

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ФИЗИЧЕСКИЕ ОСНОВЫ НАНОЭЛЕКТРОНИКИ

Кафедра инженерной физики

Образовательная программа **11.04.04- Электроника и наноэлектроника**

Программа магистратуры **Материалы и технологии электроники и наноэлектроники**

> Уровень высшего образования **Магистратура**

> > Форма обучения:

Очная

Статус дисциплины: Вариативная Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС3++ ВО по направлению подготовки 11.04.04- Электроника и наноэлектроника, программа магистратуры: Материалы и технологии электроники и наноэлектроники – Пприказ Минобрнауки России от 05.04.2017 №301.

Разработчик (и): кафедра инженерной физики, Садыков С.А., д.ф.м.н., профессор

Рабочая программа дисциплины одобрена:

на заседании кафедры инженерной физики от «3» _сентября_2019г., протокол № 1

Зав. кафедрой ____ Садыков С.А.

на заседании Методической комиссии физического факультета от « 20» сентября 2019г., протокол N1.

Председатель _____ Мурлиева Ж.Х.

Рабочая программа дисциплины согласована с учебно-методическим управлением

____ Нач. УМУ _____Гасангаджиева А.Г.

СОДЕРЖАНИЕ

Аннотация рабочей программы

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре ОПОП магистратуры
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины
- 4. Объем, структура и содержание дисциплины
- 5. Образовательные технологии
- 6. Учебно-методическое обеспечение самостоятельной работы студентов
- 7. Фонд оценочных средств для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины
- 7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы
- 7.2. Типовые контрольные задания
- 7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.
- 8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины
- 9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
- 10. Методические указания для обучающихся по освоению дисциплины
- 11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем
- 12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аннотация рабочей программы дисциплины

Дисциплина «Физические основы наноэлектроники» входит в вариативную часть образовательной программы магистратуры по направлению (специальности) 11.04.04 — Электроника и наноэлектроника. Дисциплина реализуется на физическом факультете кафедрой инженерной физики.

Содержание дисциплины охватывает вопросы физики систем пониженной размерности, такие как особенности энергетического спектра и переноса носителей заряда в квантово-размерных структурах, магнитные квантовые эффекты, основы одноэлектроники и спинтроники, фотоники и др.

Дисциплина нацелена на формирование следующих компетенций выпускника: **профессиональных**: ПК-1 (ПК-1.1), ПК- 2 (ПК-2.1), ПК-3(ПК-3.2).

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия, самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме: индивидуальное собеседование, тестирование, презентации рефератов, промежуточный контроль в форме дифференцированного зачета.

Объем дисциплины 4 зачетных единиц, в том числе в академических часах по видам учебных занятий.

			Форма проме-						
			жуточной атте-						
Семестр		Кон	тактная	работа обуч	нающихся с	препо	давателем	CPC,	стации (зачет,
Ме	o				из них			в том	дифференциро-
Ce	всег	всего	Лек-	Лабора-	Практи-	КСР	консуль-	числе	ванный зачет,
	B	BC6	ции	торные	ческие		тации	экза-	экзамен
				занятия	занятия			мен	
9	144	80	14	18	16			96	диф. зачет

1. Цели освоения дисциплины

Цель освоения дисциплины - изучение физики систем пониженной размерности, лежащих в основе работы современных приборов и устройств наноэлектроники и перспектив использования этих систем в высоких технологиях.

Задачи дисциплины - дать представления об особенностях физических свойств систем пониженной размерности, ознакомление с современными достижениями и перспективами применения наноструктур в наноэлектронике.

В результате изучения курса магистры должны:

- владеть базовыми теоретическими знаниями в области физики низкоразмерных систем и связанные с ними эффекты.
- понимать современные тенденции в развитии физики полупроводников наноструктур, приборов и устройств на их основе.
- уметь использовать специализированные знания физики низкоразмерных систем для освоения профильных физических дисциплин и применять их при решении прикладных задач наноэлектроники.
- быть готовыми к самостоятельному освоению и грамотному использованию результатов новых экспериментальных и теоретических исследований в области физики наноструктур, к самостоятельному выбору методов и объектов исследования.

Основные разделы программы курса: энергетический спектр частиц в системах пониженной размерности, транспортные явления, основы одноэлектроники, спинтроники, нанофотоники, органической наноэлектроники.

2. Место дисциплины в структуре ОПОП магистратуры

Дисциплина «Физические основы наноэлектроники» в структуре ОПОП ВО находится в цикле основных дисциплин (вариативная часть). Для освоения дисциплины требуются знания и умения, приобретенные обучающимися в результате освоения ряда предшествующих дисциплин (разделов дисциплин), таких как:

- Квантовая механика и статфизика
- Физика конденсированного сосотояния
- Наноструктурные материалы
- Технология наноматериалов и структур
- Новые направления физического материаловедения,

а также знание английского языка для чтения научной литературы, необходимой для подготовки докладов на семинарах и в области математики.

