МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Химический факультет Кафедра неорганической химии и химической экологии

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Химия

Образовательная программа

Направления

<u>03.03.02 – Физика</u>

Профили подготовки **Фундаментальная физика Медицинская физика**

Уровень высшего образования **бакалавриат**

Форма обучения **очная**

Статус дисциплины <u>базовая</u>

Махачкала 2021

Рабочая программа дисциплины составлена в 2021 году в соответствии с требованиями ФГОС ВО по направлению подготовки $03.03.02 - \Phi$ изика (уровень бакалавриат) от «07» августа 2014г. № 937.

Разработчик: кафедра неорганической химии и химической экологии кандидат химических наук, доцент Гасангаджиева У.Г..

Рабочая программа дисциплины одобрена:
на заседании кафедры неорганической химии и химической экологии
от « <u>16</u> » <u>0/</u> 2021г., протокол № <u>5</u>
Зав. кафедрой Исаев А.Б.
на заседании Методической комиссии химического факультета от « $\cancel{\!\! \!$
Председатель <u>Уасов</u> Гасангаджиева У.Г.
Рабочая программа дисциплины согласована сучебно-методическим управлением «»2021гГасангаджиева А.Г.

Аннотация рабочей программы дисциплины

Дисциплина <u>«Химия»</u> входит в <u>базовую</u> часть образовательной программы <u>бакалавриата</u> по направлению <u>03.03.02 – Физика</u>

Дисциплина реализуется на физическом факультете кафедрой неорганической химии и химической экологии.

Содержание дисциплины охватывает круг вопросов, связанных с теоретическим введением, в котором рассматриваются современные общехимические воззрения, теории и законы, а также с фактическим материалом по химии элементов и их соединений, тенденциям изменения свойств простых веществ и соединений по группам и периодам Периодической системы

Дисциплина нацелена на формирование следующих компетенций выпускника: общепрофессиональных - <u>ОПК-1</u>.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: **лекции, лабораторные занятия, самостоятельная работа**.

Рабочая программа дисциплины предусматривает проведение видов контроля успеваемости в форме проведения **контрольных работ, тестирования, коллоквиумов** и промежуточного контроля в форме проведения <u>зачета</u>.

Объем дисциплины $\underline{3}$ зачетные единицы, в том числе в $\underline{108}$ академических часах по видам учебных занятий:

Ce		Форма					
ме		промежуточн					
стр	Кон	CPC	ой аттестации				
	Всего		ИЗ				
		Лекц	Лабораторные				
		ии занятия занятия тации					
6	108	30	30	-	-	48	зачет

1. Цели и задачи освоения дисциплины

Целью дисциплины является понимание внутренней логики, тенденции развития, осмысление и систематизацию представлений о неорганической химии с современной точки зрения.

Основными **задачами** решаемыми в процессе изучения курса, являются приобретение обучающимися четких представлений о теоретических основах неорганической химии, методах синтеза и исследования неорганических веществ и функциональных материалов, внутренней логике химической науки и тенденциях развития неорганической химии

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина «Химия» входит в базовой части образовательной программы направления <u>03.03.02 – Физика</u> (профили **Фундаментальная физика**, **Медицинская физика**)

Курс строится на базе знаний по химическим и физическим дисциплинам, а также высшей математике, объём которых определяется программами высшей школы.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

	Г	T		
Компетен-	Формулировка компетенции из			
ции	ФГОС: выпускник, освоивший	(показатели достижения заданного		
	программу бакалавриата, должен	уровня освоения компетенций)		
	обладать			
ОПК-1	способностью использовать в профессиональной деятельности базовые естественнонаучные знания, включая знания о предмете и объектах изучения, методах исследования, современных концепциях, достижениях и ограничениях естественных наук (прежде всего химии, биологии, экологии, наук о земле и человеке)	Знать: методы использования в профессиональной деятельности знания по химии, включая знания о предмете и объектах изучения, методах исследования, современных концепциях, достижениях химической науки Уметь: использовать в профессиональной деятельности знания по химии, включая знания о предмете и объектах изучения, методах исследования, современных концепциях, достижениях химической науки Владеть: навыками в профессиональной деятельности знания по химии, включая		
		знания о предмете и объектах изучения, методах исследования, современных		
		концепциях, достижениях химической		
		науки		

4. Объем, структура и содержание дисциплины 4.1. Объем дисциплины составляет **2** зачетные единицы, **72** академических часов.

