

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ФИЗИКА

Кафедра физической электроники

Образовательная программа

06.03.02. Почвоведение

Профили подготовки:

Земельный кадастр и сертификация почв

Уровень высшего образования: Бакалавриат

Форма обучения: Очная

Статус дисциплины: Базовая

Рабочая программа дисциплины «Физика» составлена в 2020 году в соответствии с требованиями ФГОС ВО по направлению подготовки 06.03.02. - Почвоведение (уровень: бакалавриата), утвержденным приказом Минобрнауки от «12» марта 2015г. № 213.

Разработчик: кафедра физической электроники, Гасанова Р.Н., к.фм.н. доцент
Рабочая программа дисциплины одобрена: на заседании кафедры физической электроники от « 2020 г., протокол 2020 г.
Зав каф кафедрой Ваший Омаров О.А
на заседании Методической комиссии физического факультета от «dq» 2020_ г., протокол № _ b
Председатель <u>Мерреге</u> Мурлиева Ж.Х.
Рабочая программа дисциплины согласована с учебно- методическим управлением « <u>H</u> » <u>O3</u> <u>2020</u> г.
/Начальник УМУ

Аннотация рабочей программы дисциплины

Дисциплина «<u>Физика»</u> входит в <u>базовую</u> часть образовательной программы *бакалавриат* по направлению 06.03.02 «Почвоведение».

Дисциплина реализуется на факультете <u>биологии</u> кафедрой физической электроники.

Содержание дисциплины охватывает круг вопросов, связанных с курсом физики для почвоведов и направлено на формирование естественнонаучного мировоззрения и создание единой научной картины окружающего мира, обусловлено задачами, которые рассматриваются в дисциплинах естественнонаучного цикла.

Дисциплина нацелена на формирование следующих компетенций выпускника:

общекультурных, общепрофессиональных и профессиональных.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия, лабораторные занятия, самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме *контрольная работа*, *коллоквиум и пр*. и промежуточный контроль в форме экзамена.

Дисциплина нацелена на формирование следующих компетенций выпускника: *общепрофессиональных*: ОПК-1; *профессиональных*: ПК-2, ПК-3.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия, лабораторные занятия, самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме: контрольная работа, коллоквиум и пр.) и промежуточный контроль в форме экзамена.

Объем дисциплины 5 зачетных единиц, в том числе в академических часах по видам учебных занятий

				Форма					
			промежуточно						
тр		Конт	актная р	СРС, в	й аттестации				
Семестр	0				(зачет,				
Cel	всего	10	Лекц	Лекц Лаборат Практич КСР консульт числе					дифференциро
	B	всего	ии						ванный зачет,
				занятия	занятия			H	экзамен
1-2	180	102	24	44	34			42+36	Экзамен

1.Цели освоения дисциплины

Целями освоения дисциплины «Физика» являются: получение базовых знаний по различным разделам физики, а также формирование у студентов системы знаний по общей классической (доквантовой, нерелятивистской) физике, в частности, по механике, молекулярной физике, электромагнетизму и оптике, по строению атома и твердых тел, по связи между экологией и физикой, умений качественно и количественно анализировать ситуации, формирование умений решать задачи и ставить простейший эксперимент, использовать компьютер для математического моделирования процессов, необходимых для понимания и дальнейшего изучения различных областей естествознания.

В процессе изучения и освоения законов физики вырабатываются навыки и умения позволяющие осмыслить и смоделировать природные явления в лабораторных условиях.

Данный курс опирается на такие дисциплины, изученные студентами ранее, как математика и физика средних школ.

В условиях интенсивного научно-технического прогресса и требования резкого повышения уровня естественнонаучного образования требует изучение дисциплин, составляющих фундамент современного учения об окружающем мире.

Изучение физики расширяет общий кругозор, развивает критический подход к анализу не только явлений в живой и неживой природе, но и закономерностей развития общества.

При прохождении курса физики идеи классической и современной физики рассматриваются в комплексе. Изучение теоретических вопросов физики, которые в основном сосредоточены в лекционном курсе, дополняются работой студентов в физической лаборатории, на семинарах, самостоятельной работой, а также участием в кружках.

Цель дисциплины: формирование у студентов системы знаний по общей классической (доквантовой, нерелятивистской) физике, в частности, по механике, молекулярной физике, электромагнетизму и оптике, по строению атома и твердых тел, по связи между математикой и физикой, использовании математических методов в естествознании, а также умений качественно и количественно анализировать ситуации, формирование умений решать задачи и ставить простейший эксперимент, использовать компьютер для математического моделирования процессов, необходимых для понимания и дальнейшего изучения различных областей естествознания.

Задачи дисциплины:

- сформировать понимание роли физики в естественнонаучном образовании специалиста;
- показать интеграцию физико-математических знаний и роль математики в формировании базовых знаний по физике;
- ознакомить с основными понятиями, определениями, величинами и единицами их измерения;
- обеспечить усвоение основных принципов описания явлений и процессов: уравнений движения, полей сил, уравнений состояния;
- сформировать представление о законах сохранения в физике;
- дать общее представление о различии описания двух типов объектов природы корпускулярных и волновых;
- ознакомить с решением уравнений движения на компьютере;
- сформировать основные умения И навыки работы cизмерительными инструментами И приборами, обработки лабораторных результатов работ И ИХ анализа, решения физических прикладных задач, применения законов ДЛЯ объяснений природных процессов и явлений.

2.Место дисциплины в структуре ОПОП бакалавриата

Дисциплина **«Физика»** входит в базовую часть образовательной программы бакалавра по направлению 06.03.02 –Почвоведение.

Для изучения дисциплины «Физика» студент должен знать: основные понятия и методы математического анализа, линейной алгебры, дискретной математики; дифференциальное и интегральное исчисления; гармонический дифференциальные уравнения; численные функции анализ; методы; комплексного переменного; элементы функционального анализа; вероятность и статистику; случайные процессы; статистическое оценивание и проверку гипотез; статистические методы обработки экспериментальных математические методы в биологии. Понятие информации; программные средства организации информационных процессов; модели решения функциональных вычислительных задач; программирования; базы данных; локальные и глобальные сети ЭВМ; методы защиты информации.

Описание логической и содержательно-методической взаимосвязи с другими частями ОПОП (дисциплинами, модулями, практиками)

Являясь самостоятельной учебной дисциплиной, курс физики, не оторван от других дисциплин. Наоборот, существует междисциплинарная связь. Например, история физики, как науки, дает много прекрасных примеров такого рода.

Изучение строения вещества в курсе физики подводит к пониманию строения и способов исследования крупных биомолекул, фундаментальных положений молекулярной биологии, генетического кода и т.д. Это сближает курс физики и курсы общей биологии и генетики.

Ниже следуют некоторые разъяснения, которые являются важными для понимания того, какие чисто физические моменты особенно отмечается при прохождении того или иного раздела.

В теме "Кинематика" показываются многообразие используемых в физике систем координат, как происходит переход от описания движения простейшего тела - материальной точки - к описанию поведения сложных систем.

Важнейшей частью "Динамика" являются разбор уравнения движения в ньютоновской форме в декартовой системе координат и демонстрация его решения на ряде простых примеров: замедление движения материальных точек под действием сухого и вязкого трения и т.д. Элементарных знаний по математическому анализу, которыми студенты обладают, для этого вполне достаточно.

При формулировании закона сохранения импульса надо подчеркнуть, что этот закон является более общим, чем третий закон Ньютона, и выполняется, в частности, и в квантовой механике, где понятие силы теряет свой смысл. Следует также обратить внимание на то, что введение физической величины - импульс - позволяет записать дифференциальные уравнения движения как для малых, так и для больших скоростей в единой форме.

При изучении раздела "Колебания и волны" подчеркивается распространение этого вида движения в живой природе, приведя достаточное число примеров (частота шага человека, животного и т.д.).

В разделе "Элементы термодинамики" следует уделить особое внимание термодинамике открытых систем, что является принципиально важным для понимания жизнедеятельности живых организмов и их взаимоотношения с окружающей средой. Здесь надо достаточно подробно остановиться на сфере применимости второго начала термодинамики к живым организмам, на теореме Пригожина, на естественном внедрении физических взглядов в биологию.

За основу изложения раздела "Электрические и магнитные явления" берется интегральные уравнения Максвелла для вакуума. Вначале вводится формула Гаусса, опираясь на закон Кулона для взаимодействия точечных зарядов. После этого отмечается, что формула Гаусса является более общей, так как сохраняется и в динамике. Непосредственно как результат опытов Фарадея можно ввести и уравнение о циркуляции вектора напряженности магнитного поля и др. Практика показывает, что после этого постулирование даже полной системы уравнений Максвелла уже не вызывает затруднений для восприятия их студентами. Появление магнитного поля следует рассматривать с релятивистской точки зрения.

Основное внимание в теме "Электродинамика" следует уделить изучению эффектов, связанных с движением зарядов и переменными электрическими токами. Эти эффекты надо продемонстрировать на достаточно большом числе примеров. Завершается тема доказательством возможности существования электромагнитного поля как самостоятельной субстанции и после отключения токов и исчезновения зарядов.

Последняя часть раздела "Электрические и магнитные явления" является непосредственным введением к разделу "Электромагнитное излучение и оптика".

Важнейшим разделом курса является раздел "Элементы учения о строении вещества". В этом разделе после изложения экспериментальных фактов, приводящих к необходимости введения волнового описания поведения микрочастиц, и некоторых основных принципов подробно рассматривается решение задачи о частице в одномерном потенциальном ящике на основе стационарного уравнения Шредингера. Опираясь на решение этой задачи, далее обсуждаются условия возможности наблюдения квантовых явлений. В сочетании с принципом Паули это дает возможность объяснить появление пространственных форм молекул. Формулу для уровней энергии в атоме водорода дается без доказательства, так как вывод ее на основе уравнения Шредингера сложен.

В связи с появлением лазерной техники необходимым является подчеркнуть понятия о нормально и инверсно заселенных средах, об усилении света при прохождении его через инверсно заселенную среду и о принципах действия оптических квантовых генераторов.

Ограниченный лимит времени позволяет выполнить настоящую программу лишь при условии использования разнообразных методических форм подачи материала слушателям. Одной из таких форм являются сопровождаемые демонстрациями натурных и компьютерных экспериментов практические занятия, на которые следует выносить некоторые проблемные задачи и вопросы, не тратя времени на решение рядовых тренировочных задач.

В рамках лабораторного практикума используется умение студентов производить расчеты с помощью средств вычислительной техники. Это позволяет существенно приблизить уровень статистической культуры обработки результатов измерений в практикуме к современным стандартам, принятым в науке и производственной деятельности. На этих занятиях студенты уже на I курсе приобретают опыт общения с ЭВМ и использования статистических методов обработки результатов наблюдений, что совершенно необходимо для работы в специальных учебных и производственных лабораториях.

На *самостоятельную работу* студентов выносятся переработка материалов лекций и семинарских занятий, подготовка к лабораторнопрактическим занятиям и обработка их результатов и составление отчетов, решение задач из предлагаемого кафедрой списка.

В качестве самостоятельной работы может быть рекомендованы написание одного- двух (за семестр) рефератов по темам близким к роду будущей деятельности студентов и связанным с применением физических приборов или общих закономерностей.

Освоение дисциплины «Физика» является как предшествующее для общепрофессиональных дисциплин и решения профессиональных задач.

