

# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физический факультет

### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

### Квантовая хромодинамика

Кафедра теоретической и вычислительной физики Физического факультета Образовательная программа 03.04.02 «ФИЗИКА»

> Профиль подготовки Теоретическая и математическая физика

Уровень высшего образования – Магистр

Форма обучения – очная

Статус дисциплины: дисциплина по выбору

Рабочая программа дисциплины «Квантовая хромодинамика» составлена в 2022 году в соответствии с требованиями ФГОС ВО по направлению подготовки 03.04.02 - «Физика» (уровень магистратура) от «07» августа 2020г. № 914

Aspendel-

Разработчик: <u>кафедра теоретической и вычислительной физики,</u> <u>Муртазаев Акай Курбанович, д.ф.-м.н., профессор</u>

### Рабочая программа дисциплины одобрена:

на заседании кафедры теоретической и вычислительной физики 23 марта 2022г., протокол №7.

Зав. кафедрой

Муртазаев А.К.

на заседании Методической комиссии физического факультета от «25» марта 2022г., протокол №7

Председатель

Мурлиева Ж.Х.

Рабочая программа дисциплины согласована

с учебно - методическим управлением « 30» марта 2022г.

Ahr

Начальник УМУ

Гасангаджиева А.Г.

### Аннотация рабочей программы дисциплины

Дисциплина <u>«Квантовая хромодинамика»</u> входит в часть, формируемую участниками образовательных отношений образовательной программы магистратуры по направлению <u>03.04.02 «Физика»</u> (профиль – Теоретическая и математическая физика) и является дисциплиной по выбору.

Дисциплина реализуется на физическом факультете кафедрой теоретической и вычислительной физики.

Содержание дисциплины охватывает круг вопросов, связанных с изучением общих методов теории калибровочных полей, и вопросов связанных с протеканием процессов как на атомном так и на уровне элементарных частиц.

Дисциплина нацелена на формирование следующих компетенций выпускника: универсальных –УК-1; общепрофессиональных – ОПК-4; профессиональных – ПК-6.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: *лекции, практические занятия и самостоятельную работу.* 

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме <u>текущий контроль в форме опросов, коллоквиума</u> и промежуточный контроль в форме <u>зачет</u>.

Объем дисциплины 3 зачетные единицы, в том числе в академических часах по видам учебных занятий

| Семе |                                                                 | Форма промежуточной аттестации (зачет, дифференцированн |        |                          |                             |     |                  |                      |                   |
|------|-----------------------------------------------------------------|---------------------------------------------------------|--------|--------------------------|-----------------------------|-----|------------------|----------------------|-------------------|
| - F  | в том числе  Контактная работа обучающихся с преподавателем СРО |                                                         |        |                          |                             |     |                  |                      |                   |
|      | Всег                                                            | Всег Всего из них                                       |        |                          |                             |     |                  |                      | ый зачет, экзамен |
|      |                                                                 |                                                         | Лекции | Лабораторн<br>ые занятия | Практиче<br>ские<br>занятия | КСР | консульта<br>ции | числе<br>экзаме<br>н |                   |
| 2    | 10<br>8                                                         | 48                                                      | 24     | -                        | 24                          | -   | -                | 84                   | Зачет             |

### 1. Цели освоения дисциплины

Целями освоения дисциплины «Квантовая хромодинамика» являются дать представление об адронной структуре вещества, неабелевых калибровочных полях и аномалиях в теории возмущения.

### 2. Место дисциплины в структуре ОПОП магистратуры

Дисциплина входит в часть по выбору образовательной программы магистратуры по направлению <u>03.04.02— «Физика»</u> (профиль — Теоретическая и математическая физика). Для освоения дисциплины необходимы знания дисциплин: математический анализ, аналитическая геометрия, дифференциальные уравнения, дифференциальная геометрия и топология, электродинамика и квантовая теория. Освоение дисциплины позволит в дальнейшем изучать курсы естественнонаучного цикла, спецкурсы по выбору магистра.