4.2. Структура дисциплины

№ п/п	Разделы и темы дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			ую в и	Самостоятельная работа	Формы текущего контроля успеваемости (по неделям семестра)
		_		Лекции	Практические занятия	Лабораторн ые занятия	Контроль самост. раб.		Форма промежуточной аттестации (по семестрам)
]	Модуль 1. Введение. Ст	роени		_	дически цинамик		. Химич	еская свя	язь. Химическая
1.	Введение. Предмет и задачи химии. Основные законы химии.	6	I-II	2	инамик	2		3	Устный опрос
2.	Строение атома. Периодический закон Д.И. Менделеева.	6	II-III	2		3		5	Устный опрос, тестирование
3	Химическая связь.	6	IV-V	3		3		4	Устный опрос
4.	Основы химической термодинамики.	6	VI- VII	3		2		4	Опрос, коллоквиум
	Итого по модулю 1			10		10		16	
	Модуль 2. Кинетика хи	имиче	ских реаг		Раствор кции.	ы. Оки	слителн	ьно- восс	тановительные
5.	Кинетика и механизм химических реакций.	6	VII- VIII	2		4		6	Устный опрос
6.	Растворы неэлектролитов. Растворы электролитов.	6	IX	4		2		4	Устный опрос
7.	Окислительно- восстановительные реакции. Основы электрохимии.	6	X	4		4		6	Опрос, коллоквиум
	Итого по модулю 2			10		10		16	
	Модуль 3. Химия неметаллов и металлов								
8.	Общие свойства неметаллов.	6	XI- XII	3		3		6	Устный опрос
9.	Общие свойства металлов	6	XIII- XIV	3		3		6	Устный опрос, тестирование
10.	Комплексные соединения	6	XV- XVI	4		4		4	Опрос, коллоквиум
	Итого по модулю 3			10		10		16	
	Всего за семестр		108	30		30		48	Зачет

- 4.3. Содержание дисциплины, структурированное по темам, разделам и модулям.
 - 4.3.1. Содержание лекционных занятий по дисциплине

Модуль І

- **1. Введение**. Предмет и задачи химии. Основные понятия и законы химии. Химия как предмет естествознания. Роль химии в биологии и экологии. Основные стехиометрические законы. Закон эквивалентов. Определение эквивалентов. Закон Авогадро.
- **2.** Строение атома. Атомно-молекулярное учение. Волновая функция. Понятие о квантовых числах. Атомные орбитали, вид s-, p-, d- и f- атомных орбиталей. Порядок заполнения электронами атомных орбиталей.
- 3. Периодический закон и периодическая система элементов Д.И. Менделеева Электронное строение атома. Заполнение АО электронами (квантовые числа, принцип Паули, правило Хунда) Строение периодической системы элементов Д.И. Менделеева. Радиус атома, ионизационный потенциал, сродство к электрону, электроотрицательность; их изменение в пределах групп и периодов.
- **4. Химическая связь и строение молекул.** Характеристика химической связи: энергия, длина, полярность, валентный угол, кратность. Основные положения метода валентных связей. Гибридизация. Основные положения метода молекулярных орбиталей. Энергетические диаграммы двухатомных гомоядерных молекул. Типы химической связи: ионная, ковалентная, водородная, донорноакцепторная.
- **5. Основы термодинамики.** Первое начало термодинамики. Термохимия. Энергетические эффекты химических реакций. Энтальпия. Закон Гесса. Понятие об энтропии. Энергия Гиббса. Стандартное состояние вещества. Направление химических процессов.

Модуль 2

- 6. Химическая кинетика и химическое равновесие. Скорость химической реакции. Молекулярность и порядок реакции. Закон действия масс, константа скорости. Зависимость скорости от температуры (правило Вант Гоффа, уравнение Аррениуса). Понятие об энергии активации. Катализ. Обратимые и необратимые реакции. Константа равновесия. Принцип Ле Шателье.
- 7. Растворы. Общие свойства растворов. Классификация растворов. Растворение как физико-химический процесс. Роль сольватации. Способы выражения концентрации. Свойства растворов неэлектролитов. Растворы электролитов. Процесс электролитической диссоциации. Сильные слабые Активность ионов. И электролиты. Произведение растворимости. Ионное произведение воды. Водородный показатель. Гидролиз солей.
- 8. Окислительно-восстановительные процессы. Основы электрохимии. Равновесие металл-раствор электролита. Электродный потенциал. Гальванический элемент. Водородный электрод. Стандартные электродные потенциалы. Уравнение Нернста. Ряд напряжений. Электролиз расплавов и растворов солей. Электролиз, законы электролиза. Окислительно-восстановительные реакции. Классификация окислительно-восстановительных реакций Направление протекания окислительно-восстановительных реакций.