Дисциплина изучается на 1 курсе в 1-2 семестрах.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины.

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО по данному направлению:

направлению:		
Код	Наименование	Планируемые результаты
компетенции	компетенции из ФГОС ВО	обучения
из ФГОС ВО		
ОПК-1	владением методами	Знать:
	обработки, анализа и	• основные физические законы
	синтеза полевой и	и их следствия (физические
	лабораторной информации	основы механики; колебания
	в области почвоведения,	и волны, основы
	мелиорации, физики,	молекулярной физики и
	химии, географии,	термодинамики,
	биологии, экологии,	электричества и магнетизма,
	эрозии почв, агрохимии и	оптики, атомной и ядерной
	агрофизики, почвенно-	физики), физические
	ландшафтного	принципы исследования
	проектирования,	химических, биологических и
	радиологии почв, охраны	сельскохозяйственных
	и рационального	объектов и измерения
	использования почв	отдельных их характеристик;
		• основные законы физики,
		физические явления и
		закономерности;
		• теоретические основы
		физических методов анализа
		вещества;
		• характеристики физических
		факторов, оказывающих
		воздействие на живой
		организм;
		• метрологические требования
		при работе с физической

- аппаратурой, правила техники безопасности работы в химической лаборатории и с физической аппаратурой;
- экологические и этические аспекты воздействий физических факторов на человека.

Уметь:

- создавать и анализировать на основе физических законов и их следствий теоретические модели явлений природы;
- использовать в практике важнейшие физические измерительные приборы и приемы.

Владеть:

• устройством используемых ими приборов и принципов их действия, приобрести навыки выполнения физических измерений, проводить обработку результатов измерений с использованием статистических методов и современной вычислительной техники.

ПК-3

способностью применять на практике базовые общепрофессиональные знания теории и методов полевых исследований в области почвоведения, мелиорации, физики, химии, географии, биологии, экологии, эрозии почв, агрохимии и агрофизики, почвенноландшафтного проектирования, радиологии почв, охраны

Знать:

- •пользоваться теоретическими основами, основными понятиями, законами и моделями курса физики;
- умениями использования научной и учебной литературы;
- •физические параметры, характеризующие функциональное состояние органов и тканей: механические, электрические, электромагнитные,

	и рационального	оптические.
	использования почв	Уметь:
	nenesibsobulitar no ib	•применять полученные
		теоретические знания при
		решении конкретных задач по
		работе с экспериментальной
		аппаратурой;
		•слушать и конспектировать
		лекции, а также
		самостоятельно добывать
		знания по изучаемой
		дисциплине;
		•излагать и критически
		анализировать получаемую на
		семинарских занятиях
		информацию, пользоваться
		учебной литературой, Internet –
		ресурсами;
		•применять полученные знания
		при решении задач на
		выступлениях, на семинарских
		занятиях.
		Владеть:
		• устройством используемых
		ими приборов и принципов
		их действия;
		• приобрести навыки
		выполнения физических
		измерений;
		• проводить обработку
		результатов измерений с
		использованием
		статистических методов и
		современной
		вычислительной техники.
		• методикой и
		теоретическими основами
		_
		анализа экспериментальной
		и теоретической
		информации в области
		физики.
ПК-2	способностью	Знать:
1111\-2		
	эксплуатировать	• теоретические основы,

современную аппаратуру и оборудование для выполнения научноисследовательских полевых и лабораторных исследований в области почвоведения, мелиорации, физики, химии, географии, биологии, экологии, эрозии почв, агрохимии и агрофизики, почвенноландшафтного проектирования, радиологии почв, охраны и рационального использования почв

- основные понятия, законы и модели курса общей физики;
- методы обработки и анализа экспериментальной и теоретической информации в области физики;

Уметь:

- понимать, излагать и критически анализировать базовую информацию в области физики;
- пользоваться теоретическими основами, основными понятиями, законами и моделями курса физики;
- измерять физические параметры и оценивать физические свойства биологических объектов с помощью механических, электрических и оптических методов;
- выбирать оптимальный метод качественного и количественного анализа вещества, используя соответствующие физические приборы и аппараты;
- идентифицировать предложенные соединения на основе данных УФ- и ИК-спектроскопии;
- работать с микроскопом и бинокуляром.

Владеть:

- методикой и теоретическими основами анализа экспериментальной и теоретической информации в области физики;
- навыками обработки и анализа экспериментальной и теоретической информации в области физики;
- способностью эксплуатировать современную аппаратуру и оборудование для выполнения научно-исследовательских и

лабораторных работ;
• методиками измерения
значений физических
величин;
• методикой оценки
погрешностей измерений.

4.Объем, структура и содержание дисциплины (модуля) 4.1.Общая трудоемкость дисциплины составляет <u>5</u> зачетных единиц, <u>180</u> академических часов

4.2.Структура дисциплины:

Названия	Семест	Виды	учебных за	нятий				
разделов и тем	p	Аудит числе	Самост					
		Лек- ции	Практич еские и сем. занятия,	Лаборато рные работы	Экзамен.	- ая работа		
	1	Моду	ль I. Mexai	ника	I			
1.Введение. Кинематика и динамика материальной точки	1	1	2	2		3		
2.Виды сил. Работа и энергия	1	2	2	2		3		
3.Движение твердого тела. Деформация тел	1	1	2	2		2		
4.Механика жидкостей и газов Динамика больших скоростей	1	2	2	2		3		
5.Колебания и волны	1	1	2	4		3		

Всего за 1 модуль		5	8	12	11
	Молеку.	лярная	Модуль 2. физика и т	ермодинамика	
1.Равновесные и неравновесные состояния вещества	1	1	2	2	3
2.Молекулярно- кинетическая теория.	1	2	2		3
3.Явления переноса	1	1	1	2	3
4. I и II начало термодинамики	1	2	2	2	3
5. Реальные газы. Молекулярные силы в жидкостях	1	1	1		1
Всего за « модуль		7	8	8	13
Mo	одуль 3.	Электр	ичество и э.	лектромагнетизм	
1.Электростатическое поле. Потенциал и разность потенциалов		1	1	2	
2.Постоянный электрический ток	2	1	1	2	2
3. Элементы зонной теории проводимости.		1	1	2	
4.Диэлектрики в электрическом	2	1	1	2	2

поле						
5.Электрический ток в газах	2	1	1	2		2
6.Магнитное поле. Магнетики	2	1	1			
7.Электромагнит- ная индукция и переменный ток	2	1	1	2		2
8.Электромагнит- ные колебания и волны	2	1	1			
Всего за 3 модуль		8	8	12		8
Moz	цуль 4. (и атомная	ядерная фи	зика.	<u> </u>
1.Геометрическая оптика	2	1	1	2		1
2.Интерференция света	2		1	1		1
3.Дифракция света	2	1	1	1		1
4.Поляризация света	2		1	2		1
5. Тепловое излучение	2	1	1	1		2
6.Взаимодействие излучения с веществами	2		2	2		1
7.Строение атома	2		2	1		1
8.Строение и свойство ядер	2	1	1	2		2
Всего за 4 модуль		4	10	12		10
	Моду	уль5. П	одготовка к	з экзамену.	<u> </u>	1
Подготовка к	2				36	

экзамену.					
ИТОГО	24	34	44	36	42

4.3.Содержание дисциплины, структурированное по темам (разделам)

<u>I МОДУЛЬ:</u>

Введение

Предмет физики. Метод познания в физике. Эксперименты и теории. Роль математики. Физические законы. Понятие факта в физике. Модели. Прямые и обратные задачи физики. Размерности физических величин.

Кинематика

Движение как главная форма существования материи. Пространство и время. Способы описания состояния тела и системы тел. Системы отсчета и координат. Роль и принципы выбора систем координат. Степени свободы, инвариантные свойства числа степеней свободы. Трехмерное и многомерное пространства. Материальная точка и распространение этой модели на многомерный случай. Траектория и мировая линия, их свойства. Скорость и ускорение как производные. Поступательное и вращательное движения как основные виды движений. Угловые скорость и ускорение, нормальное и тангенциальное ускорения. Инерциальные системы и равноправность покоя и равномерного прямолинейного движения. Постулат о постоянстве скорости света в вакууме. Преобразование интервалов времени и длины при больших скоростях относительных движений инерциальных систем. Парадокс близнецов. Преобразования Лоренца и релятивистское сложение скоростей. Интервал между событиями и его инвариантность.

Динамика

Сила и масса, суперпозиция сил. Первый и второй законы Ньютона. Уравнения движения, роль начальных условий, принцип детерминизма. Примеры решения уравнений движения. Движение тел в поле сил тяготения, явление невесомости в спутниках. Импульс, закон сохранения импульса для механической системы, третий закон Ньютона. Взаимодействие тел через поле. Общая формулировка закона сохранения импульса. Кинетическая энергия материальной точки, связь ее с компонентами вектора импульса. Работа и потенциальная энергия. Работа перемещения материальной точки криволинейному пути. Потенциальные силы, введение понятия потенциала ДЛЯ взаимодействующих тел. Связь компонент силы функции. Потенциальная потенциальной яма и условие устойчивого Невозможность взаимодействующих равновесия системы равновесия. статических точечных электрических зарядов. Момент силы. Динамика вращения точки и тела вокруг постоянной оси, понятие о моменте инерции материальной точки и тела. Уравнение движения вращающегося вокруг неподвижной оси тела. Момент импульса, связь его кинетической энергией вращения. Главные моменты инерции и устойчивость вращения тел. Закон сохранения момента импульса тела и системы тел. Гироскопы и их применение. Центр масс и уравнение его движения. Разделение поступательных и вращательных движений твердого тела. Пара сил. Система уравнений для движения твердого тела и его кинетическая энергия. Закон сохранения энергии и его связь с равномерностью течения времени. Движение систем со многими степенями свободы. Функция Лагранжа и уравнения Лагранжа.

Динамика больших скоростей

Принцип относительности в физике. Релятивистский импульс. Преобразование энергии-импульса. Масса и ее связь с энергией покоя. Масса сложной системы и ее связь с энергией взаимодействия частей. Дефект массы и энергетика. Кинетическая энергия в релятивистской механике. Уравнение движения материальной точки в релятивистской механике. Движение материальной точки под действием постоянной силы. Скорость света как предельная скорость. Частицы с нулевой массой покоя. Принцип эквивалентности и теория происхождения сил всемирного тяготения.

Колебания и волны

Колебания как частный случай движения, условия появления колебаний. Уравнение движения пружинного маятника и его решение. Гармоническое колебание и его характеристики. Уравнение движения физического маятника и его решение, математический маятник. Энергия гармонических колебаний. Вынужденные колебания и явление резонанса. Автоколебания. Примеры проявления резонансных и автоколебательных явлений в живых организмах и технике. Волны в упругих средах, линейные, поверхностные и объемные волны, поперечные и продольные волны, фронт волны, плоские и сферические волны. Аналитическая запись бегущей волны. Волновое уравнение. Перенос энергии бегущей волной. Сложение колебаний и волн. Когерентные источники волн. Интерференция волн от точечных когерентных источников. Условия появления максимумов и минимумов. Сложение круговых и сферических волн. Построение фронта волны по принципу Гюйгенса, поведение фронта волны в неоднородной среде. Отражение и преломление волн. Принцип Ферма. Появление отраженных волн в неоднородных средах, сложение встречных волн и образование стоячих волн. Переходное состояние и время релаксации. Связь длин стоячих волн с размерами среды, дискретность длин стоячих волн. Квантование.