### 3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

| Код и наименование компетенции из ОПОП                                                                                           | Код и наименование индикатора достижения компетенций                                                                                                                                                       | Планируемые результаты обучения                                                                                                                                                                                                                                                                                       | Процедура освоения              |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| УК-1. Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий | М-ИУК-1.1. Анализирует проблемную ситуацию как систему, выявляя ее составляющие и связи между ними  М-ИУК-1.2. Определяет пробелы в информации, необходимой для решения проблемной ситуации, и проектирует | Знает: методы системного и критического анализа; Умеет: применять методы системного подхода и критического анализа проблемных ситуаций; Владеет: методологией системного и критического анализа проблемных ситуаций.  Умеет: выявлять проблемные ситуации, используя методы анализа, синтеза и абстрактного мышления. | Устный опрос, письменный опрос; |
|                                                                                                                                  | процессы по их устранению                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |                                 |

|                  | М-ИУК-1.3.                | Умеет: производить анализ          |                  |
|------------------|---------------------------|------------------------------------|------------------|
|                  | Критически                | явлений и обрабатывать             |                  |
|                  | оценивает                 | полученные результаты;             |                  |
|                  | надежность                | оценивать адекватность и           |                  |
|                  | источников                | достоверность информации           |                  |
|                  | информации,               | о проблемной ситуации,             |                  |
|                  | работает с                | работать с противоречивой          |                  |
|                  | противоречивой            | информацией из разных              |                  |
|                  | информацией из            | источников                         |                  |
|                  | разных источников         |                                    |                  |
|                  | М-ИУК-1.4.                | Умеет: осуществлять поиск          |                  |
|                  | Разрабатывает и           | решений проблемных                 |                  |
|                  | содержательно             | ситуаций на основе                 |                  |
|                  | аргументирует             | действий, эксперимента и           |                  |
|                  | стратегию решения         | опыта; определять в рамках         |                  |
|                  | проблемной                | выбранного алгоритма               |                  |
|                  | ситуации на основе        | вопросы (задачи),                  |                  |
|                  | системного и              | подлежащие дальнейшей              |                  |
|                  | междисциплинарного        | разработке и предлагать            |                  |
|                  | подходов                  | способы их решения;                |                  |
|                  | подходов                  | Владеет: технологиями              |                  |
|                  |                           | выхода из проблемных               |                  |
|                  |                           | ситуаций, навыками                 |                  |
|                  |                           | выработки стратегии                |                  |
|                  |                           | действий                           |                  |
|                  | М-ИУК-1.5 Строит          |                                    |                  |
|                  | 1                         | Знает: методики разработки         |                  |
|                  | сценарии реализации       | стратегии действий для             |                  |
|                  | стратегии, определяя      | выявления и решения                |                  |
|                  | возможные риски и         | проблемной ситуации;               |                  |
|                  | предлагая пути их         | Умеет: разрабатывать               |                  |
|                  | устранения                | стратегию действий,                |                  |
|                  |                           | принимать конкретные               |                  |
|                  |                           | решения для ее реализации;         |                  |
|                  |                           | Владеет: методиками                |                  |
|                  |                           | постановки цели,                   |                  |
|                  |                           | определения способов ее            |                  |
|                  |                           | достижения, разработки             |                  |
| OTHE 4 C         | OHIC 4.1. O               | стратегий действий                 | п                |
| ОПК-4. Способен  | ОПК-4.1. Определяет       | Знает: теоретические и             | Письменный опрос |
| определять сферу | ожидаемые                 | экспериментальные основы           |                  |
| внедрения        | результаты научных        | современных методов                |                  |
| результатов      | исследований.             | исследований изучаемых             |                  |
| научных          | ОПК -4.2. Предлагает      | процессов и явлений.               |                  |
| исследований в   | возможные варианты        | Умеет: самостоятельно              |                  |
| области своей    | внедрения                 | ставить задачу и решать ее;        |                  |
| профессиональной | результатов               | использовать достижения            |                  |
| деятельности.    | исследований в<br>области | современных                        |                  |
|                  | профессиональной          | информационно-<br>коммуникационных |                  |
|                  | профессиональной          | коммуникациоппых                   |                  |