Модуль 3

9. Общий обзор химии неметаллов. Распространенность химических элементов на земле. Положение неметаллов в периодической таблице, особенности строения их

- атомов. Формы нахождения в природе, способы получения. Особенности физических и химических свойств неметаллов. Значение соединений углерода, азота и фосфора в происхождении растительного и животного мира. Биохимическая роль микроэлементов-неметаллов.
- **10. Общий обзор химии металлов**. Положение металлов в периодической таблице, особенности строения их атомов. Формы нахождения в природе, способы получения. Получение металлов высокой чистоты. Особенности физических и химических свойств металлов. Металлическая связь с позиций зонной теории. Понятие об интерметаллидных соединениях. Современные композиционные материалы.

4.3.2. Лабораторные работы

Модуль І

- 1. **Введение**. Предмет и задачи химии. Основные понятия и законы химии. Химия как предмет естествознания. Основные стехиометрические законы. Закон эквивалентов. Определение эквивалентов. Закон Авогадро.
- 2. **Строение атома**. Атомно-молекулярное учение. Волновая функция. Понятие о квантовых числах. Атомные орбитали, вид s-, p-, d- и f- атомных орбиталей. Порядок заполнения электронами атомных орбиталей.
- 3. **Периодический закон и периодическая система элементов Д.И. Менделеева** Электронное строение атома. Заполнение АО электронами (квантовые числа, принцип Паули, правило Хунда) Строение периодической системы элементов Д.И. Менделеева. Радиус атома, ионизационный потенциал, сродство к электрону, электроотрицательность; их изменение в пределах групп и периодов.
- 4. **Химическая связь и строение молекул**. Характеристика химической связи: энергия, длина, полярность, валентный угол, кратность. Основные положения метода валентных связей. Гибридизация. Основные положения метода молекулярных орбиталей. Энергетические диаграммы двухатомных гомоядерных молекул. Типы химической связи: ионная, ковалентная, водородная, донорноакцепторная.
- 5. **Основы термодинамики.** Первое начало термодинамики. Термохимия. Энергетические эффекты химических реакций. Энтальпия. Закон Гесса. Понятие об энтропии. Энергия Гиббса. Стандартное состояние вещества. Направление химических процессов.

Модуль 2

- 6. **Химическая кинетика и химическое равновесие**. Скорость химической реакции. Молекулярность и порядок реакции. Закон действия масс, константа скорости. Зависимость скорости от температуры (правило Вант Гоффа, уравнение Аррениуса). Понятие об энергии активации. Катализ. Обратимые и необратимые реакции. Константа равновесия. Принцип Ле Шателье.
- 7. Растворы. Общие свойства растворов. Классификация растворов. Растворение как физико-химический процесс. Роль сольватации. Способы выражения концентрации. Свойства растворов электролитов. неэлектролитов. Растворы Процесс электролитической диссоциации. Активность ионов. Сильные слабые И Произведение электролиты. растворимости. Ионное произведение воды. Водородный показатель. Гидролиз солей.
- 8. Окислительно-восстановительные процессы. Основы электрохимии. Равновесие металл-раствор электролита. Электродный потенциал. Гальванический элемент. Водородный электрод. Стандартные электродные потенциалы. Уравнение Нернста. Ряд напряжений. Электролиз расплавов и растворов солей. Электролиз, законы электролиза. Окислительно-восстановительные реакции. Классификация окислительно-восстановительных реакций Направление протекания окислительно-восстановительных реакций.

Модуль 3

- 9. Общий обзор химии неметаллов. Распространенность химических элементов на земле. Положение неметаллов в периодической таблице, особенности строения их атомов. Формы нахождения в природе, способы получения. Особенности физических и химических свойств неметаллов.
- 10. **Общий обзор химии металлов**. Положение металлов в периодической таблице, особенности строения их атомов. Формы нахождения в природе, способы получения. Получение металлов высокой чистоты. Особенности физических и химических свойств металлов. Металлическая связь с позиций зонной теории. Интерметаллидные соединения. Современные композиционные материалы.
- 11. Комплексные (координационные) соединения. Основные понятия координационной химии: центральный атом и его координационное число; лиганды; внутренняя и внешняя координационные сферы. Номенклатура и изомерия комплексных соединений. Теории строения комплексных соединений.

