МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Обобщенные функции

Кафедра дифференциальных уравнений и функционального анализа факультета математики и компьютерных наук

Образовательная программа 01.04.01 - Математика

Направленность (профиль) программы Дифференциальные уравнения

Уровень высшего образования магистратура

Форма обучения **очная**

Статус дисциплины: входит в часть ОПОП, формируемую участниками образовательных отношений

Махачкала, 2022

Рабочая программа по дисциплине; «Обобщенные функции» составлена в 2022 г. в соответствии с требованиями ОПОП по направлению подготовка 01.04.01. Математика, от 10.01.2018 г. №12.

Разработчик программы: доцент кафедры, Меджидов З.Г.

Рабочая программа дисциплины одобрена:

на заседании кафедры протокол № 8	ДУ и ФА	ОТ	«15» марта 2022 г.
Зав. кафедрой	Cup.	ажуд	цинов М.М.

на заседании Методической комиссии факультета математики и компьютерных наук от «23» марта 2022 г., протокол №7.

Председатель Ризаев М.К.

Рабочая программа дисциплины согласована с учебно-методическим управлением «31» марта 2022 г.

Начальник УМУ ______Гасангаджиева А.Г.

Аннотация рабочей программы дисциплины

Дисциплина «Обобщенные функции» входит в часть ОПОП, формируемую участниками образовательных отношений по направлению 01.04.01 - Математика.

Дисциплина реализуется на факультете математики и компьютерных наук кафедрой дифференциальных уравнений и функционального анализа.

Содержание дисциплины охватывает круг вопросов, относящихся к теории обобщенных функций и ее приложениям, как в самой математике, так и в других областях естествознания.

Дисциплина нацелена на формирование следующих компетенций выпускника: общепрофессиональных — ОПК-1, профессиональных — ПК-1, ПК-2.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия и самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости: в форме *контрольных работ, тестирования и коллоквиумов*, промежуточный контроль в форме экзамена.

Объем дисциплины 3 зачетные единицы, в том числе в 108 академических часов, распределенных по следующим видам учебных занятий:

			У	Форма					
			в том числе промежуточной аттестации						
			Контактна	я работа обуч	нающ	ихся с		(зачет,	
Семес	Вс		П	реподавателе	eM.			дифференцирован	
тр	e			из них			СР	ный зачет,	
	ГО	Ле	Лабораторн	Практичес	КС	консультац	CF	экзамен)	
		К	ые занятия	кие	P	ии			
		ЦИ		занятия					
		И							
8	10	3		34			4+3	Экзамен	
	8	4					6		

1. Цели освоения дисциплины

Освоение дисциплины «Обобщенные функции» преследует следующие цели: расширение представления студентов о понятии функции путем введения обобщенных функций, изучение основных операций над обобщенными функциями, ознакомление с применениями обобщенных функций в дифференциальных уравнениях, уравнениях математической физики, физике, демонстрация эффективности применения обобщенных функций в прикладных задачах.

2. Место дисциплины в структуре ООП магистратуры

Дисциплина «Обобщенные функции» входит в часть ОПОП, формируемую участниками образовательных отношений по направлению 01.04.01 - Математика.

Дисциплина «Обобщенные функции» преподается на 2 курсе магистратуры факультета математики и компьютерных наук после изучения основных математических дисциплин бакалавриата: математического анализа, алгебры и геометрии, дифференциальных уравнений и УЧП. Знание материала названных дисциплин необходимо для успешного освоения дисциплины «Обобщенные функции». Данная дисциплина позволяет придать математическую строгость различным физическим понятиям и явлениям.

Знания, умения и навыки, полученные в результате освоения данной дисциплины, будут способствовать дальнейшему формированию компетенций при изучении дисциплины «Дополнительные главы функционального анализа»; они окажут неоценимую помощь при написании магистерских диссертаций по соответствующей тематике.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения.