Дисциплина «Физические основы наноэлектроники» позволяет дать понимание физических принципов работы приборов на основе наноструктур, использующихся (или перспективных для использования) в современной наноэлектронике. Магистры должны обладать навыками, необходимыми для решения конкретных физических проблем с использованием приёмов и методов математической физики; для описания разнообразных физических процессов и состояний в структурах пониженной размерностих.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения)

Компетенции	Формулировка компе-	Планируемые результаты обучения (показатели
	тенции из ФГОС ВО	достижения заданного уровня освоения компетен-
		ций)
ПК-1.	ПК-1.1.	Знает:
Способен разра-	Способен проводить	• средства поиска информации в информацион-

ботать и внедрить современные технологические процессы и программы выпуска изделий микро- и наноэлектроники

анализ и выбор перспективных материалов, технологических процессов и оборудования производства изделий микро- и наноэлектроники

- ных сетях;
- мировые достижения в области наноэлектроники;
- характеристики продукции лидеров в области производства техники в данной области;
- основные подходы к описанию реальных физических процессов и явлений в наноструктурах;
- материаловедческие проблемы наноэлектроники;
- инновационные материалы, перспективы их применения в связи с развитием многоуровневой многослойных наноструктур;
- основные закономерности формирования свойств наноразмерных структур на основе квантовой теории;
- квантоворазмерные эффекты и физические свойства систем пониженной размерности;
- структура существующих производственного и технологического процессов производства изделий наноэлектроники;

Умеет:

- искать информацию в различных печатных и электронных источниках;
- систематизировать найденную информацию;
- выявлять тенденции развития научных исследований и разработок, связанных с перспективными материалами, технологическими процессами и оборудованием;
- определять существенные для выпускаемых изделий параметры и характеристики перспективных материалов, технологических процессов и оборудования;
- определять критерии сравнения существующих и перспективных материалов, технологических процессов и оборудования;
- использовать специализированные знания в области физики систем пониженной размерности для обеспечения технологической реализации материалов и элементов электронной техники в приборах и устройствах наноэлектроники.
- оценивать пределы применимости классического подхода, роль и важность квантовых эффектов при описании физических процессов в элементах наноэлектроники;

Владеет:

- навыками сбора и систематизации информации о перспективных материалах, технологических процессах и оборудовании, используемых в производстве изделий наноэлектроники;
- навыками анализа полученной информации с целью улучшения качественных и количественных показателей выпускаемых изделий наноэлектроники;

- навыками оценки направлений научного развития исследований и разработок, связанных с перспективными наноматериалами, технологическими процессами и оборудованием;
- навыками проводить сравнительный анализ характеристик и параметров существующих наноматериалов;
- основами теоретических знаний для решения практических задач как в области физики полупроводников и диэлектриков, так и на междисциплинарных границах физики наноэлектроники;
- навыками оценки технологической и экономической целесообразности внедрения новых материалов, технологических процессов и оборудования в существующий цикл производства изделий наноэлектроники.

ПК-2.

Способен разработать, контролировать и корректировать технологические маршруты и технологические процессы изготовления изделий "система в корпусе"

ПК-2.1.

Способен согласовать техническое задание на технологический маршрут изготовления изделий "система в корпусе"

Знает:

- технико-экономические и прогнозные исследования в области технологии производства изделий "система в корпусе";
- эксплуатационные и ресурсные характеристики основных материалов, используемых для изготовления изделий "система в корпусе":
- технологии изготовления изделий "система в корпусе";
- технический английский язык в области микро- и наноэлектроники;

Умеет:

- оставлять техническое задание на разработку технологического маршрута на изготовление изделий "система в корпусе";
- согласовывать техническое задание на разработку технологического маршрута на изготовление изделий "система в корпусе";
- внедрять прикладное программное обеспечение для разработки технической и технологической документации по технологии изготовления изделий "система в корпусе".

Владеет:

- навыками анализа нормативно-технической и технико-экономической документации по технологии изготовления изделий "система в корпусе";
- навыками определения технического уровня проектируемого технологического маршрута на изготовление изделий "система в корпусе";
- навыками корректировки технического задания на разработку технологического маршрута на изготовление изделий "система в корпусе";
- навыками согласования и утверждение технического задания на разработку технологического маршрута на изготовление изделий "система в корпусе".

ПК-3.	ПК-3.2.	Знает:
Способен руково- дить подразделе- ниями по измере- ниям параметров и модификации свойств нанома- териалов и нано- структур	Способен согласовать и утверждать технические задания на модернизацию и внедрение новых методов и оборудования для измерений параметров и модификации свойств наноматериалов и наноструктур	 углубленные знания о структуре, физико-химических свойствах, конструкции и назначении модифицируемых наноматериалов и наноструктур; основные методы измерений параметров и модификации свойств наноматериалов и наноструктур; технический английский язык в области наноматериалов и нанотехнологий; Умеет: оценивать технические и экономические риски при выборе методов и оборудования для измерения параметров и модификации свойств наноматериалов и наноструктур; анализировать и обрабатывать результаты измерений параметров и модификации свойств наноматериалов и наноструктур на основе теоретических представлений в области физики систем пониженной размерности; оценивать временные затраты на стандартные и нестандартные методы измерения параметров и модификации свойств наноструктур;
		 Владеет: навыками анализа планов перспективного развития предприятия в области измерения параметров и модификации свойств наноматериалов и наноструктур; навыками оценки рисков внедрения новых методов и оборудования измерения параметров и модификации свойств наноматериалов и наноструктур; основными методами измерений параметров и модификации свойств наноматериалов и наноструктур; навыками анализа и обработки результатов измерений параметров и модификации свойств наноматериалов и наноструктур на основе теоретических представлений в области физики квантоворазмерных систем.