5. Образовательные технологии

В соответствии с требованиями ФГОС ВО реализация компетентностного подхода предусматривает широкое использование при проведении занятий по неорганической химии инновационных (объяснительно-иллюстративное обучение, предметно-ориентированное обучение, профессионально-ориентированное обучение, проектная методология обучения, организация самостоятельного обучения, интерактивные методы обучения) и традиционных (лекция-визуализация, лекция-презентация, компьютерные симуляции, лабораторная работа, самостоятельная работа) технологий обучения. Удельный вес занятий, проводимых в интерактивных формах составляет не менее 30 % аудиторных занятий. Предполагается встреча с ведущими учеными республики.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов имеет основную цель – обеспечить качество подготовки выпускаемых специалистов в соответствии с требованиями ФГОС ВО.

Формы и виды самостоятельной работы студентов по дисциплине устанавливаются следующие:

- проработка дополнительных тем, не вошедших в лекционный материал, но обязательных согласно учебной программе дисциплины;
- проработка пройденных лекционных материалов по конспекту лекций, учебникам и пособиям на основании вопросов, подготовленных преподавателем;
- подготовка к лабораторным занятиям;
- подготовка к промежуточному и рубежному контролю;
- подготовка научных докладов и творческих работ.

Контроль результатов самостоятельной работы осуществляется преподавателем в течение всего семестра в виде:

- устного опроса (фронтального и индивидуального);
- тестирования;
- проведения письменной (контрольной) работы;
- проведения коллоквиума;
- написания и обсуждения реферата (творческого задания) на определенную тему.

No	Вид самостоятельной работы	Вид контроля	Учебно-методическое обеспечение		
1	Теоретическая подготовка. Проработка учебного материала.	Устный опрос, тестирование	Лекции, рекомендованная литература, интернет ресурсы. См. разделы 4.3, 8-10 данного документа		
2	Подготовка к отчетам по лабораторным работам	Проверка выполнения расчетов, оформления работы в лабораторном журнале и	См. разделы 8-10 данного документа		

		проработки вопросов к текущей теме по	
		рекомендованной литературе	
3	Решение задач	Проверка задач, заданных на	См. разделы 8-10 данного
		дом, Решение у доски.	документа
4	Подготовка реферата	Прием реферата и оценка	См. разделы 7.3; 8-10 данного
		качества.	документа
5	Подготовка к коллоквиуму	Промежуточная аттестация в	См. разделы 4.3, 7.3; 8-10
		форме контрольной работы	данного документа
6	Подготовка к зачету	Устный опрос	См. разделы 7.3; 8-10 данного
			документа

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

освоения образовательной программы.								
Код	Наименование компе-	Знания, умения, навыки	Процедура освоения					
компе-	тенции по ФГОС ВО:							
тенции	выпускник, освоивший							
	программу бакалавриата,							
	должен обладать							
ОПК – 1	способностью	Знает: методы использования	Устный опрос,					
	использовать в	в профессиональной	письменный опрос,					
	профессиональной	деятельности	тестирование					
	деятельности базовые	знания по химии, включая						
	естественнонаучные	знания о предмете и объектах						
	знания, включая знания о	изучения, методах						
	предмете и объектах	исследования, современных						
	изучения, методах	концепциях, достижениях						
	исследования, современ-	химической науки						
	ных концепциях,	Умеет: использовать в	Устный опрос,					
	достижениях и	профессиональной	письменный опрос,					
	ограничениях	деятельности знания по	тестирование					
	естественных наук	химии, включая знания о						
	(прежде всего химии,	предмете и объектах изучения,						
	биологии, экологии, наук	методах исследования,						
	о земле и человеке)	современных концепциях,						
		достижениях химической						
		науки						
		Владеет: навыками в	Письменный опрос,					
		профессиональной	коллоквиум					
		деятельности знания по						
		химии, включая знания о						
		предмете и объектах изучения,						
		методах исследования,						
		современных						
		концепциях, достижениях						
		химической науки						

7.2. Типовые контрольные задания

7.2.1. Примерные контрольные задания для проведения текущего контроля.