|                  | деятельности.        | технологий для выполнения   |                  |
|------------------|----------------------|-----------------------------|------------------|
|                  | ОПК-4.3.             | экспериментальных и         |                  |
|                  | Знает области        | теоретических               |                  |
|                  | применения           | исследований;               |                  |
|                  | результатов научных  | анализировать и             |                  |
|                  | исследований в своей | интерпретировать            |                  |
|                  | профессиональной     | результаты эксперимента на  |                  |
|                  | деятельности         | основе современных          |                  |
|                  |                      | теоретических моделей;      |                  |
|                  |                      | правильно организовать и    |                  |
|                  |                      | планировать эксперимент;    |                  |
|                  |                      | правильно применять         |                  |
|                  |                      | различные теоретические     |                  |
|                  |                      | модели для анализа          |                  |
|                  |                      | результатов эксперимента.   |                  |
|                  |                      | Владеет: основами           |                  |
|                  |                      | современных методов         |                  |
|                  |                      | экспериментальных           |                  |
|                  |                      | исследований в данной       |                  |
|                  |                      | области науки; основами     |                  |
|                  |                      | теоретических разработок в  |                  |
|                  |                      | своей области исследований; |                  |
|                  |                      | адекватными методами        |                  |
|                  |                      | планирования и решения      |                  |
|                  |                      | научно-исследовательских    |                  |
|                  |                      | задач в выбранной области   |                  |
|                  |                      | физики и смежных с          |                  |
|                  |                      | физикой науках;             |                  |
|                  |                      | - навыками сбора,           |                  |
|                  |                      | обработки, анализа и        |                  |
|                  |                      | систематизации информации   |                  |
|                  |                      | по теме исследования;       |                  |
|                  |                      | - владеет логикой научного  |                  |
|                  |                      | исследования, терминологи-  |                  |
|                  |                      | ческим аппаратом научного   |                  |
|                  |                      | исследования в выбранной    |                  |
|                  |                      | области физики и смежных с  |                  |
|                  |                      | физикой науках;             |                  |
|                  |                      | - современной аппаратурой   |                  |
|                  |                      | и информационными           |                  |
|                  |                      | технологиями для            |                  |
|                  |                      | применения и внедрения      |                  |
|                  |                      | результатов научной         |                  |
|                  |                      | деятельности.               |                  |
| ПК-6.            | ПК-6.1.              | Знает: методы обработки и   | Письменный опрос |
| Способен         | Имеет                | анализа экспериментальной   | r                |
| эксплуатировать  | представления о      | и теоретической             |                  |
| современную      | методиках и          | информации в области        |                  |
| аппаратуру и     | технологиях          | физики твердого тела;       |                  |
| оборудование для | физических           | физические основы           |                  |
| 1 37 1 27 7 7    | физических           | 1                           |                  |

выполнения научных и прикладных физических исследований в области физики твердого тела

исследований помощью современного оборудования.

#### ПК-6.2.

Знает теорию и методы физических исследований в теоретической и математической физике

#### ПК-6.3.

Знает теорию и методы физических исследований в области физики твердого тела.

#### ПК-6.4.

Способен собирать, обрабатывать, анализировать обобщать результаты экспериментов исследований соответствующей области знаний. проводить эксперименты наблюдения, составлять отчеты по теме или ПО результатам проведенных экспериментов

проведения исследований методами теоретической и математической физики; Умеет: пользоваться современной приборной базой для проведения экспериментальных и (или) теоретических физических исследований в области физики твердого тела; анализировать устройство используемых ими приборов и принципов их действия, приобрести навыки выполнения физических измерений, проводить обработку результатов измерений с использованием статистических методов и современной вычислительной техники. Владеет: методикой и теоретическими основами анализа экспериментальной и теоретической информации в области физики твердого тела; некоторыми диагностические методы исследования теоретической и математической физики; методами обработки и анализа экспериментальной и теоретической информации в области физики твердого тела навыками исследования физических процессов, протекающих в сложных физических системах.