II МОДУЛЬ:

Элементы статистической и молекулярной физики

Микроскопические и макроскопические явления. Идеальный газ как статистическая система многих частиц. Давление, объем и температура газа как обобщенные характеристики состояния газа. Равновесные и неравновесные состояния газа. Обратимые и необратимые процессы. Диаграмма давление-объем. Экспериментальные газовые законы, обобщенный газовый закон (уравнение состояния идеального газа). Вывод

уравнения состояния идеального газа на основе кинетических представлений. Физический смысл понятия термодинамической температуры. Распределение энергии по степеням свободы. Распределения Максвелла и Больцмана, барометрическая формула. Неравновесные процессы. Диффузия, диффузия осмотическое мембраны, ocmoc, давление жизнедеятельности растений. Теплопередача. Внутреннее трение. Реальные газы, уравнение Ван-дер-Ваальса, критическая точка, реальные изотермы, Жидкости, поверхностное натяжение в жидкостях, сжижение газов. охлаждение жидкости при испарении, терморегуляция растений и животных. Смачивающие и несмачивающие жидкости. Капиллярные явления, формула Лапласа.

Элементы термодинамики

Первое начало термодинамики, изопроцессы, адиабатический процесс, охлаждение газов при адиабатическом расширении и получение низких температур. Уравнение Пуассона и его вывод. Классическая теория теплоемкостей, причины отклонения реальных теплоемкостей как функции температуры от результатов классической теории. Работа идеального газа в различных процессах. Обратимые и необратимые циклы. Тепловые машины ЦИКЛ Карно, второе начало термодинамики. Компрессионные Энтропия как термодинамический холодильники и тепловые насосы. потенциал. Формула для энтропии идеального газа. Теорема Карно и обобщение понятия энтропии как термодинамического потенциала. Связь энтропии с микросостояниями идеального газа. Статистическое толкование энтропии. Формула Больцмана. Возрастание энтропии при необратимых процессах на примере выравнивания температуры двух находящихся в контакте нагретых тел и при выравнивании давлений в двух частях сосуда с газом. Первое и второе начала термодинамики и живые организмы. Понятие о термодинамике необратимых процессов и открытых систем. Энтропия в системе организм-окружающая среда.

Ш МОДУЛЬ:

Электромагнетизм

Понятие о полях, поля скалярные и векторные. Характеристики векторных полей: напряженность, поток, циркуляция, силовые линии векторного поля. Суперпозиция полей, заряды, закон сохранения зарядов.

Взаимодействие неподвижных и движущихся зарядов, Физический смысл магнитного поля. Поле точечного заряда (закон Кулона) и системы зарядов. Поле диполя. Электростатическое поле молекулы и химические реакции. Интегральная форма закона Кулона, теорема Гаусса (первое уравнение Максвелла). Вывод формул для напряженности электростатических полей заряженного прямого провода, плоскости, конденсатора. Работа перемещения заряда в электростатическом поле, понятие потенциала. Второе уравнение Максвелла ДЛЯ электростатики интегральной Электрическая проводников, проводника емкость одного двух И

конденсаторы. Энергия электростатического Изменение поля. электрического напряженности поля при введении диэлектрика, поляризуемость диэлектрика, диэлектрическая проницаемость. Электрическое поле в проводниках. Понятие о токе проводимости, вектор тока и сила тока, дифференциальная форма закона Ома. Первое правило Причина появления электрического тока В физический смысл понятия сторонних электрических сил. Вывод закона Ома для всей цепи. Второе правило Кирхгофа.

Магнитные явления

Магнитное поле прямого тока. Интегральные уравнения Максвелла для постоянных магнитных полей. Примеры вычисления напряженностей магнитостатических полей. Закон Био-Савара-Лапласа. Взаимодействие полей и зарядов (токов). Формула Лоренца для силы, действующей на заряд со стороны электрического и магнитного полей. Принцип действия масс-Индукционные явления, трансформаторы, спектрометров. физические действия. система интегральных принципы ИΧ Экстратоки. Полная уравнений Максвелла. Смысл членов системы уравнений Максвелла, описывающих явления, связанные с изменениями электрических магнитных величин во времени. Взаимосвязь электрических и магнитных переменных полей, электромагнитное поле и излучение. Свободное электромагнитное поле и его существование в виде электромагнитной волны. электромагнитных волн. Скорость Поперечность распространения электромагнитных волн и способы ее измерения. Шкала электромагнитных волн. Явления, описываемые волновой теорией света.

1V МОДУЛЬ:

Оптика. Атомная и ядерная физика.

Интерференция света, условия статической появления интерференционной картины, интерференция при разделении фронта волны, просветление оптики, интерферометры и их использование. Фурьеспектрометры. Понятие о голографии. Дифракция, дифракция на щели. Особенности организации радиолокационной службы. Условия перехода от волновой оптики к геометрической. Зоны Френеля, зонная пластинка как Дифракционная Френеля фокусирующий элемент. решетка система. диспергирующая Анализ состава света длинам Рентгеновская дифракция, понятие об обратных дифракционных задачах, рентгеноструктурный анализ его особенности И применительно Дифракционный биологическим объектам. предел разрешающей способности оптических приборов.

Свет и вещество, понятие о вторичных волнах, разделение энергии на границе раздела фаз, резонансный характер взаимодействия света и вещества. Дисперсия, классическое объяснение зависимости коэффициента преломления света от длины волны падающего света. Явление двойного лучепреломления, поляризация света кристаллами. Поляризованный свет,

оптическая активность, сахарометрия, использование явления вращения плоскости поляризации в молекулярной биологии. Фотоэффект и квантовая природа света. Круг явлений, объяснимых с квантовой точки зрения, микроскопическое и макроскопическое в оптике. Двойственность природы света. Законы поглощения света.

Особенности поведения микрочастиц. Принципы описания поведения микрочастиц, волновая функция, соотношение неопределенностей, волна де Бора. Уравнение Шредингера Бройля. Постулаты (временное стационарное), физический смысл входящих в него членов. Решение стационарного уравнения Шредингера ДЛЯ частицы В одномерном потенциальном ящике и частицы на окружности. Условия появления квантовых явлений. Двумерная потенциальная яма, вырождение квантовых состояний и снятие вырождения. Потенциальная яма конечной глубины и влияние ее глубины и ширины на уровни энергии частицы. Туннельный эффект. Заполнение уровней и принцип Паули, полная энергия совокупности электронов в квантовой системе. Уровни энергии в атоме водорода, переходы Нормальная и инверсная уровнями. заселенность состояний. Поглощение, спонтанное вынужденное И излучения. Коэффициенты Эйнштейна. Формула Планка. Усиление света прохождении через инверсно заселенную среду. Понятие о лазерах.

Физическая природа химической связи. Электронное строение многоэлектронных атомов. Внутреннее вращение в молекулах и его роль в биохимических реакциях. Движение частиц в многоатомных молекулах и виды молекулярной спектроскопии. Симметрия молекул и появление правил отбора.

Фотохимические реакции и особенности потенциальных поверхностей основных и возбужденных электронных состояний в молекулах. Распад молекул при фотовозбуждениях. Физическая природа фотосинтеза. Транспорт энергии при фотосинтезе. Зонная структура электронных состояний кристаллов. Заполненные и незаполненные зоны. Уровень Ферми. Проводники, полупроводники и диэлектрики. Особенность проводимости в полупроводниках.

Систематика Законы элементарных частиц. взаимопревращений частиц, ядерные реакции, дефект массы. Строение ядер, ядерные силы, неустойчивые устойчивые ядра, естественная искусственная И И Законы радиоактивность. радиоактивного распада. Принципы "Меченные" радиоактивационного анализа. атомы в биологии. Пути использования ядерной энергии.

Наименование тем и содержание практических и занятий Волькенштейн В.С. Сборник задач по общему курсу физики. СП.: 2002, 327c.

1.Кинематика	Обобщенные	координаты,	скорости	И
	ускорения.	Релятивистские	преобразован	кин

размеров и форм тел и скоростей, в частности их компонент по осям координат. 2.Динамика Решение ряда уравнений движения на примере конкретных демонстраций. Вращательные движения точки и твердого тела. 3.Колебательное уравнение Колебания и волны, интерференция, примеры вычисления хода волны в неоднородной среде. 4.Статика Равновесные и неравновесные процессы в сложных статистических системах, возможность введения понятия обобщенных термодинамических сил.
2.Динамика Решение ряда уравнений движения на примере конкретных демонстраций. Вращательные движения точки и твердого тела. 3.Колебательное уравнение Колебания и волны, интерференция, примеры вычисления хода волны в неоднородной среде. 4.Статика Равновесные и неравновесные процессы в сложных статистических системах, возможность введения
конкретных демонстраций. Вращательные движения точки и твердого тела. 3.Колебательное Колебания и волны, интерференция, примеры вычисления хода волны в неоднородной среде. 4.Статика Равновесные и неравновесные процессы в сложных статистических системах, возможность введения понятия обобщенных
Вращательные движения точки и твердого тела. 3.Колебательное Колебания и волны, интерференция, примеры вычисления хода волны в неоднородной среде. 4.Статика Равновесные и неравновесные процессы в сложных статистических системах, возможность введения понятия обобщенных
3.Колебательное уравнение вычисления хода волны в неоднородной среде. 4.Статика Равновесные и неравновесные процессы в сложных статистических системах, возможность введения понятия обобщенных
уравнение вычисления хода волны в неоднородной среде. 4.Статика Равновесные и неравновесные процессы в сложных статистических системах, возможность введения понятия обобщенных
4.Статика Равновесные и неравновесные процессы в сложных статистических системах, возможность введения понятия обобщенных
сложных статистических системах, возможность введения понятия обобщенных
введения понятия обобщенных
тармолинаминаских сил
термодинамических сил.
5. Молекулярно- Энтропия и ее поведение в разных процессах.
кинетическая Проверка закона возрастания энтропии и
теория, установления термодинамического равновесия
термодинамика. на математической модели. Производство
энтропии в неравновесной среде.
6.Электро- Вычисление характеристик статических
магнетизм. электрических и магнитных полей с помощью
интегральных уравнений Максвелла.
7.Диффузия Прямые и обратные задачи дифракции.
Моделирование процесса рентгеноструктурного
анализа.
8. Атомная Взаимодействие света и вещества. Дисперсия и
физика поглощение света. Количественный анализ
вещества по спектрам поглощения.
Стационарное уравнение Шредингера и
простейшие одномерные задачи. "Металлическая
модель" молекулы с сопряженными связями.
Разделение электронных и ядерных движений в
молекулах.
9.Статика Симметрия молекул и кристаллов.
Электрические свойства симметричных
объектов.

