5. Геометрическая вероятность. «Задача о встрече» и ее моделирование на ЭВМ.
- 6. Аксиоматическое построение теории вероятностей акад. Колмогорова А.Н.
- 7. Некоторые философские проблемы теории вероятностей.
- 8. Предельные теоремы теории вероятностей и ее практические приложения.
- 9. Независимость событий. Пример Бернштейна.
- 10. Задача Банаха о спичечных коробках и ее моделирование на ЭВМ.
- 11. Нормальное распределение вероятностей и его роль в математикостатистических исследованиях.
- 12. О методах моделирования случайных величин.
- 13. Приближенное вычисление числа π методом Монте-Карло.

- 14. Математическая статистика как самостоятельная наука. Связь с теорией вероятностей.
- 15. Показательно распределение вероятностей и его приложение: задача теории переноса излучений и моделирование систем массового обслуживания.

7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Текущий контроль успеваемости осуществляется непрерывно, на протяжении всего курса. Прежде всего, это устный опрос по ходу практических и лабораторных занятий, выполняемый для оперативной активизации внимания студентов и оценки их уровня усвоения тем. Результаты устного опроса учитываются при выборе индивидуальных задач для решения. Каждую неделю осуществляется проверка выполнения заданий, как домашних, так и лабораторных.

Промежуточный контроль проводится в форме контрольной работы, в которых содержатся практические задачи и теоретические вопросы.

Итоговый контроль проводится либо в виде устного экзамена, либо в форме тестирования.

Оценка «отлично» ставится за уверенное владение материалом курса.

Оценка «хорошо» ставится при полном выполнении требований к прохождению курса и умении ориентироваться в изученном материале.

Оценка «удовлетворительно» ставится при достаточном выполнении требований к прохождению курса и владении конкретными знаниями по программе курса.

Оценка «неудовлетворительно» ставится, если требования к прохождению курса не выполнены и студент не может показать владение материалом.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля – 30 % и промежуточного контроля – 70 %.

Текущий контроль по дисциплине включает:

- посещение занятий 30 баллов,
- участие на практических занятиях 35 баллов,
- выполнение домашних (аудиторных) контрольных работ 35 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос 40 баллов,
- письменная контрольная работа 60 баллов,

Студенту выставляется:

- отлично, если интегральная оценка составляет 86 100 баллов;
- хорошо, если интегральная оценка составляет 66 85 баллов;
- удовлетворительно, если интегральная оценка составляет 51 65 баллов;

- неудовлетворительно, если интегральная оценка составляет 0 - 50 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

а) основная литература:

- 1. Макусева Т.Г. Основные теоремы теории вероятностей [Электронный ресурс]: учебно-методическое пособие/ Макусева Т.Г., Шемелова О.В.— Электрон. текстовые данные.— Саратов: Ай Пи Эр Медиа, 2018.— 168 с.— Режим доступа: http://www.iprbookshop.ru/70773.html.— ЭБС «IPRbooks». (дата обращения 09.02.2022)
- 2.Гмурман В.Е. Руководство к решению задач по теории вероятности и мат. статистики, М., ВШ., 2005. 404 с.
- 3. Назаралиев М.А., Гаджиева Т.Ю., Фаталиев Н.К. Теория вероятностей и математическая статистика. Уч. пос., ДГУ. Махачкала, 2014. 192 с.

б) дополнительная литература:

- 1. Сборник задач по теории вероятностей. Случайные величины [Электронный ресурс]: учебно-методическое пособие/ Электрон. текстовые данные.— Саратов: Ай Пи Эр Медиа, 2018.—100 с.— Режим доступа: http://www.iprbookshop.ru/71586.html.— ЭБС «IPRbooks». (дата обращения 03.02.2022)
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика, М.: 2005. 479 с.
- 3. Назаралиев М.А., Гаджиева Т.Ю., Фаталиев Н.К. «Теория вероятностей и математическая статистика». Учебное пособие. Часть ІІ. «Математическая статистика». 2015.

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. Федеральный портал российское образование http://edu.ru;
- 2. Электронные каталоги Научной библиотеки Даггосуниверситета http://elib.dgu.ru/?q=node/256;
- 3. Образовательные ресурсы сети Интернет http://catalog.iot.ru/index.php;

- 4. Электронная библиотека http://elib.kuzstu.ru.
- 5. Назаралиев М.А., Гаджиева Т.Ю., Фаталиев Н.К. «Теория вероятностей и математическая статистика». Учебное пособие. 2014. http://umk.dgu.ru/pdfdoc/10803/Полностью.htm

10. Методические указания для обучающихся по освоению дисциплины.

Дисциплина «Теория вероятностей и математическая статистика» содержит внутри 7 модулей. Первые 3 модуля изучаются в четвертом семестре. Эти модули имеют определенную логическую завершенность по отношению к установленным целям и результатам обучения. Именно при изучении этих модулей должны развиваться компетенции УК-1 и ОПК-1 применительно к теории вероятностей. Модули 4-7 изучаются в пятом семестре. Эти модули также имеют определенную направленность по отношению к установленным целям и результатам обучения. Именно при изучении этого модуля должна закладываться база ДЛЯ развития овладения профессиональными И компетенциями ПК-1.

При изучении дисциплины рекомендуется рейтинговая технология обучения, которая позволяет реализовать комплексную систему оценивания учебных достижений студентов. Текущие оценки усредняются на протяжении семестра при изучении модулей. Комплексность означает учет всех форм учебной и творческой работы студента в течение семестра.