### 4. Объем, структура и содержание дисциплины.

**4.1. Объем дисциплины** составляет 3 зачетные единицы, 108 академических часа.

### 4.2. Структура дисциплины.

| № п/п | Раздел дисциплины                                                                             | Семестр      | Неделя семестра | раб<br>сам<br>рабо | оты, і<br>остоя<br>ту сту | Лабораторные (хв. денторные (хв. де | ная тую ов и (в | Самостоят. работа | Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам) |
|-------|-----------------------------------------------------------------------------------------------|--------------|-----------------|--------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|----------------------------------------------------------------------------------------------------------|
|       | <b>Модуль 1.</b> Head                                                                         | <u>Б</u> еле | вы к            | али(               | оров<br>Оров              | ОЧНЬ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | іе по           | ЛЯ.               |                                                                                                          |
| 1.    | Партонная модель структуры адронов. Адроны, партоны, кванки и глюоны.                         |              |                 | 4                  | 4                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 2                 | опрос                                                                                                    |
| 2.    | Неабелевы калибровочные поля. Геометрия калибровочной инвариантности. Лагранжиан Янга-Миллса. |              |                 | 4                  | 4                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 2                 | опрос                                                                                                    |
| 3.    | Калибровочно инвариантная вильсоновская петля. Основные положения теории алгебр Ли.           | 2            |                 | 2                  | 2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 4                 | опрос                                                                                                    |
| 4.    | Квантование неабелевых калибровочных полей. Взаимодействие неабелевых калибровочных бозонов.  |              |                 | 2                  | 2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 4                 | опрос                                                                                                    |
|       | Итого по модулю 1                                                                             |              |                 | 12                 | 12                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 12                |                                                                                                          |
|       | Модуль 2. Кв                                                                                  | ант          | овая            | я хр               | OMO)                      | дина                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | МИН             | ca                |                                                                                                          |
| 1.    | От кварков к квантовой хромодинамике. Аннигиляция $e^+e^-$ в адроны.                          |              |                 | 4                  | 4                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 2                 | опрос                                                                                                    |
| 2.    | Неупругое рассеяние. Процессы жесткого рассеяния при столкновениях адронов. Эволюция партонов |              |                 | 4                  | 4                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                   | контрольная<br>работа                                                                                    |
| 3.    | Операторные произведения и эффективные вершины.                                               | 2            |                 | 2                  | 2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 2                 | опрос                                                                                                    |

| 4. | Перенормировка массы кварка. Перенормировка слабых взаимодействий в квантовой хромодинамике. |  | 2  | 2  |  | 2  | опрос      |
|----|----------------------------------------------------------------------------------------------|--|----|----|--|----|------------|
| 5. | Формула Резерфорда.                                                                          |  |    |    |  | 2  | опрос      |
| 6. | Метод парциальных волн.                                                                      |  |    |    |  | 2  | опрос      |
| 7. | Парциальные амплитуды и сечения рассеяния.                                                   |  |    |    |  | 2  | опрос      |
|    | Итого по модулю 2                                                                            |  | 12 | 12 |  | 12 | коллоквиум |
|    | Модуль 3<br>самостоятельная работа                                                           |  |    |    |  | 48 | зачет      |
|    |                                                                                              |  | 24 | 24 |  | 84 |            |
|    |                                                                                              |  |    |    |  |    |            |

### 4.3. Содержание дисциплины, структурированное по темам (разделам).

### 4.3.1. Содержание лекционных занятий по дисциплине.

### Модуль 1. Неабелевы калибровочные поля.

Партонная модель структуры адронов. Адроны, партоны, кванки и глюоны. Неабелевы калибровочные поля. Геометрия калибровочной инвариантности.