Наименование тем лабораторных работ						
МОДУЛЬ I						
Лабораторная работа № 1. Изучение законов динамики вращательного						
движения на крестообразном маятнике Обербека.						
Лабораторная работа №2. Определение скорости звука в воздухе методом						
стоячей волны						
Лабораторная работа №3. Изучение сил сухого трения						

Лабораторная работа №4. Определение момента инерции тел с помощью крутильного маятника

Лабораторная работа № 5. Определение ускорения свободного падения с помощью универсального маятника

Лабораторная работа № 6. Определение ускорения свободного падения на машине Атвуда

Лабораторная работа № 1. Изучение собственных колебаний сосредоточенной системы

Лабораторная работа № 2. Изучение движения маятника Максвелла

Лабораторная работа № 3. Определение модуля Юнга из растяжения и изгиба

Лабораторная работа № 4. Определение коэффициента Пуассона и периода биений

Лабораторная работа № 5. Определение скорости полета пули с помощью баллистического маятника

Лабораторная работа №6. Исследование упругих и неупругих столкновений шаров

МОДУЛЬ II

Лабораторная работа № 1. Изучение работы термостата и определение среднего значения теплоты испарения воды

Лабораторная работа №2. Определение коэффициента вязкости жидкости методом крутильных колебаний

Лабораторная работа №3. Определение отношения Ср/С для воздуха

Лабораторная работа №4. Определение коэффициента линейного расширения металла

Лабораторная работа №5 Определение длины свободного пробега и эффективного диаметра молекул воздуха

Лабораторная работа №6. Исследование изменения энтропии в изолированной системе

модуль III

Лабораторная работа №1. Изучение электромагнитных волн в двухпроводной линии

Лабораторная работа №2. Измерение мощности переменного тока и сдвига фаз между током и напряжением

Лабораторная работа №3. Определение горизонтальной составляющей вектора индукции магнитного поля Земли

Лабораторная работа №4. Измерение коэффициента самоиндукции и емкости. Проверка закона Ома для переменного тока

Лабораторная работа №1. Изучение закона Ома для цепей постоянного тока и изменения электродвижущей силы

Лабораторная работа №2. Изучение вакуумного диода

Лабораторная работа №3. Снятие вольтамперной характеристики газоразрядной лампы и изучения резонансных колебаний

Лабораторная работа №4. Изучение электростатического поля

Лабораторная работа №5. Проверка закона Ома для проводников второго

рода и определение заряда электрона

МОДУЛЬ 1V

Лабораторная работа № 1. Вращение плоскости поляризации света в магнитном поле

Лабораторная работа №2. Изучение чистоты обрабатывающей поверхности с помощью микроинтерферометра Линника

Лабораторная работа №5. Изучение, градуировка монохроматора УМ-2 и снятие спектров излучения

Лабораторная работа №6. Определение удельного вращения плоскости поляризации сахарного раствора с помощью сахариметра СУ-3

Лабораторная работа №7. Тепловое излучение

Лабораторная работа №8 Качественный спектральный анализ

Лабораторная работа №9. Изучение температурной зависимости показателя преломления жидкости с помощью рефрактометра ИРФ-22

Лабораторная работа №1 Фотоэлектрический эффект

Лабораторная работа №2. Изучение явления поляризации в параллельных лучах

Лабораторная работа №3. Определение длины световой волны с помощью бипризмы Френеля

Лабораторная работа №4. Изучение работы зонной пластинки

Лабораторная работа №5. Изучение принципа работы лазера непрерывного действия. Определение длины световой волны лазерного излучения

Лабораторная работа №6. Когерентность света

5.Образовательные технологии

В процессе преподавания «Физика» дисциплины следующие образовательные технологии: развивающее применяются обучение, проблемное обучение, коллективная система лекционно-зачетная система обучения. При чтении данного применяются такие виды лекций, как вводная, лекция-информация, обзорная, проблемная, лекция-визуализация.

Удельный вес занятий, проводимых интерактивных формах проблемная (лекция-беседа, лекция-дискуссия, лекция-консультация, лекция-визуализация, лекция c запланированными ошибками), определяется главной (миссией) программы, особенностью целью контингента обучающихся содержанием конкретных дисциплин, и в И целом в учебном процессе.

Для выполнения физического практикума и подготовке к практическим (семинарским) занятиям изданы учебно-методические пособия и разработки по курсу общей физики, которые в сочетании с внеаудиторной работой способствуют формированию и развития профессиональных навыков обучающихся. се по данной дисциплине они должны составлять не менее 20 часов аудиторных занятий.

В рамках лабораторного практикума используется умение студентов производить расчеты с помощью средств вычислительной техники. Это позволяет существенно приблизить уровень статистической культуры обработки результатов измерений в практикуме к современным стандартам, принятым в науке и производственной деятельности. На этих занятиях студенты уже на I курсе приобретают опыт общения с ЭВМ и использования статистических методов обработки результатов наблюдений, что совершенно необходимо для работы в специальных учебных и производственных лабораториях.

В рамках учебного процесса предусмотрено приглашение для чтения лекций ведущих ученых из центральных вузов и академических институтов России.

6.Учебно-методическое обеспечение самостоятельной работы студентов.

Успеваемость оценивается по средствам фронтального опроса, проведение контрольных работ, коллоквиумов. Форма оценки в виде зачета, экзамена. Оценивается самостоятельная работа студента, домашнее задание.

Самостоятельная работа студентов реализуется в виде:

- подготовки к контрольным работам;
- подготовки к семинарским занятиям;
- оформления лабораторно-практических работ (заполнение таблиц, решение задач, написание выводов);
- выполнения индивидуальных заданий по основным темам дисциплины;
- написание рефератов по проблемам дисциплины "Физика". Экзамен в конце второго семестра, включающий проверку теоретических знаний и умение решения по всему пройденному материалу.

7. Фонд оценочных средств для проверки текущего контроля успеваемости промежуточной аттестации.

В учебном процессе для освоения дисциплины используются следующие технические средства:

- компьютерное и мультимедийное оборудование (на лекциях, для самоконтроля знаний студентов, для обеспечения студентов методическими рекомендациями в электронной форме);
- приборы и оборудование учебного назначения (при выполнении лабораторных работ);
- пакет прикладных обучающих программ (для самоподготовки и самотестирования);

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Код компетенци и из ФГОС ВО	Наименование компетенции из ФГОС ВО	Планируемые результаты обучения	Процедура освоения
ОПК-1	владением методами обработки, анализа и синтеза полевой и лабораторной информации в области почвоведения, мелиорации, физики, химии, географии, биологии, экологии, эрозии почв, агрохимии и агрофизики, почвенноландшафтного проектирования, радиологии почв, охраны и рационального использования почв	• основные физические законы и их следствия (физические основы механики; колебания и волны, основы молекулярной физики и термодинамики, электричества и магнетизма, оптики, атомной и ядерной физики), физические принципы исследования химических, биологических и сельскохо-зяйственных объектов и измерения отдельных их характеристик; • основные законы физики, физические явления и закономерности; • теоретические основы физических методов анализа вещества; • характеристики физические уарактеристики физических факторов, оказывающих воздействие на живой организм; • метрологические требования при работе с физической аппаратурой, правила техники безопасности работы в химической	Устный опрос, отчет по лабораторным работам, решение задач, компьютерное тестирование, представление рефератов, выполнение творческих заданий

		лаборатории и с	
		физической	
		аппаратурой;	
		этические аспекты	
		воздействий физических	
		факторов на человека.	
		І. Уметь:	
		• создавать и	
		анализировать на основе	
		физических законов и	
		их следствий	
		теоретические модели	
		явлений природы;	
		• использовать в	
		практике важнейшие	
		физические	
		измерительные приборы	
		и приемы.	
		І. Владеть:	
		устройством используемых	
		ими приборов и принципов	
		их действия, приобрести	
		навыки выполнения	
		физических измерений,	
		проводить обработку	
		результатов измерений с	
		использованием	
		статистических методов и	
		современной	
		вычислительной техники.	
ПК-2	способностью	Знать:	Устный опрос,
	эксплуатировать		отчет по
	современную	• пользоваться	лабораторным
	аппаратуру и	теоретическими осно-	работам,
	оборудование для	вами, основными	решение задач,
	выполнения	понятиями, законами и	компьютерное
	научно-	моделями курса физики;	тестирование,
	исследовательски	• умениями использования	представление
	х полевых и	научной и учебной	рефератов,
	лабораторных	литературы;	выполнение
	исследований в	• физические параметры,	творческих
	области	характеризующие	заданий
	почвоведения,	функциональное	

мелиорации, физики, химии, географии, биологии, экологии, эрозии почв, агрохимии и агрофизики, почвенноландшафтного проектирования, радиологии почв, охраны и рационального использования почв состояние органов и тканей: механические, электрические, электромаг-нитные, оптические.

Уметь:

- •применять полученные теоретические знания при решении конкретных задач по работе с экспериментальной аппаратурой;
- •слушать и конспектировать лекции, а также самостоятельно добывать знания по изучаемой дисциплине;
- •излагать и критически анализировать получаемую на семинарских занятиях информацию, пользоваться учебной литературой, Internet ресурсами;
- •применять полученные знания при решении задач на выступлениях, на семинарских занятиях.

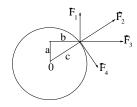
Владеть:

- устройством используемых ими приборов и принципов их действия;
- приобрести навыки выполнения физических измерений;
- проводить обработку результатов измерений с использованием статистических методов

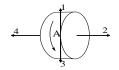
		и современной вычислительной техники; методикой и теоретическими основами анализа экспериментальной и теоретической информации в области физики.	
ПК-3	способностью применять на практике базовые общепрофессиона льные знания теории и методов полевых исследований в области почвоведения, мелиорации, физики, химии, географии, биологии, экологии, эрозии почв, агрохимии и агрофизики, почвенноландшафтного проектирования, радиологии почв, охраны и рационального использования почв	 Энать: теоретические основы, основные понятия, законы и модели курса общей физики; методы обработки и анализа экспериментальной и теоретической информации в области физики; Уметь: понимать, излагать и критически анализировать базовую информацию в области физики; пользоваться теоретическими основами, основными понятиями, законами и моделями курса физики; измерять физические параметры и оценивать физические свойства биологических объектов с помощью механических, электрических и оптических методов; выбирать оптимальный метод качественного и количественного анализа вещества, используя соответствующие физические приборы и 	Устный опрос, отчет по лабораторным работам, решение задач, компьютерное тестирование, представление рефератов, выполнение творческих заданий

аппараты; • идентифицировать предложенные соединения на основе данных УФ- и ИК-спектроскопии;	
• работать с микроскопом	
и бинокуляром.	
Владеть:	
• методикой и	
теоретическими осно-	
вами анализа	
экспериментальной и	
теоретической	
информации в области	
физики;	
• навыками обработки и анализа	
экспериментальной и теоретической	
информации в области	
физики;	
• способностью	
эксплуатировать	
современную аппаратуру	
и оборудование для	
выполнения научно-	
исследовательских и	
лабораторных работ;	
методиками измерения	
значений физических	
величин, методикой	
оценки погрешностей	
измерений.	

7.2. Типовые контрольные задания


Примеры тестовых заданий по физике

Механика


1. Тело массой 2 кг поднято над Землей. Его потенциальная энергия 400 Дж. Если на поверхности Земли потенциальная энергия тела равна нулю и силами сопротивления воздуха можно пренебречь, скорость тела после прохождения ½ расстояния до Земли составит ...

2. К точке, лежащей на внешней поверхности диска, приложены 4 силы. Если ось вращения проходит через центр о диска перпендикулярно плоскости рисунка, то плечо силы F_4 равно...

3. Диск равноускоренно вращается вокруг оси (см.рис.). Укажите направление вектора углового ускорения точки A на ободе диска.