Модуль 1

- 1. Представлений о строении атома. Волновая природа электрона. Волновая функция. Понятие о квантовых числах. *s-*, *p-*, *d-* и *f-*орбитали. Атомные орбитали, их энергии и граничные поверхности. Порядок заполнения электронами атомных орбиталей. Принцип Паули. Правила Хунда.
- 2. Химическая связь. Понятие о природе химической связи. Характеристики химической связи. Типы гибридизации атомных орбиталей. Основные понятия о методе молекулярных орбиталей (МО). Энергетические диаграммы двухатомных гомоядерных молекул, образованных элементами 1-го и 2-го периодов. Водородная связь
- 3. Периодический закон Д.И. Менделеева. Периодическая система элементов. Современная формулировка Периодического закона. Структура периодической системы. Периоды и группы. Коротко- и длиннопериодный варианты. Периодичность в изменении величин радиусов, энергии ионизации, сродства к электрону, электроотрицательности атомов.
- 4. Первое начало термодинамики. Термохимия. Энергетические эффекты химических реакций. Энтальпия. Закон Гесса. Понятие об энтропии. Энергия Гиббса. Стандартное состояние вещества. Направление химических процессов.

Модуль 2

- 5. Гидролиз солей. Осаждение труднорастворимых солей. Произведение растворимости.
- 6. Электрохимические свойства растворов. Двойной электрический слой, электроды, гальваническая ячейка. Электродный потенциал. Окислительно-восстановительные реакции и их направление. Ряд напряжений. Электролиз. Электрохимические источники энергии. Коррозия как электрохимический процесс.
- 7. Кинетика и механизм химических реакций. Скорость химической реакции, ее зависимость от природы и концентрации реагентов, температуры. Порядок и молекулярность реакции. Константа скорости и ее зависимость от температуры.

Модуль 3

8. Металлы и неметаллы. Положение элементов - металлов и неметаллов - в Периодической системе. Основные характеристики металлов и неметаллов, их различие по физическим и химическим свойствам и типам химической связи. Понятие об интерметаллидных соединениях. Современные композиционные материалы.

7.2.2. Контрольные вопросы для промежуточной аттестации (сдачи зачета)

- 1. Предмет и задачи химии. Основные задачи современной неорганической химии.
- 2. Химическая термодинамика, основные понятия. Первый закон термодинамики. Термохимия, закон Гесса. Расчеты тепловых эффектов реакций. Второй закон термодинамики. Понятие энтропии. Энергия Гиббса и Гельмгольца. Фазовые равновесия. Основные понятия: компонент, фаза, степень свободы. Правило фаз. Диаграммы состояния.
- 3. Гидролиз солей. Осаждение труднорастворимых солей. Произведение растворимости.
- 4. Электрохимические свойства растворов. Двойной электрический слой, электроды, гальваническая ячейка. Электродный потенциал. Окислительно-восстановительные реакции и их направление. Ряд напряжений. Электролиз. Электрохимические источники энергии. Коррозия как электрохимический процесс.

- 5. Кинетика и механизм химических реакций. Скорость химической реакции, ее зависимость от природы и концентрации реагентов, температуры. Порядок и молекулярность реакции. Константа скорости и ее зависимость от температуры.
- 6. Основы термодинамики. Первое начало термодинамики. Термохимия. Энергетические эффекты химических реакций. Энтальпия. Закон Гесса. Понятие об энтропии. Энергия Гиббса. Стандартное состояние вещества. Направление химических процессов.
- 7. Представлений о строении атома. Волновая природа электрона. Волновая функция. Понятие о квантовых числах. *s-*, *p-*, *d-* и *f-*орбитали. Атомные орбитали, их энергии и граничные поверхности. Порядок заполнения электронами атомных орбиталей. Принцип Паули. Правила Хунда.
- 8. Химическая связь. Понятие о природе химической связи. Характеристики химической связи. Типы гибридизации атомных орбиталей. Основные понятия о методе молекулярных орбиталей (МО). Энергетические диаграммы двухатомных гомоядерных молекул, образованных элементами 1-го и 2-го периодов. Водородная связь.
- 9. Периодический закон Д.И. Менделеева. Периодическая система элементов. Современная формулировка Периодического закона. Структура периодической системы. Периоды и группы. Коротко- и длиннопериодный варианты. Периодичность в изменении величин радиусов, энергии ионизации, сродства к электрону, электроотрицательности атомов.
- 10. Металлы и неметаллы. Положение элементов металлов и неметаллов в Периодической системе. Основные характеристики металлов и неметаллов, их различие по физическим и химическим свойствам и типам химической связи. Понятие об интерметаллидных соединениях. Современные композиционные материалы.
- 11. Комплексные (координационные) соединения. Основные понятия координационной химии: центральный атом и его координационное число; лиганды; внутренняя и внешняя координационные сферы. Номенклатура и изомерия комплексных соединений. Теории строения комплексных соединений.