Лагранжиан Янга-Миллса. Калибровочно инвариантная Основные положения теории алгебр Ли.

Квантование неабелевых калибровочных полей. Взаимодействие неабелевых калибровочных бозонов.

### Модуль 2. Квантовая хромодинамика

От кварков к квантовой хромодинамике. Аннигиляция е+е- в адроны. Неупругое рассеяние. Процессы жесткого рассеяния при столкновениях адронов. Эволюция партонов Операторные произведения и эффективные вершины. Перенормировка массы кварка. Перенормировка слабых взаимодействий в квантовой хромодинамике. Формула Резерфорда. Метод парциальных волн. Парциальные амплитуды и сечения рассеяния.

### 4.3.2. Содержание лабораторно-практических занятий по дисциплине.

| Модуль 1. Неабелев | ы калибровочные поля. |
|--------------------|-----------------------|
| Название темы      | Содержание темы       |

вильсоновская

| Партонная модель<br>структуры<br>адронов.                           | Адроны, партоны,<br>кванки и глюоны.                                                         |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Неабелевы калибровочные поля.                                       | Геометрия калибровочной инвариантности. Лагранжиан Янга-Миллса.                              |
| Калибровочно инвариантная вильсоновская петля.                      | Калибровочно инвариантная вильсоновская петля. Основные положения теории алгебр Ли.          |
| Квантование неабелевых калибровочных полей.                         | Квантование неабелевых калибровочных полей. Взаимодействие неабелевых калибровочных бозонов. |
| Моду                                                                | ль 2. Квантовая хромодинамика                                                                |
| От кварков к<br>Квантовой<br>хромодинамике.                         | Аннигиляция e+e- в адроны.                                                                   |
| Неупругое рассеяние.                                                | Процессы жесткого рассеяния при столкновениях адронов. Эволюция партонов.                    |
| Операторные произведения и эффективные вершины.                     | Операторные произведения и эффективные вершины.                                              |
| Перенормировка массы кварка. Перенормировка слабых взаимодействий в | Перенормировка слабых взаимодействий в квантовой хромодинамике.                              |
| квантовой хромодинамике.                                            |                                                                                              |
| Формула Резерфорда.                                                 | Формула Резерфорда.                                                                          |
| Метод парциальных волн.                                             | Метод парциальных волн.                                                                      |
| Парциальные амплитуды и сечения рассеяния.                          | Парциальные амплитуды и сечения рассеяния.                                                   |

### 5. Образовательные технологии

В течение семестра студенты посещают лекции, решают задачи, указанные преподавателем, к каждому семинару. В семестре проводятся контрольные работы (на семинарах). Аттестация проводится после решения всех задач контрольных работ, выполнения домашних и самостоятельных работ.

При проведении занятий используются компьютерные классы, оснащенные современной компьютерной техникой. При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа

проекционным оборудованием и интерактивной доской.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

В рамках учебного процесса предусмотрено приглашение для чтения лекций ведущих ученых из центральных вузов и академических институтов России.

### 6. Учебно-методическое обеспечение самостоятельной работы студентов.

### Самостоятельная работа студентов:

- проработка учебного материала (по конспектам лекций учебной и научной литературе) и подготовка докладов на семинарах и практических занятиях;
- поиск и обзор научных публикаций и электронных источников по тематике дисциплины;
  - выполнение курсовых работ (проектов);
  - написание рефератов;
  - работа с тестами и вопросами для самопроверки.