- **4. Объем, структура и содержание дисциплины.** 4.1. Объем дисциплины составляет **4** зачетных единиц, **144** академических часа.
- 4.2. Структура дисциплины.

№ п/п	Разделы и темы дисциплины	Семестр	Неделя се-	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)	Самостоя- тельная	Формы текущего контроля успева- емости (по неде- лям семестра)
----------	------------------------------	---------	------------	--	----------------------	--

			Лекции	Практические Занятия	лаборатор- ные занятия	Контроль самост. раб.		Форма промежу- точной аттестации (по семестрам)
1	I/	9	1	МОДУ Л	Ib 1.		10	(П2) (С)
1	Квантовые поведение электронов в структурах пониженной размерности.	9	4	8			10	(Д3), (С)
2	Транспортные явления.	9	2	6			12	(ДЗ), (С)
3	Области пространственного заряда	9	2	4			10	(Д3), (С)
	Итого по модулю 1:		8	18			32	
				Модул	ть 2			
4	Магнитные кванто- вые эффекты.	9	2	6			10	(Д3), (С)
5	Основы одноэлектроники и спинтроники.	9	2	6			10	(Д3), (С)
6	Нанофотоника.		2	4			12	(Д3), (С)
	Итого по модулю 2:		6	16			96	
	ИТОГО: 144		14	16			96	

4.3. Содержание дисциплины, структурированное по темам (разделам). Модуль 1

1. Квантовые поведение электронов в структурах пониженной размерности.

Введение. Квантовое ограничение. Особенности энергетического спектра частиц в системах пониженной размерности. Размерное квантование электронных состояний в квантовых ямах, проволоках, точках. Изолированные квантовые ямы, нити, точки. Свободный одномерный и двумерный электронный газ. Плотность состояний. Квантовые структуры с одномерным электронным газом. Квантовые структуры с двумерным электронным газом. Квантовые структуры с нульмерным электронным газом.

2. Транспортные явления.

Частица в трехмерной прямоугольной потенциальной яме. Движение электронов над ямами и барьерами. Пролет электрона над потенциальным барьером.

Стационарная дрейфовая скорость. Баллистический транспорт в полупроводникавх и субмикронных структурах. Подвижность электронов в системах с селективным легированием. Особенности электрон-фононного взаимодействия в системах пониженной размерности.

Особенности переноса в квантовых проволоках. Осцилляции дрейфовой скорости электронов.

Модуль 2

3. Области пространственного заряда.

Разновидности ОПЗ. Квантование энергии электронов в ОПЗ. Возникновение ОПЗ в инверсионных слоях кремния. Два типа подзон энергетического квантования в кремнии. Экранирование заряда в ОПЗ. Экранирование заряда в квазидвумерных системах. Экранирование заряда в квантовых проволоках.

4. Магнитные квантовые эффекты.

Влияние магнитного поля на плотность состояний. Влияние магнитного поля на квантование энергии. Квантовый эффект Холла в квантовых ямах. Эффект Аронова-Бома. Эффект Шубникова-де Гааза.

Модуль 3

5. Основы одноэлектроники и спинтроники.

Одноэлектронный транспорт. Квантово-размерный туннельный эффект. Кулоновская блокада.

Спин электрона. Приборы спинтроники.

6. Нанофотоника.

Приборы нанофотоники: светодиоды, лазеры с квантовыми ямами и точками, фотоприемники на квантовых ямах Перспективные материалы и устройства.

Фотонные кристаллы.

4.3.1. Содержание лекционных занятий

мо- дуль	Содержание темы
1.	<u>Лекция 1.</u> Квантовые поведение электронов в структурах пониженной размерности. Пространственные масштабы наноэлектроники. Квантовое ограничение. Особенности энергетического спектра частиц в системах пониженной размерности. Размерное квантование электронных состояний в квантовых ямах, проволоках, точках. Изолированные квантовые ямы, нити, точки. Свободный одномерный и двумерный электронный газ.
2	<u>Лекция 2.</u> Квантовые поведение электронов в структурах пониженной размерности. Плотность состояний. Квантовые структуры с одномерным электронным газом. Квантовые структуры с двумерным электронным газом. Квантовые структуры с нульмерным электронным газом.
3.	<u>Лекция 3.</u> Транспортные явления. Стационарная дрейфовая скорость. Баллистический транспорт в полупроводникавх и субмикронных структурах. Подвижность электронов в системах с селективным легированием. Особенности электрон-фононного взаимодействия в системах пониженной размерности.
4.	<u>Лекция 4.</u> Области пространственного заряда. Разновидности ОПЗ. Квантование энергии электронов в ОПЗ. Возникновение ОПЗ в инверсионных слоях кремния. Два типа подзон энергетического квантования в кремнии. Экранирование заряда в ОПЗ. Экранирование заряда в квазидвумерных системах. Экранирование заряда в квантовых проволоках.