7.3. Описание показателей и критериев оценивания компетенций, описание шкал оценивания.

Формы контроля следующие: текущий контроль, рубежный контроль по модулю и итоговый контроль.

Текущий контроль успеваемости осуществляется непрерывно, на протяжении всего курса. Прежде всего, это устный опрос по ходу лабораторных занятий, выполняемый для оперативной активизации внимания студентов и оценки их уровня восприятия. Результаты устного опроса учитываются при выборе индивидуальных задач для решения.

Промежуточный контроль проводится в форме контрольной работы или коллоквиума.

Итоговый контроль проводится в форме зачета.

Оценка каждого вида деятельности проводится следующим образом:

- 1. Результаты всех видов учебной деятельности студентов оцениваются по 100 балльной шкале.
- 2. Средний балл за текущий контроль (ТК) определяется как средняя арифметическая баллов, полученных студентом за аудиторную и самостоятельную работу.
- 3. Итоговый модульный балл за текущий контроль определяется как произведение среднего балла за ТК и коэффициента весомости ТК, равный 30 %, или 0,3.
- 4. Средний балл за различные формы проведения промежуточного контроля (ПК), таких как тестирования, письменные работы (коллоквиумы), доклады, рефераты и др., определяется как их средняя величина.
- 5. Итоговый балл за ПК определяется как произведение среднего балла за ПК и коэффициента весомости ПК, равный 70 %, или 0,7.

6. Итоговый балл за модуль определяется как сумма баллов за ТК и ПК.

Итоговый контроль (зачет) проводится в виде тестирования — 100 баллов. Весомость итогового контроля в оценке знаний студента составляет 50 %, а среднего балла по всем модулям также — 50 %. Шкала диапазона для перевода рейтингового балла с учетом весомости различных видов контроля в «5» — бальную систему следующая: от 51 до 100 баллов — зачет, менее 51 балла — незачет. Шкала диапазона для перевода рейтингового балла с учетом весомости различных видов контроля в «5» — бальную систему следующая: от 51 до 65 баллов — «удовлетворительно»; от 66 до 85 баллов — «хорошо»; от 86 до 100 баллов — «отлично»

7.4. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля -70% и промежуточного контроля -30%.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- выполнение лабораторных заданий баллов,
- выполнение домашних (аудиторных) контрольных работ 25 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос 25 баллов,
- письменная контрольная работа 20 баллов,
- тестирование 25 баллов.

Зачет сдают в устной или письменно-устной форме в виде ответов на задания; если понадобится, то задаются дополнительно контрольные вопросы (при необходимости уточнить оценку).

Оценка «отлично» ставится за уверенное владение материалом курса и демонстрацию способности самостоятельно анализировать вопросы применения и развития современной неорганической химии.

Оценка «хорошо» ставится при полном выполнении требований к прохождению курса и умении ориентироваться в изученном материале.

Оценка «удовлетворительно» ставится при достаточном выполнении требований к прохождению курса и владении конкретными знаниями по программе курса.

Оценка «неудовлетворительно» ставится, если требования к прохождению курса не выполнены и студент не может показать владение материалом.