| Разделы и темы для самостоятельного изучения                                         | Виды и содержание самостоятельной работы                                                                                                                                                                                                                          |  |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Операторы Казимира.                                                                  | проработка учебного материала                                                                                                                                                                                                                                     |  |  |
| Калибровка Арновитта-Финклера.                                                       | проработка учебного материала по литературе                                                                                                                                                                                                                       |  |  |
| Скалярное поле с неабелевым зарядом.                                                 | Рассмотрим неабелеву калибровочную теорию с калибровочной группой G. Добавим в теорию комплексное скалярное поле в представлении г. Покажите, что фейнмановские правила для скалярного поля являются простой модификацией фейнмановских правил для скалярной КЭД. |  |  |
| Рассеяние кварка на глюоне и глюона на глюоне.                                       | изучение тем, запланированных для самостоятельного изучения                                                                                                                                                                                                       |  |  |
| Глюонная функция расщепления. Поведение партонных функций распределения при малых х. | изучение тем, запланированных для<br>самостоятельного изучения                                                                                                                                                                                                    |  |  |
| Несохранение числа фермионов в параллельных полях Е и В. Слабый распад пиона.        | проработка учебного материала по литературе                                                                                                                                                                                                                       |  |  |

| Пределы большой фермионной массы. Моды распада W- и Z-бозонов.                          | проработка учебного материала по<br>литературе                 |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Модель с двумя полями Хиггса. Зависимость радиационных поправок от массы бозона Хиггса. | изучение тем, запланированных для<br>самостоятельного изучения |

Результаты самостоятельной работы учитываются при аттестации магистранта (зачет). При этом проводятся: тестирование, опрос на практических занятиях, заслушиваются доклады, проверка контрольных работ и т.д.

Студентам представляется раздаточный материал: тезисы лекций, перечень обязательных задач, темы курсовых работ, методическое пособие и литература.

# 7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

### 7.1. Типовые контрольные задания

### 7.1.1. Перечень примерных контрольных вопросов и заданий для самостоятельной работы.

Список тем для самостоятельного изучения

- 1. Операторы Казимира.
- 2. Используя функциональный интеграл, вычислить вакуумное среднее вильсоновской петли в квантовой электродинамике без фермионов.
- 3. Калибровка Арновитта-Финклера.
- 4. Скалярное поле с неабелевым зарядом. Рассмотрим неабелеву калибровочную теорию с калибровочной группой G. Добавим в теорию комплексное скалярное поле в представлении r. Покажите, что фейнмановские правила для скалярного поля являются простой модификацией фейнмановских правил для скалярной КЭД.
- 5. Рассеяние кварка на глюоне и глюона на глюоне.
- 6. Глюонная функция расщепления.
- 7. Поведение партонных функций распределения при малых х.
- 8. Несохранение числа фермионов в параллельных полях Е и В.
- 9. Слабый распад пиона.
- 10. Пределы большой фермионной массы.
- 11. Моды распада W- и Z-бозонов.
- 12. Модель с двумя полями Хиггса.

13. Зависимость радиационных поправок от массы бозона Хиггса.

### 7.1.2. Перечень вопросов к зачету.

- 1. Адроны, партоны, кварки, глюоны. Структура адронов.
- 2. Геометрия калибровочной инвариантности.
- 3. Лагранжиан Янга-Миллса.
- 4. Калибровочно-инвариантная вильсоновская петля.
- 5. Основные положения из теории алгебр Ли.
- 6. Взаимодействия неабелевых калибровочных бозонов.
- 7. Лагранжиан Фадеева-Попова.
- 8. Однопетлевые расходимости в неабелевой калибровочной теории.
- 10. Асимптотическая свобода: метод фонового поля.
- 11. Аннигиляция кварков в адроны.
- 12. Процессы жесткого рассеяния при столкновениях адронов.
- 13. Перенормировка массы кварка.
- 14. КХД перенормировка слабых взаимодействий.
- 15. Операторное разложение. Операторный анализ -аннигиляции. Операторный анализ глубоконеупругого рассеяния.
- 16. Аксиальный ток в двух измерениях. Аксиальный ток в четырех измерениях.
- 18. Голдстоуновские бозоны и киральные симметрии в КХД.
- 19. Киральные аномалии и киральные калибровочные теории.
- 20. Аномальное нарушение масштабной инвариантности.
- 21. Механизм Хиггса.
- 22. Теория слабых взаимодействий Глэшоу-Вайнберга-Салама
- 23. Симметрии теории кварков и лептонов.
- 24. Калибровки. Однопетлевые поправки к калибровочной теории слабого взаимодействия