Код и наименование ком-	Код и наименование индикатора достижения компетенций (в	Планируемые результаты обучения	Процедура освоения
петенции из	соответствии с ОПОП)		
ОПОП			

ОПК-1. Способен формулировать и решать актуальные и значимые проблемы математики	ОПК-1.1. Обладает фундаментальными знаниями в области математики. ОПК-1.2. Умеет использовать фундаментальные знания в области математики в профессиональной деятельности. ОПК-1.3. Может осуществить выбор методов решения задач профессиональной деятельности на основе теоретических знаний	Знает: постановку задач в области теории обобщенных функций, а также основные методы решения таких задач. Умеет: анализировать постановку данной математической задачи, необходимость и (или) достаточность информации для ее решения. Владеет: навыками сбора, отбора и обобщения научной информации в области математических дисциплин.	Контрольные работы, коллоквиум
Способность к интенсивной научноисследовательской работе	Обладает базовыми знаниями, полученными в области математических и (или) естественных наук. ПК 1.2. Умеет использовать их в профессиональной деятельности. ПК 1.3. Имеет навыки выбора методов решения задач профессиональной деятельности на основе теоретических	методы по собиранию, обрабатыванию и интерпретированию современных научных исследований, необходимых для формирования выводов по соответствующим научным исследованиям. Умеет: применять язык обобщенных функций к решению математических и физических задач. Владеет: навыками проведения работы по собиранию, обрабатыванию и интерпретированию	работы, тестирование, зачет
	основе теоретических знаний.	интерпретированию современных научных исследований, необходимых для формирования выводов по соответствующим научным исследованиям.	

ПК-2 способность к организации научноисследовательских и научнопроизводственных работ, к управлению научным коллективом	ПК-2.1 Знает основы современных научных исследований, необходимые для формирования выводов по соответствующим научным исследованиям. ПК-3.2 Планирует популярные лекции, экскурсии и другие виды деятельности необходимые для формирования выводов по соответствующим научным исследованиям. ПК-3.3 Проводит необходимую работу по собиранию, обрабатыванию и интерпретированию совре-	Знает: разные подходы к определению основных понятий математики; основные понятия информатики; формулировки математических утверждений при различных изменениях их исходных условий; различные языки программирования; Умеет: устанавливать связи между различными предметны ми разделами с учетом специфики математики и информатики необходимые для формирования выводов по соответствующим научным исследованиям. Владеет: определенными навыками планирования и проведения работы по собиранию, обрабатыванию и интерпретированию данных современных научных исследований, необходимых для формирования выводов по соответствующим научных исследований, необходимых для формирования выводов по соответствующим научным исследований научным исследований научным исследования выводов по соответствующим научным исследо-	Контрольные работы, коллоквиум, зачет
	менных научных исследований, необходимых для формирования выводов по соответствующим научным исследованиям.	ваниям	

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет 3 зачетные единицы, 108 академических часов.

4.2. Структура дисциплины.

		Ce	Не	Вил	LI VUE	Билй	naño)TLI	Формы
				Виды учебной работы, включая самостоятель-					текущего
No		ме	де		работ		контроля		
No '		ст	ЛЯ	_	раоот цоемк	-			
Π/	_	p	ce						успеваемости (по
П	Разделы и темы		ме	Ле	за	за	ca	Ca	неделям
	дисциплины		ст	КЦ	КН	КН	М.	MO	
			pa	ИИ	ТИ	ТИ	pa	CT.	семестра)
					FI	Яa	Ro	pa	Форма
					pa	бо	НТ	бо	промежуточной
					КТ	pa	p.	та	аттестации
					ИЧ	T	r		
	Модуль 1. <i>Обобщенн</i>	ые ф	ункци	и и д	ейств	ия н	ад ні	іми	
1	Пространства	3	1-3	6	6				Устный опрос
	основных и	-							
	обобщенных								
	функций								
2	Дифференцирование	3	4-5	4	4				Коллоквиум
	обобщенных функ	:-							
	ций								
3	Прямое произведение	3	6-8	8	6			2	Контрольная
	и свертка								работа
	обобщенных								
	функций								
	Итого по модулю 1			18	16			2	
	Модуль 2. <i>Преобразо</i>	вани	е Фур	l	риме	нени	е обо	бщен	ных функций
1	Обобщенные	3	6-7	4	4			·	Устный опрос
	функции медленного)							
	po-								
	ста								
2	Преобразование	3	8	4	6			2	Контрольная
	Фурье основных	K							работа
	функций из про-								
	странства Шварца и	1							
	обобщенных функ-								
	ций медленного ро-								
	ста								
<u> </u>	<u> </u>	1]	<u> </u>		<u> </u>	l		<u>l</u>