Если хотя бы одна из компетенций не сформирована, то положительная оценка по дисциплине не может быть выставлена.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины:

а) основная литература:

- 1. Суворов А.В., Никольский А.Б. Общая химия. Учеб. для ВУЗов. СПб.: Химиздат, 2001
- 2. Н.С. Ахметов Общая и неорганическая химия: М.: Высш. шк., 2001.Глинка Н.Л. Задачи и упражнения по общей химии. СПб.: Химия, 2000
- 3. Программа практикума по неорганической химии и контрольные задания для самостоятельной работы студентов /Под ред. У.Г. Магомедбекова. Махачкала: ИПЦ ДГУ, 2010
- 4. Семенов, И.Н. Химия [Электронный ресурс]: учебник для вузов / И.Н. Семенов, И.Л. Перфилова. Электрон. тестовые данные. СПб. : ХИМИЗДАТ, 2016. —

б) дополнительная литература:

- 1. Дикерсон Р., Грей Г., Хейт Дж. Основные законы химии. М.: Мир, 1982. Т. 1, 2.
- 2. Некрасов Б.В. Основы общей химии. М.: Химия, 1972-1973. Т. 1,2.
- 3. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. 3-е изд. М.: Химия. 1994
- 4. Угай Я.А. Общая и неорганическая химия. М.: Высшая школа, 2001
- 5. Ганкин В. Ю., Ганкин Ю. В. Общая химия. XXI век. 2-уровневое учебное пособие СПб: Химиздат, 2011. 328 с. Режим доступа: http://www.1variant.ru/content/uchebniki/ximiya/155.pdf

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

Электронные учебные ресурсы:

- 1. eLIBRARY.RU [Электронный ресурс]: электронная библиотека / Науч. электрон.б-ка. Москва, 1999. Режим доступа: http://elibrary.ru/defaultx.asp (дата обращения: 20.05.2018). Яз. рус., англ.
- 2. Электронный каталог НБ ДГУ [Электронный ресурс]: база данных содержит сведения о всех видах лит, поступающих в фонд НБ ДГУ/Дагестанский гос. ун-т. Махачкала, 2010 Режим доступа: http://elib.dgu.ru, свободный (дата обращения: 22.05.2018)
- 3. Moodle [Электронный ресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. Махачкала, г. Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/ (дата обращения: 18.05.2018).
- 4. https://ibooks.ru/
- 5. www.book.ru/
- 6. Химические серверы ChemWeb, ChemExpress Online, ChemNet.com http://www.Himhelp.ru
- 7. Каталог образовательных интернет-ресурсов http://www.edu.ru/

10. Методические указания для обучающихся по освоению программы

Учебный материал по дисциплине дается на лекциях, практических занятиях и прорабатывается в ходе самостоятельной работы.

На лекциях систематически и последовательно излагается материал теоретического характера. Основное внимание при этом уделяется рассмотрению основных (опорных) понятий и теоретических основ молекулярной спектроскопии. При подготовки к лекции целесообразно прочитать материал лекции по любому из рекомендованных в списке литературы учебников. Это существенно помогает продуктивно воспринимать материал лекции и хорошо его законспектировать. После лекции студентам рекомендуется внимательно проработать написанный конспект лекции, непонятые места попытаться уяснить с помощью учебников. Если обучающиеся не могут самостоятельно найти ответы на возникшие вопросы, можно обратиться к лектору или преподавателю на практических занятиях.

Практические занятия позволяют развивать у студентов творческое теоретическое мышление, умение самостоятельно изучать литературу, анализировать практику, и они имеют исключительно важное значение в развитии самостоятельного мышления. В процессе выполнения практических работ для систематизации основных положений рекомендуется составление конспектов. Необходимо обратить внимание обучающихся на выполнение предусмотренных программой заданий в соответствии с тематическим планом, выделение наиболее сложных и проблемных вопросов по изучаемой теме,

получение разъяснений и рекомендаций по данным вопросам от преподавателей, проведение самоконтроля путем ответов на вопросы текущего контроля знаний, решения представленных в учебно-методических материалах кафедры задач, тестов по отдельным вопросам изучаемой темы.

Самостоятельная работа студентов способствует более глубокому усвоению изучаемого курса, формированию навыков исследовательской работы и ориентированию студентов на умение применять теоретические знания на практике. Поэтому только постоянная, систематическая самостоятельная работа обучающихся будет способствовать нормальному усвоению знаний. Формы и виды самостоятельной работы студентов, а также формы их контроля представлены в разделе 6. Результаты самостоятельной работы студентов учитываются при аттестации студента (при сдаче зачета).

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

При проведении занятий используются:

а) технические средства:

компьютерная техника и средства связи (проектор, экран, видеокамера), проводится компьютерное тестирование, демонстрация мультимедийных материалов, информационные справочные системы, электронные версии учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренных учебной рабочей программой.