## 7.2. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

Лекции

| • | посещение занятий                      | <ul> <li>10 баллов,</li> </ul> |
|---|----------------------------------------|--------------------------------|
| • | активное участие на лекциях            | <ul><li>15 баллов,</li></ul>   |
| • | устный опрос, тестирование, коллоквиум | <ul><li>– 60 баллов,</li></ul> |
| • | и др. (доклады, рефераты)              | <ul> <li>15 баллов.</li> </ul> |

Практические занятия

посещение занятий — 10 баллов,
 активное участие на практических занятиях — 15 баллов,
 выполнение домашних работ — 15 баллов,
 выполнение самостоятельных работ — 20 баллов,
 выполнение контрольных работ — 40 баллов.

### Промежуточный контроль по дисциплине включает:

устный опрос
 письменная контрольная работа
 тестирование
 60 баллов,
 30 баллов,
 10 баллов.

### 8. Учебно-методическое обеспечение дисциплины.

### основная литература:

- 1. Борчердс Р.Е. Квантовая теория поля [Электронный ресурс] / Р.Е. Борчердс. Электрон. текстовые данные. Москва, Ижевск: Регулярная и хаотическая динамика, Ижевский институт компьютерных исследований, 2006. 96 с. 978-5-93972-627-6. Режим доступа: <a href="http://www.iprbookshop.ru/16540.html">http://www.iprbookshop.ru/16540.html</a> (12.10.2018)
- 2. Балашов В.В. Курс квантовой механики [Электронный ресурс] / В.В. Балашов, В.К. Долинов. Электрон. текстовые данные. Москва, Ижевск: Регулярная и хаотическая динамика, 2001. 336 с. 5-93972-077-3. Режим доступа: http://www.iprbookshop.ru/16546.html(12.10.2018)
- 3. Толмачев В.В. Основы квантовой механики [Электронный ресурс]: Учебное пособие/ Толмачев В.В., Федотов А.А., Федотова С.В.— Электрон. текстовые данные.— Москва, Ижевск: Регулярная и хаотическая динамика, 2005.— 240 с.— Режим доступа: http://www.bibliocomplectator.ru/book/id=16586.— «БИБЛИОКОМПЛЕКТАТОР», http://www.iprbookshop.ru/16546.html (12.10.2018)
- 4. Л.Д.Ландау, Е.М.Лифшиц. Под ред. Л.П.Питаевского. Механика. («Теоретическая физика», Т. I), М.: Физматлит, 4-е изд.,2007г.
- 5. Ландау, Л. Д., Лифшиц, Е. М. Квантовая механика (нерелятивистская теория). («Теоретическая физика», Т. III) М.: Физматлит, 2008.
- 6. Меркурьев С. П., Фаддеев Л. Д. Квантовая теория рассеяния для систем нескольких частиц. Из-во: М. Наука, 1998г.

#### дополнительная литература:

- 1. Ли Р.Н. Квантовая теория рассеяния и излучения. Уч. пособие. Новосибирск, НГУ, 2012г.
- 2. Воронцов А.А., Мировицкая С.Д. Специальные функции задач теории рассеяния. Справочник. 1991г.
- 3. Бирман М.Ш. Математическая теория рассеяния. Функция спектрального сдвига. Избранные труды. 2010г.