Рейтинг направлен на повышение ритмичности и эффективности самостоятельной работы студентов. Он основывается на широком использовании тестов и заинтересованности каждого студента в получении более высокой оценки знаний по дисциплине.

Принципы рейтинга: непрерывный контроль (в идеале на каждом из аудиторных занятий) и получение более высокой оценки за работу, выполненную в срок. При проведении практических занятий необходимо предусматривать широкое использование активных и интерактивных форм (компьютерных симуляций, деловых и ролевых игр).

Рейтинг включает в себя два вида контроля: текущий, промежуточный и итоговый по дисциплине.

Текущий контроль (ТК) - основная часть рейтинговой системы, основанная на беглом опросе раз в неделю или в две недели. Формы: тестовые оценки в ходе практических занятий, оценки за выполнение индивидуальных заданий и лабораторных работ. Важнейшей формой ТК, позволяющей опросить

всех студентов на одном занятии являются короткие тесты из 2-3 тестовых заданий.

Основная цель ТК: своевременная оценка успеваемости студентов, побуждающая их работать равномерно, исключая малые загрузки или перегрузки в течение семестра.

Лекционные занятия желательно проводить в режиме презентаций с демонстрацией применения основных методов анализа и синтеза. Это существенно улучшает динамику лекций.

Целесообразно обеспечивать студентов на 1-2 лекции вперед раздаточным материалом в электронном виде (сложные схемы, графики, аналитические исследования и опорный конспект). Основное время лекции лучше тратить на подробные аналитические комментарии и особенности применения рассматриваемого материала в профессиональной деятельности студента.

Практические занятия следует проводить, используя профессиональные программы.

Лабораторный практикум проводится фронтальным методом в классах, оборудованных лабораторными стендами для исследования электрических цепей. Так как используется компьютерное моделирование, то следует проводить занятия в компьютерном классе либо самостоятельно на домашнем компьютере. При этом защита результатов исследований проводятся по традиционной методике в классе.

Промежуточный контроль (ПК) - это проверка знаний студентов по разделу программы. Формы: тест из 7-10 заданий. Тестирование проводится в компьютерных классах в часы самостоятельной работы студентов по заранее составленному расписанию.

Цель ПК: побудить студентов отчитаться за усвоение раздела дисциплины накопительным образом, т.е. сначала за первый, затем за второй, затем за третий разделы каждого семестра.

Итоговый контроль по дисциплине (ИКД) - это проверка уровня учебных достижений студентов по всей дисциплине за семестр. Формы контроля: экзамен в 4 и 5-ом семестрах. Цель итогового контроля: проверка базовых знаний по дисциплине, полученных при изучении всех модулей семестра.

ИКД в 5 семестре является выходным контролем по дисциплине, после которого можно рассчитывать на то, что процесс обучения по дисциплине завершен и в дальнейшем студент может сам при необходимости совершенствовать свои знания.

Распределение объемов различного вида контролей можно проиллюстрировать следующими цифрами на примере семестра: текущий контроль — 15 условных баллов; промежуточный контроль - 35 условных баллов; итоговый контроль - 50 условных баллов. Вся дисциплина оценивается в 100 условных баллов, если вся дисциплина оценивается цифрой, отличной от 100 баллов, то под условным баллом следует понимать процент от максимального числа баллов.

При этом действует следующая система перевода рейтинговых (условных) баллов в обычную шкалу оценок: "Отлично" (5) - 86–100 условных баллов; "Хорошо" (4) - 66–85 условных баллов; "Удовлетворительно" (3) - 51–65 условных баллов; "Неудовлетворительно" (2) - < 51 условных баллов.

Приведенные цифры говорят о том, что на любой стадии обучение студента можно считать удовлетворительным, если он набирает не менее 51 условных баллов. Так, например, набрав в ходе ТК и ПК 51 баллов, студент гарантирует себе оценку "удовлетворительно".

Примеры оценочных средств (тестовых заданий) для текущего промежуточного и выходного контроля успеваемости по дисциплине:

Первый уровень сложности тестовых заданий (Т3) соответствует удовлетворительному владению предметом. Он представляет минимум базовых знаний, необходимых для дальнейшего обучения в университете и включает в себя знания - копии ключевых понятий и формул. Проверке этого уровня посвящены простейшие тестовые задания с нормой трудности в 1 балл.

Второй уровень ТЗ соответствует хорошим знаниям и предполагает глубокое понимание понятий и формул, умения их преобразовывать и интерпретировать.

Проверке второго уровня посвящены тестовые задания повышенной трудности, с нормой трудности в 2 балла.

Третий уровень ТЗ соответствует отличным знаниям и предполагает навыки по использованию ключевых понятий и формул в стандартных, а иногда и в не стандартных ситуациях. Проверке третьего уровня посвящены наиболее трудные задания, с нормой трудности в 3 балла.

Задания каждого уровня снабжены соответствующими обозначениями. Это позволяет адаптивно строить усвоение программы дисциплины, когда каждый студент по мере усвоения курса на более низком уровне будет пробовать себя на более высоком уровне.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Для успешного освоения дисциплины, обучающий использует также кроме указанных выше в п. 8 программные обеспечения и интернет ресурсов: пакеты прикладных программ Mathcad, Mathlab, Delphi, Statistica.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Учебные аудитории для проведения лекционных, семинарских и лабораторных занятий, компьютерные классы факультета и ИВЦ ДГУ. В университете имеется пакет необходимого лицензионного программного обеспечения.

При кафедре прикладной математики имеется студенческая научноисследовательская лаборатория «Математическое моделирование».