- 4. Если a_{τ} и a_n тангенциальная и нормальная составляющие ускорения, то соотношения $a_{\tau} = a = \text{const}, \ a_n = 0$ справедливы для...
 - 1) прямолинейного равномерного движения
 - 2) равномерно криволинейного движения
 - 3) равномерного движения по окружности
 - 4) прямолинейного равноускоренного движения
- 5. Если \vec{a}_{τ} и \vec{a}_{n} тангенциальная и нормальная составляющие ускорения, то для прямолинейного равноускоренного движения справедливы соотношения:

1)
$$a_{\tau} \neq \text{const}$$
; $a_{n} = 0$

2)
$$a_{\tau}=0$$
; $a_{n}=0$

3)
$$a_{\tau} = a = const$$
; $a_n = 0$ 4) $a_{\tau} = 0$; $a_n = const$

6. Диск радиуса R вращается вокруг вертикальной оси равнозамедленно с заданным направлением вектора углового ускорения $\vec{\varepsilon}$.

Укажите направление вектора линейной скорости

- 1) 4 2) 2 3) 3 4) 1
- 7. Из следующих математических выражений второго закона Ньютона выберите правильное:

1)
$$\vec{F} = ma$$
 2) $\vec{\theta} = const$ 3) $\vec{F} = m^2 \vec{a}$ 4) $\vec{F}_1 = -\vec{F}_2$ 5) $\vec{F} = m\vec{a}$ 6) $\vec{F} = m\vec{\theta}$

- 8. Упругое столкновение это такое столкновение, при котором тела обмениваются:
- 1) импульсами и кинетическими энергиями, а внутренние энергии их не изменяются;
- 2) импульсами и кинетическими энергиями и меняют свои внутренние энергии;
 - 3) только внутренними энергиями
- 9. Какой продолжительности T должны были быть сутки на Земле, чтобы тела на экваторе не имели веса? Считать радиус Земли R=6400км.
- 1) $T \approx 0.01*T_0$ 2) $T \approx 0.02*T_0$ 3) $T \approx 0.1*T_0$ 4) $T \approx 0.3*T_0$ 5) $T \approx 0.5*T_0$ 3десь $T_0 = 24$ ч (земные сутки).
- 10. Из приведенных ниже формулировок третьего закона Ньютона выберите правильную:
- 1) два тела взаимодействуют между собою силами равными по модулю;
- 2) два тела взаимодействуют между собою силами, направленными в противоположные стороны;
- 3) два тела взаимодействуют между собою силами равными по модулю и направленными в противоположные стороны вдоль прямой, соединяющей центры масс этих тел.
- 11. На горизонтальном столе стоит сосуд, наполненный водой. В каком месте сосуда надо сделать отверстие, чтобы струя из него била в поверхность стола возможно дальше от сосуда?
 - 1) на расстоянии 1/3 высоты сосуда, считая от дна сосуда;
 - 2) на расстоянии 1/3 высоты сосуда, считая от поверхности воды;
 - 3) на расстоянии 1/2 высоты сосуда.
- 12. Гравитационная энергия шарообразного небесного тела дается следующими формулами:

1)
$$E = -\frac{9}{5}G\frac{M}{R^2}$$
; 2) $E = -\frac{3}{5}G\frac{M^2}{R}$; 3) $E = \frac{1}{2}G\frac{M^2}{R^2}$; 4) K_{IJ}/M^2 ,

где G — гравитационная постоянная, M — масса небесного тела, R — радиус шарообразного тела. Укажите правильное выражение.

- 13. В одном случае автомобиль прошел первую половину пути со скоростью 40 км/ч, а вторю половину пути со скоростью 80 км/ч, а в другом случае первую половину времени двигался со скоростью 40 км/ч, вторую половину времени со скоростью 80 км/ч. определить средние скорости в каждом случае.
 - 1) Средние скорости в обоих случаях одинаковы;
 - 2) Средняя скорость в первом случае больше, чем во втором;
 - 3) Средняя скорость во втором случае больше, чем в первом; Выберите правильный ответ.
- 14. Поезд массой 500 тонн поднимается со скоростью 30км/ч по уклону 10 м на 1 км пути. Коэффициент трения 0,002.

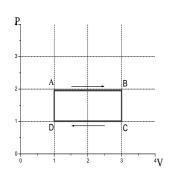
Определить мощность, развиваемую локомотивом.

Решите задачу и укажите правильный ответ.

1)
$$N = 1000 \ \kappa Bm$$
 2) $N = 730 \ \kappa Bm$ 3) $N = 470 \ \kappa Bm$ 4) $N = 840 \ \kappa Bm$

Молекулярная физика и термодинамика

- 1. Состояние идеального газа определяется значениями параметров: T_0 , p_0 , V_0 , где T термодинамическая температура, p давление, V объем газа. Определенное количество газа перевели из состояния $(3p_0, V_0)$ в состояние $(p_0, 2V_0)$. При этом его внутренняя энергия...
 - 1) увеличилась
 - 2) уменьшилась
 - 3) не изменилась
- 2. Если ΔU изменение внутренней энергии идеального газа, A работа газа, Q количество теплоты, сообщаемое газу, то для изобарного нагревания газа справедливы соотношения...
 - 1) Q>0; A>0; ΔU=0
 - 2) Q>0; A>0; ΔU>0
 - 3) Q=0; A<0; $\Delta U>0$
 - 4) Q > 0; A = 0; $\Delta U > 0$
- 3.Средняя кинетическая энергия молекулы идеального газа при температуре T равна $\varepsilon = \frac{1}{2}kT$. Здесь $i=n_n+n_{\text{вр}}+2n_k$, где n_n , $n_{\text{вр}}$ и n_k число


степеней свободы поступательного, вращательного и колебательного движений молекулы. При условии, что имеют место только поступательное и вращательное движение, для водяного пара (H₂O) число і равно...

- 1) 3
- 2) 6
- 3) 5
- 4)8

4. Тепловая машина работает по циклу Карно. Если температуру нагревателя и холодильника увеличить на одинаковую величину ΔT , то КПД цикла...

- 1) не изменится 2) уменьшится
- 3) увеличится

5. На (P,V)-диаграмме изображен циклический процесс.

6. Если ΔU – изменение внутренне энергии идеального газа, A – работа газа, Q – количество теплоты, сообщаемое газу, то для процесса ABсправедливы соотношения...

- a. Q>0; A>0; $\Delta U=0$
- b. Q=0; A<0; ΔU>0
- c. Q>0; A=0; $\Delta U>0$
- d. Q>0; A>0; $\Delta U>0$

7. Определите среднюю кинетическую энергию поступательного движения молекул воздуха при давлении $10^5\,\Pi a$ и концентрации этих молекул $2{,}710^{25}$ M^{-3} .

- 1) 3.810^{-20} Дж 2) 5.610^{-21} Дж
- 3) 3,210⁻²¹Дж
- 4) 910⁻²¹Дж 5) 1,210^{-21Дж}

значение

8. Как изменится внутренняя энергия идеального газа при изотермическом сжатии?

- 1) U=0 2) $\Delta U>0$
- 3) $\Delta U=0$
- 4) $\Delta U < 0$
- 5) **Δ**U может иметь любое

9.Зависимость давления газа от его объема выражается формулой P=αV, где
α=const. Чему равна работа, совершаемая газом при его расширении от
объема V_1 до объема V_2 ?
1) $\alpha/2(V_2-V_1)^2$ 2) $\alpha/2(V_2^2-V_1^2)$ 3) $\alpha(V_2^2-V_1^2)$ 4) $\alpha(V_2-V_1)^2$
5) 0
10. Молекулы, какого из перечисленных газов, входящих в состав воздуха, в

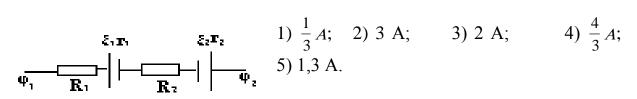
равновесном состоянии обладают наибольшей средней арифметической скоростью?

- 1) N_2 2) O_2 3) H_2 4) CO_2
- 11. При каких условиях реальные газы подчиняются законам идеального газа?
 - 1) при больших плотностях и низких температурах;
 - 2) при малых плотностях и не очень высоких и не слишком низких температурах;
 - 3) при малых плотностях и высоких температурах;
 - 4) при малых плотностях и низких температурах;
 - 5) при больших плотностях и не очень высоких и не слишком низких температурах.
- 12.Из капельницы накапали равные массы холодной и горячей воды. Как и во сколько раз изменился коэффициент поверхностного натяжения воды, если в первом случае образовалось 40, а во втором 48 капель?
 - 1) увеличился в 1,2 раза;
 - 2) уменьшился в 1,2 раза;
 - 3) не изменился;
 - увеличился в 2,4 раза;
 - 5) уменьшился в 1,44 раза

13. Критическая температура определяется из выражения:

1)
$$T_K = 3e$$
 2) $T_K = a/27e^2$ 3) $T_K = 8a/27Re$ 4) $T_K = 3e/27a^2$

3)
$$T_K = 8a/27Re$$
 4) $T_K = 3e/27a$


Здесь а и в постоянные Ван-Дер-Ваальса.

Электричество и магнетизм

1. Конденсатор емкости С присоединен к источнику тока, который поддерживает на его обкладках разность потенциалов U. Какой заряд протекает через источник при заполнении пространства между пластинами жидкостью с диэлектрической проницаемостью є?

1)
$$\frac{UC}{\varepsilon-1}$$
; 2) $UC(\varepsilon-1)$; 3) $\frac{UC}{\varepsilon}$; 4) $UC\varepsilon$; 5) $\frac{U^2\varepsilon}{C}$;

- **2.** Поверхностная плотность зарядов на некотором участке проводника, помещенного в электрическое поле, оказалось 1,77 $10^{-8} \frac{Kn}{M^2}$. Какова напряженность поля на этом участке?
- 1) $1 \ 10^2 \ \frac{B}{M}$; 2) 2 $10^3 \ \frac{B}{M}$; 3) 5.5 $10^4 \ \frac{B}{M}$; 4) 3 $10^5 \ \frac{B}{M}$; 5) не соответствует ни один.
 - **3.** Определите силу тока на участке цепи, если ϕ_1 ϕ_2 = 10B ϵ_1 = 5B ϵ_2 = 3B R_1 =3 Ом R_2 = 2 Ом r_1 = r_2 =0,5 Ом

- **4.** Бесконечно длинный провод образует круговую петлю, касательной проводу. По проводу идет ток силой I=5A. Найти радиус петли, если известно, что напряженность магнитного поля в центре петли равно $H=41\frac{A}{M}$.
- 1) 1,2 м; 2) 3 10^{-1} м; 3) 2 10^{-1} ; 4) 0,08 м; 5) 3 10^{-2} м. **5.** По двум контурам с взаимной индуктивностью 2 Гн текут токи 2 А и 5 10^{-2} А. Определить взаимную энергию токов в этих контурах.
 - 1) $5\ 10^{-2}\ Дж;$ 2) $2\ 10^{-1}\ Дж;$ 3) $2\ Дж;$ 4) $4\ Дж;$ 5) не соответствует ни один.
 - 6. Укажите среди перечисленных выражений формулу, определяющую что есть индукция магнитного поля (F сила, M момент сил)

1)
$$d\vec{B} = \mu_0 \frac{I[d\vec{l} \ \vec{r}]}{4\pi r^3}; \qquad 2) \ \vec{B} = \frac{d\vec{F}}{Id\vec{l}}; \qquad 3) \ B = \frac{M_{MAX}}{IS}; \qquad 4) \text{ ни один }; \qquad 5)$$

7. Как связанно напряженность с потенциалом?