### 9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. ЭБС IPRbooks: <a href="http://www.iprbookshop.ru/">http://www.iprbookshop.ru/</a>
  Лицензионный договор № 2693/17от 02.10.2017г. об оказании услуг по предоставлению доступа. Доступ открыт с с 02.10.2017 г. до 02.10.2018 по подписке( доступ будет продлен)
- 2. Электронно-библиотечная сист*ема* «Университетская библиотека онлайн» <a href="www.biblioclub.ru">www.biblioclub.ru</a> договор № 55\_02/16 от 30.03.2016 г. об оказании информационных услуг.(доступ продлен до сентября 2019 года).
- 3. Moodle [Электронныйресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. Махачкала, г. Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/ (дата обращения: 22.03.2018).
- 4. Доступ к электронной библиотеки на <a href="http://elibrary.ru">http://elibrary.ru</a> основании лицензионного соглашения между ФГБОУ ВПО ДГУ и «ООО» «Научная Электронная библиотека» от 15.10.2003. (Раз в 5 лет обновляется лицензионное соглашение)
- 5. Национальная электронная библиотека <a href="https://нэб.рф/">https://нэб.рф/</a>. Договор №101/НЭБ/101/НЭБ/1597 от 1.08.2017г. Договор действует в течении 1 года с момента его подписания.
- 6. Федеральный портал «Российское образование» <a href="http://www.edu.ru/">http://www.edu.ru/</a> (единое окно доступа к образовательным ресурсам).
- 7. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» <a href="http://school-collection.edu.ru/">http://school-collection.edu.ru/</a>
- 8. Российский портал «Открытого образования» <a href="http://www.openet.edu.ru">http://www.openet.edu.ru</a>
- 9. Сайт образовательных ресурсов Даггосуниверситета <a href="http://edu.icc.dgu.ru">http://edu.icc.dgu.ru</a>
- 10.Информационные ресурсы научной библиотеки Даггосуниверситета <a href="http://elib.dgu.ru">http://elib.dgu.ru</a> (доступ через платформу Научной электронной библиотеки elibrary.ru).
- 11. Федеральный центр образовательного законодательства

- http://www.lexed.ru
- 12. <a href="http://www.phys.msu.ru/rus/library/resources-online/">http://www.phys.msu.ru/rus/library/resources-online/</a> электронные учебные пособия, изданные преподавателями физического факультета МГУ.
- 13. <a href="http://www.phys.spbu.ru/library/">http://www.phys.spbu.ru/library/</a> электронные учебные пособия, изданные преподавателями физического факультета Санкт-Петербургского госуниверситета.

### 10. Методические указания для обучающихся по освоению дисциплины.

Перечень учебно-методических материалов, предоставляемых студентам во время занятий:

- рабочие тетради студентов;
- наглядные пособия;
- словарь терминов;
- тезисы лекций,
- раздаточный материал по тематике лекций.

### Самостоятельная работа студентов включает:

- проработка учебного материала, используя конспекты лекций, учебной и научной литературы;
- написание рефератов;
- работа с тестовыми заданиями и вопросами для самопроверки;
- решение задач;

Оптимальным путем освоения дисциплины является посещение всех лекций, выполнение предлагаемых заданий в виде задач, тестов и устных вопросов.

На лекциях рекомендуется деятельность студента в форме активного слушания, т.е. предполагается возможность задавать вопросы на уточнение понимания темы и рекомендуется конспектирование лекции. НВ случае, если студентом пропущено лекционное занятие, он может освоить пропущенную тему самостоятельно с опорой на план занятия, рекомендуемую литературу и консультативные рекомендации преподавателя.

В целом рекомендуется регулярно посещать занятия и выполнять текущие задания, что обеспечит достаточный уровень готовности к сдаче зачета.

### 11.Перечень информационных технологий, используемых при

### осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

- Программное обеспечение для лекций: MS PowerPoint (MS PowerPoint Viewer), Adobe Acrobat Reader, средство просмотра изображений, табличный процессор.
- Программное обеспечение в компьютерный класс: MS PowerPoint (MS PowerPoint Viewer), Adobe Acrobat Reader, средство просмотра изображений, Интернет, E-mail.

### 12.Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Лекционные и практические занятия проводятся в аудиториях факультета. Технические средства обучения, используемые в учебном процессе для освоения дисциплины:

- 1. компьютерное оборудование, которое используется в ходе изложения лекционного материала;
- 2. пакет плакатов и графиков, используемых в ходе текущей работы, а также для промежуточного и итогового контроля;
- 3. электронная библиотека курса и Интернет-ресурсы для самостоятельной работы.