5.	<u>Лекция 5.</u> Магнитные квантовые эффекты. Влияние магнитного поля на плотность состояний. Влияние магнитного поля на квантование энергии. Квантовый эффект Холла в квантовых ямах. Эффект Аронова-Бома. Эффект Шубникова-де Гааза.
6	<u>Лекция 6.</u> Основы одноэлектроники и спинтроники. Одноэлектронный транспорт. Квантово-размерный туннельный эффект. Кулоновская блокада. Спин электрона. Приборы спинтроники.
7	<u>Лекция 7.</u> Нанофотоника. Приборы нанофотоники: светодиоды, лазеры с квантовыми ямами и точками, фотоприемники на квантовых ямах Перспективные материалы и устройства.

4.3.2. Темы практических занятий

4.3.2. 10	емы практических занятий
мо-	Содержание темы
дуль	
1.	Квантовые поведение электронов в структурах пониженной размерности.
1.	1. Пространственные масштабы наноэлектроники. Квантовое ограни-
	чение. Особенности энергетического спектра частиц в системах пониженной размерности2 ч.
	2. Размерное квантование электронных состояний в квантовых ямах,
	проволоках, точках. Изолированные квантовые ямы, нити, точки. Свободный одномерный и двумерный электронный газ. – 2 ч.
	3. Плотность состояний. Плотность дискретного и непрерывнеого
	спектра двумерной системы. Квантовые структуры с двумерным
	электронным газом. -2 ч.
	4. Квантовые структуры с одномерным электронным газом. Квантовые
	структуры с нульмерным электронным газом. – 2 ч.
2	Транспортные явления.
2	1. Частица в трехмерной прямоугольной потенциальной яме.
	Движение электронов над ямами и барьерами. Пролет электрона над
	потенциальным барьером. – 2 ч.
	2. Стационарная дрейфовая скорость. Баллистический транспорт в по-
	лупроводникавх и субмикронных структурах. Подвижность элек-
	тронов в системах с селективным легированием. – 2 ч.
	3. Особенности электрон-фононного взаимодействия в системах по-
	ниженной размерности. Особенности переноса в квантовых прово-
	локах. Осцилляции дрейфовой скорости электронов2 ч.
3.	Области пространственного заряда.
	1. Два типа подзон энергетического квантования в кремнии. Экрани-
	рование заряда в ОПЗ. Экранирование заряда в квазидвумерных системах. Экранирование заряда в квантовых проволоках2 ч.
	2. Баллистический транспорт в полупроводникавх и субмикронных
	структурах. Подвижность электронов в системах с селективным ле-
	гированием. Особенности электрон-фононного взаимодействия в
	системах пониженной размерности. – 2 ч.
	1 Choronax noninxemion passiephoeth. 2 1.

4.	Магнитные квантовые эффекты.
'.	1. Влияние магнитного поля на плотность состояний. Влияние
	магнитного поля на квантование энергии. Уровни Ландау. – 2 ч.
	2. Квантовый эффект Холла в квантовых ямах. Дробный квантовыйц
	эффект Холла2 ч.
	3. Эффект Аронова-Бома. Эффект Шубникова-де Гааза. – 2 ч.
5.	Основы одноэлектроники и спинтроники.
٥.	1. Одноэлектронный транспорт. Квантово-размерный туннельный
	эффект. Кулоновская блокада. – 2 ч.
	2. Спин электрона. Спиновые эффекты. Спиновая инжекция. Эффект
	гигантского маенитосопротивления. Эффект колоссального магне-
	тосопротивления. – 2 ч.
	3. Приборы спинтроники – 2 ч.
6	Нанофотоника.
	1. Приборы нанофотоники: светодиоды, лазеры с квантовыми ямами и
	точками, фотоприемники на квантовых ямах Перспективные мате-
	риалы и устройства. – 2ч.
	2. Фотонные кристаллы. – 2 ч.

4.3.3. Темы самостоятельной работы

Тема 1. **Квантовые поведение электронов в структурах пониженной размерности.** Введение. Основные понятия наномира. Базовые термины и понятия. Основные классы наноразмерных систем. Место наноразмерных объектов в окружающем нас мире. Определение понятий: нанотехнология, наноматериалы, наносистемные устройства, наноструктура. Нанообъекты. Критерии определения наноматериалов: критический размер и функциональные свойства. Квантовые наноструктуры различной размерности: 0D-, 1D-, 2D-структуры. Квантовые точки. Основные типы наноразмерных систем. Углеродные наноструктуры (фуллерены и нанотрубки). Неуглеродные наноструктуры. Нанокомпозиты и наножидкости. Степень интеграции и перспективы нанотехнологий.

Тема 2. Транспортные явления.