1)
$$-\vec{E} = \left(\frac{\partial \varphi}{\partial x}\vec{i} + \frac{\partial \varphi}{\partial y}\vec{j} + \frac{\partial \varphi}{\partial z}\vec{k}\right);$$
 2) $E = \text{grad }\varphi;$ 3) $\vec{E} = \text{grad }\varphi;$ 4) $E = \frac{\partial \varphi}{\partial n};$

5)
$$E = - \operatorname{grad} \varphi$$

все.

8. В цепь с переменным напряжением $U = U_0 \cos \omega t$ включили индуктивность L с активным сопротивлением R. Определить ток в цепи.

1)
$$\frac{U_0}{R}\cos(\omega t - \varphi)$$
, где $tg\varphi = \frac{L\omega}{\sqrt{R^2 + \omega^2 L^2}}$.

2)
$$\frac{U_0}{\sqrt{R^2 + \omega^2 L^2}} \cos(\omega t - \varphi), \text{ где } tg\varphi = \frac{R}{\sqrt{R^2 + \omega^2 L^2}}.$$

3)
$$\frac{U_0}{Lw}\cos(\omega t - \varphi)$$
, $r \angle g \varphi = \frac{L\omega}{\sqrt{R^2 + \omega^2 L^2}}$.

4)
$$\frac{U_0}{\sqrt{L^2\omega^2 + R^2}}\cos(\omega t - \varphi)$$
, $r \angle e \cos \varphi = \frac{R}{\sqrt{R^2 + \omega^2 L^2}}$.

5)
$$\frac{U_{3\phi}}{\sqrt{R^2 + \omega^2 L^2}} \cos(\omega t + \varphi), \text{ fig. } \cos\varphi = \frac{L\omega}{\sqrt{R^2 + \omega^2 L^2}}.$$

9. Что такое напряженность поля?

1)
$$\frac{Q}{4\pi\varepsilon_0 r^2}$$
; 2) $\frac{Q}{4\pi\varepsilon_0 r^2} \frac{\vec{r}}{r}$; 3) $\frac{\vec{F}}{q}$; 4) $\frac{q}{4\pi\varepsilon_0 r}$; 5) $\frac{Q}{4\pi\varepsilon_0 r^2} \vec{r}$.

- 10. От чего зависит напряженность электрического поля?
- 1) от величины пробного заряда и силы, действующей на него.
- 2) от силы, действующей на пробный заряд.
- 3) от заряда создающего поле и от среды.
- 4) от величины заряда, создающего поле, удаленности создателя поля и от среды.
- 5) от заряда, создающего поле, среды, где определяется поле, величины пробного заряда.

Оптика

- **1**. Какое из выражений определяет предельный угол полного внутреннего отражения для луча света, идущего из среды с показателем преломления n_1 в среду с показателем преломления n_2 ($n_2 > n_1$)?
 - 1. $\sin \alpha = n_1 / n_2$; 2. $\sin \alpha = n_2 / n_1$; 3. $\sin \alpha = 1 / n_1$; 4. $\sin \alpha = 1 / n_2$;
 - 5. Среди ответов 1-4 нет правильного.
- 2. Определить оптическую силу рассеивающей линзы, если известно, что предмет, помещенный перед ней на расстоянии 0,4 м, дает мнимое изображение, уменьшенное в 4 раза.
 - 1. 7,5 дптр; 2. 7,5 дптр; 3. 10 дптр; 4. 5 дптр; 5. 5 дптр.
- 3. Какие из нижеприведенных условий являются условиями минимума от дифракционной решетки?
 - 1. $d \sin \varphi = m\lambda$; $(m=0,\pm 1,\pm 2,...)$
 - 2. $b\sin\varphi = m\lambda$; (d = a + b)
 - 3. $d \sin \varphi = (m + p / N)\lambda$; (p = 1,2,...,N-1)

- 4. $d(\sin \alpha \sin \varphi) = m\lambda$; α -угол падения
- 5. $d \sin \alpha = m\lambda$; 6. Среди ответов 1-5 нет верного.
- **4**. Под каким углом нужно отразить луч от кристалла с показателем преломления n, чтобы получить максимальную поляризацию отраженного луча?
- 1. $\varphi = \arccos n$; 2. $\varphi = \operatorname{arcctgn}$; 3. $\varphi = \operatorname{arctgn}$; 4. $\varphi = \arcsin n$; 5. Среди ответов 1 -4 нет правильного.
- **5**. Как изменится частота красной границы фотоэффекта, если шару радиуса R сообщить положительный заряд q?
- 1. Увеличится на $eq/(4\pi\varepsilon_0 Rh)$; 2. Не изменится; 3. Уменьшится на $eq/(4\pi\varepsilon_0 Rh)$;
- 4. Увеличится на $eq / (4\pi \varepsilon_0 R^2 h)$; 5. Уменьшится на $eq / (4\pi \varepsilon_0 R^2 h)$.
- **6**. Какую максимальную кинетическую энергию имеют вырванные из лития электроны при облучениии светом с частотой 10^{15} Гц? (A=2,4 эB, h= 6,62 10^{-34} Дж.с, 1 эВ = 1,9. 10^{-19} Дж).
 - 1. 0,95 9B; 2. 2,5 9B; 3. 1,3 9B; 4. 3,15 9B; 5. 1,74 9B.

Атомная и ядерная физика

- 1. На основе результатов каких опытов Резерфорд предложил планетарную модель атома.
- 1. Опыты Ленарда.
- 2. Опыты по взаимодействию протонов с веществом.
- 3. Бомбардировка α- частицами металлических пленок.
- **2.**Укажите второй продукт ядерной реакции: ${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + ?$
 - 1.n
 - 2.p
 - 3.y.
- **3.**Какой порядковый номер в таблице Менделеева имеет элемент, который образуется в результате β- распада ядра элемента с порядковым номером Z
 - 1. Z+1
 - 2. **Z**-1
 - 3. Z.
- **4.** Определите число электронов в электронной оболочке нейтрального атома, в атомном ядре которого содержится 6 протонов и 8 нейтронов.
 - 1.0
 - 2.2
 - 3. 6
- **5.** Почему теория Бора не смогла объяснить спектральные закономерности Гелия?
 - 1. Бор пользовался только классической физикой

- 2. Бор пользовался классической механикой и квантовыми закономерностями излучения, допуская логическую непоследовательность.
 - 3. Бор учитывал только квантовые закономерности излучения.
- **6.** Какое из трех типов излучения (α, β, γ) не отклоняется электрическим и магнитным полями?
- 1. α- излучение
- 2. β- излучение
- 3. у- излучение.
- 7. Каково соотношение между массой $m_{\rm s}$ стабильного ядра и суммой масс свободных протонов Z $m_{\rm p}$, и свободных нейтронов N $m_{\rm n}$, из которых составлено ядро
- 1. $m_g > Zm_p + Nm_n$
- $2. m_{g} < Zm_{p} + Nm_{n}$
- $3. m_g = Zm_p + Nm_n.$
- **8.** Проявлением какого типа взаимодействий, существующих в природе, являются ядерные силы, действующие между нуклонами в ядре?
- 1. электромагнитные
- 2. Гравитационные
- 3. Сильные
- Слабые.
- 9. Каков порядок величины радиуса ядра атома?
- 1. 10⁻⁸см
- 2. 10^{-13} cm
- 3. 10^{-17} cm.

а) Примерные вопросы для самоподготовки по механике (І модуль):

- 1. В чем заключаются координатный и векторный способы описания движения?
- 2. Что называется средней и мгновенной скоростями изменения координаты х точки (v_{xcp_x}, v_x) ?
- 3. Что называется средним и мгновенным ускорениями точки по оси X (a_{xep} , a_x)?
- 4. Что определяет уравнение $x = x_0 + v_x t$? Какое движение оно описывает? Как изменяются со временем величины v_x , a_x ?
- 5. Что определяют соотношения: $v_x = v_{x0} + a_x t$, $x = x_0 + v_{x0} t + a_x t^2 / 2$?
- 7. Что называется средним и мгновенным вектором скорости точки $(\mathbf{v}_{cp}, \mathbf{v})$? Как направлены эти вектора?

- 8. Что называется средним и мгновенным вектором ускорения точки $(\mathbf{a}_{cp}, \mathbf{a})$? Как они направлены?
- 9. Как связан вектор скорости \mathbf{v} со скоростями \mathbf{v}_{x} , \mathbf{v}_{y} , \mathbf{v}_{z} ?
- 10. Как найти модули векторов скорости, ускорения |а|?
- 11. Как связаны координатный и векторный способы описания движения?
- 12. Как разложить вектор ускорения **a** на нормальную и тангенциальную составляющие (a_n и a_n)?
- 13. Как влияет на вектор скорости **v** точки тангенциальное ускорение a_{\square} ?
- 14. Как влияет на вектор скорости **v** точки нормальное ускорение a_n ?
- 15. Точка движется равномерно по кривой. Чему равно a_n ? a_{\square} ?
- 16. Точка движется по прямой с увеличивающейся скоростью. Чему равно a_n ?
- 17. Что называется средней угловой скоростью? Мгновенной угловой скоростью?
- 18. Как направлен вектор угловой скорости?
- 19. Что называется средним угловым ускорением? Мгновенным ускорением?
- 20. Как направлен вектор углового ускорения?
- 21. Чем определяется число степеней свободы механической системы?
- 22. Как направлен вектор элементарного углового перемещения?
- 23. Является ли вектором конечное угловое перемещение?
- 24. Как связаны линейные и угловые кинематические характеристики?
- 25. Колесо вращается вокруг неподвижной оси, проходящей через центр масс. Обладает ли любая точка на ободе нормальным, тангенциальным ускорением, меняются ли со временем модули этих ускорений, если колесо вращается:
 - а) с постоянной угловой скоростью $\mathbf{w} = const;$
 - б) с постоянным угловым ускорением $\beta = const.$
- 26. Какие системы отсчета называются инерциальными?
- 27. Почему первый закон Ньютона является самостоятельным, хотя на первый взгляд он следует из второго закона Ньютона?
- 28. Что такое сила? Каковы следствия действия силы? Как измерить силу? Как суммируются силы?
- 29. Что такое масса? Как измерить массу? В чем заключается свойство аддитивности массы?
- 30. Что называется импульсом материальной точки и импульсом системы материальных точек?
- 31. Сформулируйте основной закон динамики для материальной точки и для системы материальных точек.
- 32. Как записать уравнение движения тела в векторной и скалярной форме?
- 33. Сформулируйте III закон Ньютона в форме равенства действия и противодействия.
- 34. Почему принцип относительности является постулатом?
- 35. Какие системы отсчета называются неинерциальными?