б) программные системы:

операционные системы Microsoft Windows XP, Microsoft Vista;

поисковые системы Yandex, Google, Rambler, Yahoo;

специализированное программное обеспечение СДО <u>Moodle, SunRAV BookOffice</u> Pro, SunRAV TestOfficePro;

программное обеспечение по химии http://www/mdli.com;

химическое программное обеспечение http://www.acdlabs.com/download/;

программное обеспечение по химии. Cambridge Soft (Chem Office);

модели молекул <u>TORVS Research Team: Molecular Models; визуализация молекул</u> (более 175000 трехмерных молекулярных моделей с возможностью поиска) <u>online</u> <u>GIF/PNG creator for chemical structures;</u>

рисование лабораторного оборудования The Glassware Gallery

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

В соответствии с требованиями ФГОС ВО кафедра имеет специально оборудованную учебные аудитории для проведения лекционных и практических занятий, помещения для лабораторных работ на группу студентов из 12 человек и вспомогательное помещение для хранения химических реактивов и профилактического обслуживания учебного и учебно-научного оборудования.

Помещения для лекционных и практических занятий укомплектованы комплектами электропитания ЩЭ (220 В, 2 кВт, в комплекте с УЗО), специализированной мебелью и оргсредствами (доска аудиторная для написания мелом и фломастером, стойка-кафедра, стол лектора, стул-кресло, столы аудиторные двухместные (1 на каждых двух студентов), стул аудиторный (1 на каждого студента), а также техническими средствами обучения (экран настенный с электроприводом и дистанционным управлением, мультимедиа проектор с ноутбуком).

Лабораторные занятия проводятся в специально оборудованных лабораториях с применением необходимых средств обучения (лабораторного оборудования, образцов, нормативных и технических документов и т.п.). Помещения лабораторных практикумов

укомплектованы специальной учебно-лабораторной мебелью (в том числе столами с химически стойкими покрытиями), учебно-научным лабораторным оборудованием, измерительными приборами и химической посудой, в полной мере обеспечивающими выполнение требований программы по неорганической химии. Материально-технические средства для проведения лабораторного практикума по дисциплине неорганическая химия включает в себя: специальное оборудование (комплект электропитания ЩЭ, водоснабжение), лабораторное оборудование (лабораторные весы типа ВЛЭ 250 и ВЛЭ 1100, кондуктометр, термометры, рН-метры, печи трубчатая и муфельная, сушильный шкаф, устройство для сушки посуды, дистиллятор, очки защитные, колбонагреватели, штативы лабораторные, штативы для пробирок), Лабораторная посуда (Стаканы (100, 250 и 500 мл), колбы конические (100 мл), колбы круглодонные (250 мл) колбы плоскодонные (100, 250 и 500 мл), колбы Вюрца (250 и 100 мл), цилиндры мерные (100, 25 и 50 мл), воронки капельные, химические, воронки для хлора, воронки Мюнке, промывалки, Uобразные трубки, реакционные трубки, фарфоровые чашки, тигли фарфоровые, холодильники прямой, обратный, воронки лабораторные, дефлегматоры), специальная мебель и оргсредства (доска аудиторная для написания мелом и фломастером, мультимедиа проектор (переносной) с ноутбуком, экран, стол преподавателя, стул-кресло преподавателя, столы лабораторные прямоугольного профиля с твердым химическим и термически стойким покрытием, табуреты, вытяжные шкафы лабораторные, мойка).

При проведении занятий используется учебное и лабораторное оборудование: Атомно-абсорбционный спектрометр, Contr AA-700, AnalytikJena, Германия; Спектрофотометр UV-3600 с интегрирующей сферой LISR-3100, UV-3600, Япония; Многоцелевой экспериментальный масс-спектрометрический комплекс ЭМК, Россия; Рентген-флуоресцентный спектрометр EDX-800 HS, Япония; ИК-Фурье спектрометр ИнфраЛЮМ ФТ-02, Россия; Спектрофлуориметр F-700, Япония; Спектрофотометр, SPECORD 210 PlusBU, AnalytikJena, Германия; Спектрометрический комплекс МДР-41 в комплекте с азотным проточным криостатом ОрtСryo198, Россия; Рентгеновский дифрактометр, EmpyreanSeries 2 Фирма Panalytical (Голландия); Дифференциальный сканирующий калориметр, NETZSCH STA 409 PC/PG, Германия;