Частица в трехмерной прямоугольной потенциальной яме. Движение электронов над ямами и барьерами. Пролет электрона над потенциальным барьером. Стационарная дрейфовая скорость. Баллистический транспорт в полупроводникавх и субмикронных структурах. Подвижность электронов в системах с селективным легированием. Особенности электрон-фононного взаимодействия в системах пониженной размерности. Особенности переноса в квантовых проволоках. Осцилляции дрейфовой скорости электронов.

Тема 3. Области пространственного заряда.

Два типа подзон энергетического квантования в кремнии. Экранирование заряда в ОПЗ. Экранирование заряда в квазидвумерных системах. Экранирование заряда в квантовых проволоках. Баллистический транспорт в полупроводникавх и субмикронных структурах. Подвижность электронов в системах с селективным легированием. Особенности электронфононного взаимодействия в системах пониженной размерности.

Тема 4. Магнитные квантовые эффекты. Влияние магнитного поля на плотность состояний. Влияние магнитного поля на квантование энергии. Квантовый эффект Холла в квантовых ямах. Эффект Аронова-Бома. Эффект Шубникова-де Гааза.

Тема 5. Основы одноэлектроники и спинтроники. Одноэлектронный транспорт. Одноэлектронные устройства. Квантово-размерный туннельный эффект. Кулоновская блокада. . Реализация одноэлектронного транзистора в полупроводниковой, углеродной, молекулярной электронике. Спин электрона. Приборы спинтроники.

Тема 6. Нанофотоника. Приборы нанофотоники: светодиоды, лазеры с квантовыми ямами и точками, фотоприемники на квантовых ямах Перспективные материалы и устройства. Фотонные кристаллы.

5. Образовательные технологии

Основными видами образовательных технологий с применением, как правило, компьютерных и технических средств, учебного и научного оборудования являются:

- Информационные технологии.
- Проблемное обучение.
- Индивидуальное обучение.
- Междисциплинарное обучение.
- Опережающая самостоятельная работа.

Для достижения определенных компетенций используются следующие формы организации учебного процесса: лекция (информационная, проблемная, лекциявизуализация, лекция-консультация и др.), практическое занятие, лабораторные занятия, семинарские занятия, самостоятельная работа, консультация. Допускаются комбинированные формы проведения занятий, такие как лекционно-практические занятия.

Преподаватель самостоятельно выбирают наиболее подходящие методы и формы проведения занятий из числа рекомендованных и согласуют выбор с кафедрой.

Реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий и организации внеаудиторной работы (компьютерных симуляций, деловых и ролевых игр, разбора конкретных ситуаций, психологических и иных тренингов) с целью формирования и развития профессиональных навыков обучающихся. Интерактивное обучение — метод, в котором реализуется постоянный мониторинг освоения образовательной программы, целенаправленный текущий контроль и взаимодействие (интерактивность) преподавателя и студента в течение всего процесса обучения.

Самостоятельная работа организована в соответствие с технологией проблемного обучения и предполагает следующие формы активности:

- самостоятельная проработка учебно-проблемных задач, выполняемая с привлечением основной и дополнительной литературы;
- поиск научно-технической информации в открытых источниках с целью анализа и выявления ключевых особенностей.

Основные аспекты применяемой технологии проблемного обучения:

- постановка проблемных задач отвечает целям освоения дисциплины «Физика конденсированного состояния» и формирует необходимые компетенции;
- решаемые проблемные задачи стимулируют познавательную деятельность и научно-исследовательскую активность студентов.

По лекционному материалу подготовлено учебное пособие, конспекты лекций в электронной форме и на бумажном носителе, большая часть теоретического материала излагается с применением слайдов (презентаций) в программе **Power Point**, а также с использованием интерактивных досок.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа магистров имеет целью подготовку к семинарским и практическим занятиям по отдельным разделам дисциплины, а также к выполнению лабораторных работ по предмету. Разделы дисциплины для самостоятельной работы приведены в п.п. 4.3.3, и 4.3.4.

В течение семестра магистры самостоятельно готовятся по отдельным разделам дисциплины, представляют рефераты и презентации, обсуждают выбранные темы на практических занятиях.

- 7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.
- 7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Код компетен-	Наименование	Планируемые результаты обучения	Процедура
ции из ФГОС ВО	компетенции из ФГОС ВО		освоения
ПК-1.	ПК-1.1.	Знает:	Устный
Способен разра- ботать и внед- рить современ- ные технологи- ческие процессы и программы выпуска изделий микро- и нано- электроники	Способен проводить анализ и выбор перспективных материалов, технологических процессов и оборудования производства изделий микро- и наноэлектроники	 средства поиска информации в информационных сетях; мировые достижения в области наноэлектроники; характеристики продукции лидеров в области производства техники в данной области; основные подходы к описанию реальных физических процессов и явлений в наноструктурах; материаловедческие проблемы наноэлектроники; инновационные материалы, перспективы их применения в связи с развитием многоуровневой многослойных наноструктур; основные закономерности формирования свойств наноразмерных структур на основе квантовой теории; квантоворазмерные эффекты и физические свойства систем пониженной размерности; структура существующих производственного и технологического процессов производства изделий наноэлектроники; 	опрос Презентация докладов
		 Умеет: искать информацию в различных печатных и электронных источниках; систематизировать найденную информацию; выявлять тенденции развития научных исследований и разработок, связанных с перспективными материалами, технологическими процессами и оборудованием; определять существенные для выпускаемых изделий параметры и характеристики перспективных материалов, технологических процессов и оборудования; 	