- 36. Чему равна и как направлена центробежная сила инерции?
- 37. Сформулируйте условия равновесия тела относительно равномерно вращающейся неинерциальной системы отсчета.
- 38. Что такое сила Кориолиса? Когда она возникает? Как определить ее направление и величину?
- 39. Что называется моментом силы (величина, направление)?
- 40. Сформулируйте основной закон динамики для вращательного движения.
- 41. Чему равна кинетическая энергия вращающегося тела? Сформулируйте теорему Кёнига.
- 42. Что называется моментом импульса материальной точки? Какова его величина и направление?
- 43. Что называется моментом импульса твердого тела?
- 44. Определите момент импульса материальной точки массой m, движущейся со скоростью
- 45. Что называется импульсом материальной точки?
- 46. Сформулируйте II закон Ньютона в импульсной форме для системы тел.
- 47. Что называется импульсом силы? Какова связь между импульсом силы и изменением импульса тела, на которое она действует? Рассмотрите 2 случая: сила неизменна; сила меняется со временем.
- 48. Сформулируйте закон сохранения импульса системы тел и отдельных его проекций.
- 49. Что называется работой силы?
- 50. Груз подвешен к нерастяжимой нити и оттянут в сторону от положения равновесия на угол α. Какие силы действуют на груз? Какую работу совершают эти силы на пути движения его к положению равновесия?
- 51. Какие силы называются консервативными? Неконсервативными? Приведите примеры.
- 52. Шар, насаженный на жесткий стержень, совершает полный оборот. Какую работу при этом совершает сила тяжести?
- 53. Что называется кинетической энергией тела, системы тел? Как связаны между собой изменение кинетической энергии и работа сил?
- 54. Что называется потенциальной энергией системы тел? Какова связь изменения потенциальной энергии системы с работой сил?
- 55. Что называется полной механической энергией системы?
- 56. Какие причины могут вызвать изменение полной механической энергии системы?
- 57. Сформулируйте закон сохранения механической энергии.
- 58. Сформулируйте основное уравнение динамики вращательного движения твердого тела (уравнение моментов).
- 59. Сформулируйте закон изменения момента импульса системы тел.
- 60. Составьте сравнительную таблицу величин и законов для поступательного и вращательного движений.
- 61. Формулировка закона всемирного тяготения. Условия его применимости.
- 62. Сравнение гравитационного взаимодействия с другими видами взаимодействий.

- 63. Вычислите соотношение силы гравитационного притяжения между электронами к силе их электростатического отталкивания.
- 64. Рассчитайте потенциал гравитационного поля точечной массы.
- 65. Запишите уравнение движения искусственного спутника Земли.
- 66. От чего зависит величина ускорения свободного падения?
- 67. Чему равна полная механическая энергия движущегося по орбите искусственного спутника Земли?
- 68. Рассчитайте 1, 2 и 3 космические скорости.
- 69. Запишите уравнение гармонического колебательного движения.
- 70. Объясните физический смысл параметров колебания: амплитуды, периода, частоты.
- 71. Что такое фаза колебания? Как фаза колебания зависит от времени?
- 72. В каких единицах измеряется разность фаз двух колебаний?
- 73. В чем заключается графическое представление колебаний?
- 74. От чего зависит амплитуда и начальная фаза результирующего колебания, являющегося суммой двух синхронных скалярных гармонических колебаний?

б) Вопросы для самоподготовки по молекулярной физики и термодинамики (II модуль):

- 1. Что называют термодинамической системой?
- 2. Что такое состояние термодинамической системы?
- 3. Какой набор параметров определяет состояние системы?
- 4. Какая термодинамическая система является однородной?
- 5. Какая термодинамическая система называется равновесной?
- 6. Что такое макроскопическая система?
- 7. Какие трудности возникают при описании макроскопической системы механическими методами?
- 8. Какие параметры системы называются макроскопическими?
- 9. Какие параметры системы называются микроскопическими?
- 10. Как получить значения макроскопических параметров, если известны микроскопические параметры?
- 11. В чём состоит метод среднестатистического среднего?
- 12. Какие системы называют квазизамкнутыми и квазинезависимыми?
- 13. Какими параметрами характеризуется состояние статистической системы?
- 14. Что такое энтропия в статистической физике?
- 15. Как вычисляется энтропия в статистической физике?
- 16. Каким условиям удовлетворяет статистическая энтропия?
- 17. Как связаны между собой энергия, энтропия и температура?
- 18. Какими свойствами обладает модель "идеальный газ"?
- 19. Чему равна среднеквадратичная скорость \overline{V}^2 ?
- 20. Чему равна средняя кинетическая энергия $\bar{\varepsilon}$ атома?
- 21. Как выглядит формула Больцмана?
- 22. Как выглядит распределение Максвелла по компонентам скоростей молекулы?

- 23. Что такое степени свободы?
- 24. Что такое число степеней свободы?
- 25. В чём состоит содержание теоремы о равнораспределении энергии по степеням свободы?
- 26. В чём особенности степеней свободы колебательного движения?
- 27. Как выглядит выражение для общего числа степеней свободы?
- 28. Что такое константа Больцмана?
- 29. Перечислить основные понятия термодинамики.
- 30. Перечислить основные термодинамические параметры состояния тела.
- 31. Дать определение теплоты.
- 32. Дать определение количества теплоты.
- 33. Как определяется температура?
- 34. Что такое абсолютная и эмпирическая температуры?
- 35. Что такое термодинамическая шкала, в чём её отличие от всех других температурных шкал?
- 36. Что такое уравнение состояния?
- 37. Как выглядит уравнение состояния идеального газа?
- 38. Что такое термодинамический процесс?
- 39. Какой процесс называют равновесным?
- 40. Можно ли равновесный процесс считать обратимым?
- 41. Дать формулировку О началу термодинамики.
- 42. Дать формулировку 1 началу термодинамики.
- 43. Дать формулировку 2 началу термодинамики.
- 44. Дать формулировку 3 началу термодинамики.
- 45. Дать определение внутренней энергии идеального газа.
- 46. Как определяется элементарная работа в термодинамике.
- 47. Что означает, что изменение внутренней энергии является полным дифференциалом?
- 48. Как выглядит первое начало термодинамики для изохорического процесса?
- 49. Как выглядит первое начало термодинамики для изобарического процесса?
- 50. Как выглядит первое начало термодинамики для изотермического процесса?
- 51. Как выглядит первое начало термодинамики для адиабатического процесса?
- 52. Чему равна работа в изотермическом процессе?
- 53. Чему равна работа в изобарическом процессе?
- 54. Чему равна работа в адиабатическом процессе?
- 55. Чему равна работа в изохорическом процессе?
- 56. Какой термодинамический процесс называется циклическим?
- 57. Как выглядит модель тепловой машины?
- 58. Чему равен коэффициент полезного действия тепловой машины
- 59. Чему равен коэффициент полезного действия холодильной машины?
- 60. Чему равен коэффициент полезного действия цикла Карно?

- 61. Что такое цикл Карно?
- 62. Что такое термодинамическая энтропия?
- 63. Что такое связанная энергия?
- 64. Написать выражение для свободной энергии.
- 65. В чём состоит связь термодинамической и статистической энтропии и в чём статистический смысл второго начала термодинамики.

в) Вопросы для самостоятельной работы по электричеству(Ш модуль):

- 1. Кратко опишите способ вычисления кулоновской силы между двумя протяженными заряженными физическими телами.
- 2. Какова размерность коэффициента поляризуемости? Каков его физический смысл?
- 3. Изобразите картину эквипотенциальных линий электростатического поля для следующих распределений зарядов:
 - а) электрический диполь; б) система двух точечных зарядов; в) система двух равных отрицательных зарядов; д) плоский конденсатор.
- 4. Объясните (на примере однородного поля), почему напряженность электрического поля направлена в сторону наибыстрейшего убывания потенциала.
- 5. В чем заключается метод электростатической защиты? На каком физическом явлении этот метод основан?
- 6. Какой физический смысл вкладывается в понятие сторонних сил? Где действуют эти силы?
- 7. Какой физический смысл вкладывается в понятие ЭДС? Как может быть измерена ЭДС батарейки?

г) Вопросы для самостоятельной работы по магнетизму:

- 8. Изобразите картину линий магнитной индукции для следующих проводников с током и постоянных магнитов:
 - (а) прямолинейный магнит, (б) круговая рамка, (в) соленоид, (г) Земля.
- 9. Чем вихревое поле отличается от потенциального?
- 10. Почему заряженные частицы двигаются в магнитном поле по спирали?
- 11. В чем сходство или различие между током проводимости и индукционным током?
- 12. Какова качественная связь правила Ленца с законом сохранения энергии?
- 13. Почему переменный электрический ток проходит по цепи, содержащий конденсатор, а постоянный не проходит?
- 14. Что нового наблюдается в выражении для циркуляции вектора магнитной индукции по замкнутому контуру (закон полного тока) в том случае, когда в пространстве возникает переменное электрическое поле? Следствием каких экспериментов появляется необходимость введения дополнительного слагаемого?
- 15. В сходство и в чем различие между током проводимости и током сме-

щения?

16. Какие экспериментальные законы электричества и магнетизма легли в основу системы уравнений Максвелла?

<u>д) Вопросы для самостоятельной работы по оптике (1V модуль):</u>

- 17. Составить таблицу "Классификация ЭМ по диапазонам". Указать название диапазона, длины и частоты волн диапазонов, характер действия на живые организмы".
- 18. Чем отличаются ЭМ волны, излучаемые антенной радио передатчика, и световые волны, излучаемые сильно нагретым телом?
- 19. Что такое монохроматическая ЭМ волны? Что такое длина волны? Как длина волны связана с частотой? В чем заключается свойство поперечности ЭМ волн?
- 20. Вывести формулы для плотности энергии электрического и магнитного ЭМ волны.
- 21. В чем заключается принцип фотометрии?
- 22. В чем заключается физиологическая основа фотометрии?
- 23. Что такое когерентные и некогерентные ЭМ волны?
- 24. В максимумах интерференционной картины от двух источников освещенность вчетверо может превышать освещенность, создаваемую одним источником. Нет ли здесь нарушения закона сохранения энергии?
- 25. Приведите примеры по наблюдению интерференции света на основе принципа разделения фронта волны.

е) Вопросы для самостоятельной работы по атомной и ядерной физике:

- 1. Теплового излучения. Абсолютное черное тело.
- 2. Гипотеза квантов Планка. Постоянная Планка h.
- 3. Фотонная (корпускулярная) теория света. В чем заключается фотоэлектрический эффект?
- 4. Сформулировать три основные законы фотоэффекта, установленные экспериментальным путем.
- 5. Что такое работа выхода электрона? Написать и объяснить формулу Эйнштейна.
- 6. Корпускулярно-волновой дуализм.
- 7. Какой спектр называется линейчатым? Обобщенная формула Бальмера.
- 8. Постулаты Бора. В чем противоречие постулатов Бора с классической механикой и термодинамикой Максвелла?
- 9. Энергия атома. Правило квантования.

Примерные темы рефератов по физике

- I. Физические основы механики
- 1. Измерение коэффициента трения качения.
- 2. Гироскоп и его применение в технике.

3. Газодинамические методы ускорения тел.

II. Электричество и магнетизм

- 1. Измерение малых токов, напряжений и зарядов.
- 2. Магнитные цепи в технике.
- 3. Измерение мощности в электрических цепях.
- 4. Электрические токи в атмосфере и грозы.
- 5. Электромагнитные методы ускорения тел.
- 6. Принцип действия электромагнитных реактивных двигателей.

III. Физика колебаний и волн

- 1. Нелинейные электрические цепи.
- 2. Разрешающая способность оптических приборов.
- 3. Лазерный интерферометр.
- 4. Численный расчет дифракции света на круглом отверстии.
- 5. Растровый электронный микроскоп.
- 6. Эффект Допплера и его применение в технике.

7.

V. Статистическая физика и термодинамика

- 1. Влияние шумов на точность измерений.
- 2. Явление диффузии и молекулярные пучки.
- 3. Оже-спектроскопия в вакуумной технологии.
- 4. Применение эффектов Зеебека, Пельтье и Томсона в энергетических системах космических аппаратов.
- 5. Теорема Нернста и ее следствия.
- 6. Самоорганизация в физических система

7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Критерии оценок на курсовых экзаменах

В экзаменационный билет рекомендуется включать не менее 3 вопросов, охватывающих весь пройденный материал, также в билетах могут быть задачи и примеры.