ствующих и перспективных материалов, технологических процессов и оборудования; использовать специализированные знания в области физики систем пониженной размерности для обеспечения технологической реализации материалов и элементов электронной техники в приборах и устройствах наноэлектроники; оценивать пределы применимости классического подхода, роль и важность квантовых эффектов при описании физических процессов в элементах наноэлектроники; Владеет: навыками сбора и систематизации информации о перспективных материалах, технологических процессах и оборудовании, используемых в производстве изделий наноэлектроники; навыками анализа полученной информации с целью улучшения качественных и количественных показателей выпускаемых изделий наноэлектронинавыками оценки направлений научного развития исследований и разработок, связанных с перспективными наноматериалами, технологическими процессами и оборудованием; навыками проводить сравнительный анализ характеристик и параметров существующих наноматериалов; основами теоретических знаний для решения практических задач как в области физики полупроводников и диэлектриков, так и на междисциплинарных границах физики наноэлектронинавыками оценки технологической и экономической целесообразности внедрения новых материалов, технологических процессов и оборудования в существующий цикл производства изделий наноэлектроники. ПК-2. $\Pi K - 2.1.$ Знает: Устный Способен разра-Способен согласоопрос, письтехнико-экономические и прогнозные ботать, конвать техническое исследования в области технологии менный производства изделий "система в кортролировать и задание на техноопрос. Препусе"; зентация докорректировать логический маршэксплуатационные и ресурсные характехнологические рут изготовления кладов

"система в корпусе";

теристики основных материалов, ис-

пользуемых для изготовления изделий

изделий "система

в корпусе"

маршруты и технологические

процессы изго-

		v. II	
товления изде- лий "система в		• технологии изготовления изделий "си- стема в корпусе";	
корпусе"		• технический английский язык в обла-	
		сти микро- и наноэлектроники;	
		Умеет:	
		• оставлять техническое задание на раз-	
		работку технологического маршрута	
		на изготовление изделий "система в	
		корпусе"; • согласовывать техническое задание на	
		разработку технологического маршру-	
		та на изготовление изделий "система в	
		корпусе"; • внедрять прикладное программное	
		обеспечение для разработки техниче-	
		ской и технологической документации	
		по технологии изготовления изделий	
		"система в корпусе".	
		Владеет:	
		• навыками анализа нормативно-	
		технической и технико-экономической документации по технологии изготов-	
		ления изделий "система в корпусе";	
		• навыками определения технического	
		уровня проектируемого технологиче-	
		ского маршрута на изготовление изде- лий "система в корпусе";	
		• навыками корректировки техническо-	
		го задания на разработку технологиче-	
		ского маршрута на изготовление изде- лий "система в корпусе";	
		• навыками согласования и утверждение	
		технического задания на разработку	
		технологического маршрута на изго- товление изделий "система в корпусе".	
		товление изделии система в корпусе.	
ПК-3.	ПК-3.2.	Знает:	Круглый стол
Способен руко-	Способен согласо-	• углубленные знания о структуре, фи-	Устный
водить подраз- делениями по	вать и утвер- ждать техниче-	зико-химических свойствах, кон- струкции и назначении модифицируе-	опрос, пись- менный
измерениям па-	ские задания на	мых наноматериалов и наноструктур;	опрос,
раметров и мо-	модернизацию и	• основные методы измерений парамет-	Презентации
дификации свойств нано-	внедрение новых методов и обору-	ров и модификации свойств наномате-	
материалов и	дования для изме-	риалов и наноструктур; • технический английский язык в обла-	
наноструктур	рений параметров	сти наноматериалов и нанотехноло-	
	и модификации свойств нанома-	гий;	
	териалов и нано-	Умеет:	
	структур	• оценивать технические и экономиче-	
		ские риски при выборе методов и обо-	
		рудования для измерения параметров и модификации свойств наноматериа-	
		и модификации своиств наноматериа- лов и наноструктур;	
		• анализировать и обрабатывать ре-	

- зультаты измерений параметров и модификации свойств наноматериалов и наноструктур на основе теоретических представлений в области физики систем пониженной размерности;
- оценивать временные затраты на стандартные и нестандартные методы измерения параметров и модификации свойств наноматериалов и наноструктур;

Владеет:

- навыками анализа планов перспективного развития предприятия в области измерения параметров и модификации свойств наноматериалов и наноструктур;
- навыками оценки рисков внедрения новых методов и оборудования измерения параметров и модификации свойств наноматериалов и наноструктур;
- основными методами измерений параметров и модификации свойств наноматериалов и наноструктур;
- навыками анализа и обработки результатов измерений параметров и модификации свойств наноматериалов и наноструктур на основе теоретических представлений в области физики квантоворазмерных систем.