Ответы на все вопросы оцениваются максимум 100 баллами

Лекции - *Текущий контроль* включает:

-	посещение занятий	10 бал.
-	активное участие на лекциях	15 бал.
•	устный опрос, тестирование, коллоквиум	_60 бал.
•	и др. (доклады, рефераты)	15 бал

Практика (р/з) - Текущий контроль включает: (от 51 и выше - зачет)

•	посещение занятий	10 бал.
•	активное участие на практических занятиях	_15 бал.
•	выполнение домашних работ	_15 бал.
•	выполнение самостоятельных работ	20 <u></u> бал.
•	выполнение контрольных работ	_ 40 бал.

Физический практикум - Текущий контроль включает:

(от 51 и выше - зачет)

•	посещение занятий и наличие конспекта	_15 бал.
•	получение допуска к выполнению работы	_20 бал.
•	выполнение работы и отчета к ней	_25 бал.
•	защита лабораторной работы	_40 бал.
	Промежуточный контроль по дисциплине включает:	

- устный опрос 60 баллов,
- письменная контрольная работа 30 баллов,
- тестирование 10 баллов.

Критерии оценок следующие:

- **100 баллов** студент глубоко понимает пройденный материал, отвечает четко и всесторонне, умеет оценивать факты, самостоятельно рассуждает, отличается способностью обосновывать выводы и разъяснять их в логической последовательности.
- 90 баллов студент глубоко понимает пройденный материал, отвечает четко и всесторонне, умеет оценивать факты, самостоятельно рассуждает, отличается способностью обосновывать выводы и разъяснять их в логической последовательности, но допускает отдельные неточности.
- **80 баллов** студент глубоко понимает пройденный материал, отвечает четко и всесторонне, умеет оценивать факты, самостоятельно рассуждает, отличается способностью обосновывать выводы и разъяснять их в логической последовательности, но допускает некоторые ошибки общего характера.
- **70 баллов** студент хорошо понимает пройденный материал, но не может теоретически обосновывать некоторые выводы.
- **60 баллов** студент отвечает в основном правильно, но чувствуется механическое заучивание материала.

- **50 баллов** в ответе студента имеются существенные недостатки, материал охвачен «половинчато», в рассуждениях допускаются ошибки.
- **40 баллов** ответ студента правилен лишь частично, при разъяснении материала допускаются серьезные ошибки.
- **20-30 баллов** студент имеет общее представление о теме, но не умеет логически обосновать свои мысли.
 - 10 баллов студент имеет лишь частичное представление о теме.
 - 0 баллов нет ответа.

Эти критерии носят в основном ориентировочный характер. Если в билете имеются задачи, они могут быть более четкими.

Шкала диапазона для перевода рейтингового балла в «5»-бальную систему:

- <0-50> баллов неудовлетворительно
- «51 65» баллов удовлетворительно
- «66 85» баллов хорошо
- «86 100» баллов отлично
- «51 и выше» баллов зачет.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

Учебно-методическое и информационное обеспечение дисциплины:

а) основная литература:

- а) основная литература:
- 1. Фриш С.Э. Курс общей физики: учебник: в 3-х т. Т.2: Электрические и электромагнитные явления. Изд. 11-е, стер. СПб. [и др.]: Лань, 2007. 518 с.
- 2. Хайкин С.Э. Физические основы механики: учеб. пособие / Хайкин, Семён Эммануилович. Изд. 3-е, стер. СПб. [и др.]: Лань, 2008. 754 с.
- 3. Волькенштейн В.С. Сборник задач по курсу общей физики. М., 1990.
- 4. Грабовский Р.И. Курс физики: [учеб. пособие] /Грабовский, Ростислав Иванович. Изд. 11-е, стер. СПб. [и др.]: Лань, 2009. 607с.
- 5. Савельев И.В. Курс общей физики: в 3-х т.: учебник. Т.1-3. 10-е изд., стер. СПб. : Лань, 2008. 496 с.
- 6. Никеров В.А. Физика. Современный курс [Электронный ресурс] : учебник / В.А. Никеров. Электрон. текстовые данные. М. :

- Дашков и К, 2016. 454 с. 978-5-394-02349-1. Режим доступа: http://www.iprbookshop.ru/14114.html
- 7. Никеров В.А. Физика для вузов. Механика и молекулярная физика [Электронный ресурс] : учебник / В.А. Никеров. Электрон. текстовые данные. М. : Дашков и К, 2015. 136 с. 978-5-394-00691-3. Режим доступа: http://www.iprbookshop.ru/14630.html
- 8. Высоцкий М.И. Современное состояние физики элементарных частиц [Электронный ресурс] : курс лекций / М.И. Высоцкий. Электрон. текстовые данные. М. : Издательский дом МЭИ, 2015. 59 с. 978-5-383-00949-9.

Режим доступа: http://www.iprbookshop.ru/57018.html

б) дополнительная литература:

- 1. Калашников Н.П. Физика: Интернет-тестирование базовых знаний : [учеб. пособие] / Калашников, Николай Павлович, Н. М. Кожевников. СПб. [и др.] : Лань, 2009. 149,[11] с.
- 2. Зисман Г.А. Курс общей физики : в 3-х т.: учеб. пособие. Т.2: Электричество и магнетизм / Зисман, Гирш Абрамович, О. М. Тодес. 7-е изд., стер. СПб.: Лань, 2007. 352 с.:.
- 3. Никеров В.А. Физика для вузов. Механика и молекулярная физика [Электронный ресурс] : учебник / В.А. Никеров. Электрон. текстовые данные. М. : Дашков и К, 2015. 136 с. 978-5-394-00691-3. Режим доступа: http://www.iprbookshop.ru/14630.html
 - 4. Матышев А.А. Атомная физика. Том 1 [Электронный ресурс] : учебное пособие / А.А. Матышев. Электрон. текстовые данные. СПб. : Санкт-Петербургский политехнический университет Петра Великого, 2014. 531 с. 978-5-7422-4209-3. Режим доступа: http://www.iprbookshop.ru/43939.html
- 9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.
 - 1. Федеральный портал «Российское образование» http://www.edu.ru/
 - 2. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
 - 3. Теоретические сведения по физике и подробные решения демонстрационных вариантов тестовых заданий, представленных на сайте Росаккредагентства (www.fepo.ru).
 - 4. Физика [Электронный ресурс]: реф. журн. ВИНИТИ. № 7 12, 2008 / Всерос. ин-т науч. и техн. информ. М.: [Изд-во ВИНИТИ], 2008. 1 электрон. опт. диск (CD-ROM). 25698-00.
 - 5. Российский портал «Открытого образования» http://www.openet.edu.ru
 - 6. Сайт образовательных ресурсов Даггосуниверситета http://edu.icc.dgu.ru

- 7. Информационные ресурсы научной библиотеки Даггосуниверситета http://elib.dgu.ru (доступ через платформу Научной электронной библиотеки elibrary.ru).
- 8. Федеральный центр образовательного законодательства. http://www.lexed.ru

www.affp.mics.msu.su

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 9. Федеральный портал «Российское образование» http://www.edu.ru/
- 10. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
- 11. Теоретические сведения по физике и подробные решения демонстрационных вариантов тестовых заданий, представленных на сайте Росаккредагентства (www.fepo.ru).
- 12.Физика [Электронный ресурс]: реф. журн. ВИНИТИ. № 7 12, 2008 / Всерос. ин-т науч. и техн. информ. М.: [Изд-во ВИНИТИ], 2008. 1 электрон. опт. диск (CD-ROM). 25698-00.
- 13. Российский портал «Открытого образования» http://www.openet.edu.ru
- 14.Сайт образовательных ресурсов Даггосуниверситета http://edu.icc.dgu.ru
- 15.Информационные ресурсы научной библиотеки Даггосуниверситета http://elib.dgu.ru (доступ через платформу Научной электронной библиотеки elibrary.ru).
- 16. Федеральный центр образовательного законодательства. http://www.lexed.ru
- 17. <u>www.affp.mics.msu.su</u>

10. Методические указания для обучающихся по освоению дисциплины.

Вид учебных	Организация деятельности студента
занятий	•
Лекция	Написание конспекта лекций: кратко, схематично,
	последовательно фиксировать основные положения, выводы,
	формулировки, обобщения; помечать важные мысли,
	выделять ключевые слова, термины. Проверка терминов,
	понятий с помощью энциклопедий, словарей, справочников с
	выписыванием толкований в тетрадь. Обозначить вопросы,
	термины, материал, который вызывает трудности, пометить и
	попытаться найти ответ в рекомендуемой литературе. Если
	самостоятельно не удается разобраться в материале, необ-
	ходимо сформулировать вопрос и задать преподавателю на
	консультации, на практических работах.
Практически	Проработка рабочей программы, уделяя особое внимание
е занятия	целям и задачам структуре и содержанию дисциплины.
	Конспектирование источников. Работа с конспектом лекций,
	подготовка ответов к контрольным вопросам, просмотр
	рекомендуемой литературы, работа с текстом. Решение
	расчетно-графических заданий, решение задач по алгоритму и

	др.
Реферат	Поиск литературы и составление библиографии,
	использование от 3 до 5 научных работ, изложение мнения
	авторов и своего суждения по выбранному вопросу;
	изложение основных аспектов проблемы. Кроме того,
	приветствуется поиск информации по теме реферата в
	Интернете, но с обязательной ссылкой на источник, и
	подразумевается не простая компиляция материала, а
	самостоятельная, творческая, аналитическая работа, с
	выражением собственного мнения по рассматриваемой теме и
	грамотно сделанными выводами и заключением.
	Ознакомиться со структурой и оформлением реферата.
	При подготовке к экзамену необходимо ориентироваться на
экзамену	конспекты лекций, рекомендуемую литературу и др.

Самостоятельная работа студентов реализуется в виде:

- подготовки к контрольным работам;
- подготовки к семинарским (практическим) занятиям;
- оформления лабораторно-практических работ (заполнение таблиц, решение задач, написание выводов);
- выполнения индивидуальных заданий по основным темам дисциплины;
- написание рефератов по проблемам дисциплины "Физика атома".
- обязательное посещение лекций ведущего преподавателя;
- лекции основное методическое руководство при изучении дисциплины, наиболее оптимальным образом структурированное и скорректированное на современный материал;
- в лекции глубоко и подробно, аргументировано и методологически строго рассматриваются главные проблемы темы;
- в лекции даются необходимые разные подходы к исследуемым проблемам;
- подготовку и активную работу на лабораторных занятиях;
- подготовка к лабораторным занятиям включает проработку материалов лекций, рекомендованной учебной литературы.

11.Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Чтение лекций с использованием мультимедийных презентаций. Использование анимированных интерактивных компьютерных демонстраций и практикумов-тренингов по ряду разделов дисциплины.

12.Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

- Закрепление теоретического материала и приобретение практических навыков использования аппаратуры для проверки физических законов обеспечивается лабораториями физического практикума 2 лаб.
- При проведении занятий используются компьютерные классы, оснащенные современной компьютерной техникой.
- При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа проекционным оборудованием и интерактивной доской.

Составитель: Гасанова Р.Н., канд.физ.-мат.наук, доцент кафедры физической электроники ДГУ.