7.2. Типовые контрольные задания

7.2.1. Вопросы на экзамен

- 1. Пространственное квантование
- 2. Примеры наноструктур различной мерности.
- 3. Типы структур с низкоразмерным электронным газом.
- 4. Применение низкоразмерных структур в электронике.
- 5. Свободный одномерный электронный газ. Плотность состояний. Связь энергии Ферми с концентрацией электронов. Полная энергия при T=0.
- 6. Свободный двумерный электронный газ. Зависимость химического потенциала от температуры. Полная энергия при конечной температуре.
 - 7. Плотность состояний систем различной размерности.
- 8. Размерное квантование электронных состояний в квантовых ямах, проволоках. точках.
 - 9. Полупроводниковые квантовые ямы. Энергетическая диаграмма.
- 10. Энергетический спектр электронов и дырок в полупроводниковых квантовых ямах. Плотность состояний.
 - 11. Статистика носителей заряда.
- 12. Энергетический спектр электронов в низкоразмерных структурах в присутствии постоянного магнитного поля.
- 13. Переход от дискретного к непрерывному спектру в направлении квантования для систем различной размерности. Квази- низкоразмерные системы.

- 14. Размерное квантование во внешних полях.
- 15. Квантовые ямы и сверхрешетки в электрическом поле.
- 16. Двумерный электронный газ. Потенциальная энергия электрона в двумерном электронном газе.
- 17. Полупроводниковые квантовые нити. Энергетический спектр и плотность состояний.
- 18. Энергетический спектр электронов в квантовых нитях, полученных методом заращивания поверхности скола.
- 19. Полупроводниковые квантовые точки. Энергетический спектр кубических квантовых точек.
 - 20. Квантовый эффект Холла.
- 21. Влияние магнитного поля на плотность состояний. Влияние магнитного поля на квантование энергии. Уровни Ландау.
 - 22. Квантовый эффект Холла в квантовых ямах.
 - 23. Дробный квантовыйц эффект Холла.
 - 24. Эффект Аронова-Бома.
 - 25. Эффект Шубникова-де Гааза.
 - 26. Баллистический транспорт.
 - 27. Баллистическая проводимость квантовых нитей.
 - 28. Кулоновская блокада.
 - 29. Туннельные эффекты.
- 30. Прохождение электронов в структурах с одиночными квантовыми ямами и потенциальными барьерами.
 - 31. Туннелирование электронов через двухбарьерную квантовую структуру.
 - 32. Лазеры на основе квантовых ям.
 - 33. Фотоприемники на квантовых ямах.
 - 34. Резонансный туннельный диод.
 - 35. Подвижность электронов в системах с селективным легированием.
- 36. Особенности электрон-фононного взаимодействия в системах пониженной размерности.
 - 37. Основы спинтроники.
 - 38. Теоретические основы одноэлектроники.
 - 39. Фотонные кристаллы.
 - 40. Приборы нанофотоники.

3.7.. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля -50 % и промежуточного контроля -50 %.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях 15 баллов,
- выполнение лабораторных заданий 25 баллов,
- выполнение домашних (аудиторных) контрольных работ 10 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос 5 баллов,
- письменная контрольная работа 15 баллов,
- тестирование 20 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

- 1. Борисенко В.Е, Воробьева., А. И. Наноэлектроника : учеб. пособие. М.: БИНОМ. Лаб. знаний, 2009. 223 с. (15 экз.).
- 2. Шишкин Г. Г., Агеев И. М. Наноэлектроника: Элементы, приборы, устройства : учеб. пособие. М. : БИНОМ. Лаб. знаний, 2011. 408 с. (15 экз.).
- 3. Троян, П.Е. Наноэлектроника: учебное пособие / П.Е. Троян, Ю.В. Сахаров. Томск: Томский государственный университет систем управления и радиоэлектроники, 2010. 88 с.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=208663 (08.06.2018).
- 4. Дробот, П.Н. Наноэлектроника : учебное пособие / П.Н. Дробот ; Министерство образования и науки Российской Федерации, Томский Государственный Университет Систем Управления и Радиоэлектроники (ТУСУР). Томск : ТУСУР, 2016. 286 с. : ил.,табл., схем. Библиогр.: с.261-275. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=480771 (11.06.2018).

Дополнительная

- 1. Лозовский В.Н., Константинова Г. С. Нанотехнология в электронике: Введение в специальность:. [2-е изд., испр.]. СПб.: Лань, 2008. 327 с. (40 экз).
- **2.** Рыжонков Д. И., Лёвина В. В. Наноматериалы : учеб. пособие. 2-е изд. М. : БИНОМ. Лаб. знаний, 2010. 365 с. (10 экз.).
- 3. Корабельников, Д.В. Физика наноструктур: учебное пособие / Д.В. Корабельников, Н.Г. Кравченко, А.С. Поплавной ; Министерство образования и науки РФ, Кемеровский государственный университет. Кемерово : Кемеровский государственный университет, 2016. 161 с. : схем., ил. ISBN 978-5-8353-2048-6 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=481557 (18.06.2018).
- 4. Неволин, В.К. Зондовые нанотехнологии в электронике : монография / В.К. Неволин. Изд. 2-е, испр. Москва : Техносфера, 2014. 174 с. : ил., схем., табл. (Мир электроники). Библиогр. в кн. ISBN 978-5-94836-382-0 ; То же [Электронный pecypc]. URL: http://biblioclub.ru/index.php?page=book&id=260697(08.06.2018).

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. 3EC IPRbooks: http://www.iprbookshop.ru/
- 2. Электронно-библиотечная сист*ема* «Университетская библиотека онлайн» www.biblioclub.ru.
- 3. Электронной библиотека на http://elibrary.ru.
- 4. Электронный каталог НБ ДГУ [Электронный ресурс]: база данных содержит сведения о всех видах лит, поступающих в фонд НБ ДГУ/Дагестанский гос. ун-т. Махачкала, 2010 Режим доступа: http://elib.dgu.ru.
- 5. Moodle [Электронный ресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. Махачкала, г. Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/
- 6. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru.
- 7. Сайт образовательных ресурсов Даггосуниверситета http://edu.icc.dgu.ru
- 8. http://www.phys.msu.ru/rus/library/resources-online/ электронные учебные пособия, изданные преподавателями физического факультета МГУ.
- 9. http://www.phys.spbu.ru/library/ электронные учебные пособия, изданные преподавателями физического факультета Санкт-Петербургского госуниверситета.

10. **Springer.** http://link.springer.com, http://materials.springer.com/

11. **Scopus:** https://www.scopus.com

12. **Web of Science:** webofknowledge.com

13. www.nanotech.ru

10. Методические указания для обучающихся по освоению дисциплины.

Студент в процессе обучения должен не только освоить учебную программу, но и приобрести навыки самостоятельной работы. Студент должен уметь планировать и выполнять свою работу. Удельный вес самостоятельной работы составляет по времени 30% от всего времени изучаемого цикла. Это отражено в учебных планах и графиках учебного процесса, с которым каждый студент может ознакомиться у преподавателя дисциплины.

Главное в период обучения своей специальности - это научиться методам самостоятельного умственного труда, сознательно развивать свои творческие способности и овладевать навыками творческой работы. Для этого необходимо строго соблюдать дисциплину учебы и поведения.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что-то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

дельного плана.	
Вид учебных за-	Организация деятельности студента
нятий	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно
	фиксировать основные положения, выводы, формулировки, обобщения;
	помечать важные мысли, выделять ключевые слова, термины. Проверка
	терминов, понятий с помощью энциклопедий, словарей, справочников
	с выписыванием толкований в тетрадь. Обозначить вопросы, термины,
	материал, который вызывает трудности, пометить и попытаться найти
	ответ в рекомендуемой литературе. Если самостоятельно не удается
	разобраться в материале, необходимо сформулировать вопрос и задать
	преподавателю на консультации, на практических работах.
Практические	Проработка рабочей программы, уделяя особое внимание целям и зада-
занятия	чам структуре и содержанию дисциплины. Конспектирование источни-
	ков. Работа с конспектом лекций, подготовка ответов к контрольным
	вопросам, просмотр рекомендуемой литературы, работа с текстом. Ре-
	шение расчетно-графических заданий, решение задач по алгоритму и
	др.
Реферат	Поиск литературы и составление библиографии, использование от 3 до
	5 научных работ, изложение мнения авторов и своего суждения по вы-
	бранному вопросу; изложение основных аспектов проблемы. Кроме то-
	го, приветствуется поиск информации по теме реферата в Интернете,
	но с обязательной ссылкой на источник, и подразумевается не простая
	компиляция материала, а самостоятельная, творческая, аналитическая
	работа, с выражением собственного мнения по рассматриваемой теме и
	грамотно сделанными выводами и заключением. Ознакомиться со
	структурой и оформлением реферата.
Подготовка к за-	При подготовке к зачету необходимо ориентироваться на конспекты
чету	лекций, рекомендуемую литературу и др.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Чтение лекций с использованием мультимедийных презентаций. Использование анимированных интерактивных компьютерных демонстраций и практикумов-тренингов по ряду разделов дисциплины.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Материально — техническая база кафедры экспериментальной физики, которая осуществляет подготовку по направлению 11.04.04 «Электроника и наноэлектроника», позволяет готовить магистров, отвечающих требованиям ФГОС. На кафедре имеются 3 учебных и 5 научных лабораторий, оснащенных современной технологической, измерительной и диагностической аппаратурой; в том числе функционирует проблемная НИЛ «Твердотельная электроника». Функционируют специализированные учебные и научные лаборатории: Физика и технология керамических материалов для твердотельной электроники, Физика и технология тонкопленочных структур, Электрически активные диэлектрики в электронике, Физическая химия полупроводников и диэлектриков.

Лекционные занятия проводятся в аудитории, оснащенной мультимедиым проекционным оборудованием и интерактивной доской.