3	Применение	3	9-	4	6				тестирова-
	обобщенных		10						ние
	функций в								
	дифференциальных								
	уравнениях								
4	Применение	3		4	2				Устный опрос
	обобщенных функций								
	В								
	физике								
	Итого по модулю 2			<i>16</i>	18			2	
	Модуль 2. Подготовка к экзамену								
	Подготовка к	3						36	Экзамен
	экзамену								
	ИТОГО			34	34			40	

4.3. Содержание разделов учебной дисциплины

4.3.1. Содержание лекционных занятий

Модуль 1. Обобщенные функции и действия над ними Тема 1. Пространство основных функций К. Пространство К основных функций. Линейные операции и сходимость в К. Разбиение единицы. Умножение основной и бесконечно дифференцируемой функций.

Тема 2. Пространство обобщенных функций К'.

Определение обобщенной функции бесконечного порядка. Линейная замена аргумента. Носитель обобщенной функции. Сходимость. Формулы Сохоцкого. Ряды в пространстве обобщенных функций. Теорема о полноте.

Тема 3. Производная обобщенной функции

Производная обобщенной функции. Корректность определения. Связь между обычной и обобщенной производными. Почленная дифференцируемость рядов обобщенных функций.

Тема 4. Первообразная обобщенных функций

Первообразная. Существование первообразных высокого порядка. Теорема о существовании первообразной обобщенной функции нескольких переменных.

Тема 5. Прямое произведение обобщенных функций

Прямое произведение обычных и обобщенных функций. Корректность определения. Свойства прямого произведения. Тема 6. Свертка обобщенных функций

Свертка обычных и обобщенных функций. Корректность определения и свойства. Случаи существования свертки обычных и обобщенных функций.

Модуль 2. Преобразование Фурье и применение обобщенных функций

Тема 7. Пространство Шварца основных функций

Пространство S. Плотность в пространстве K. Пространство Шварца функций многих переменных.

Тема 8. Пространство обобщенных функций медленного роста

Обобщенные функции медленного роста. Структура обобщенных функций медленного роста с точечным носителем. Прямое произведение и свертка.

Тема 9. Преобразование Фурье основных функций

Преобразование Фурье функций пространства Шварца и его свойства. Формула обращения.

Тема 10. Преобразование Фурье обобщенных функций медленного роста

Преобразование Фурье обобщенных функций медленного роста и его свойства. Формула обращения и двойное преобразование Фурье.

Тема 11. Обыкновенные дифференциальные уравнения в пространстве обобщенных функций

Линейные дифференциальные уравнения и системы с бесконечно дифференцируемыми коэффициентами в пространстве обобщенных функций. Понятие обобщенного решения на данном множестве. Метод произвольных постоянных. Фундаментальное решение дифференциального оператора с постоянными коэффициентами.

Тема 12. Применение обобщенных функций в физике

Задачи типа Коши в механике. Применение обобщённых функций в акустике.

Линейные колебания в физике. 4.3.2. Содержание практических занятий

	Модуль 1.	Обобщенные функции и действия над ними	
п/п	дисциплины		(час)
No	№ раздела	Тематика практических занятий (семинаров)	Трудоемкость

1.		Линейные операции и сходимость в пространстве	16
		основных функций К.	
		Определение обобщенной функции бесконечного	
		порядка. Линейная замена аргумента. Носитель	
		обобщенной функции. Сходимость. Формулы	
		Сохоцкого. Ряды в пространстве обобщенных	
		функций.	
		Производная обобщенной функции. Основные	
		свойства. Связь между обычной и обобщенной	
		про-	
		изводными. Почленная дифференцируемость рядов	
		обобщенных функций.	
		Первообразная. Теорема о существовании	
		первообразной обобщенной функции нескольких	
		переменных.	
		Прямое произведение и свертка обычных и	
		обобщенных функций. Случаи существования	
		свертки обычных и обобщенных функций.	
	Модуль 2.	Преобразование Фурье и применение обобщенных функций	
2.		Пространство Шварца основных функций.	10
		Пространство обобщенных функций медленного	
		роста.	
		Преобразование Фурье функций пространства.	
		Шварца и его свойства. Формула обращения.	
		Преобразование Фурье обобщенных функций	
		медленного роста и его свойства.	
3.		Обыкновенные дифференциальные уравнения в	8
		пространстве обобщенных функций.	
		Фундаментальное решение дифференциального	
		оператора с постоянными коэффициентами. Метод	
		нахождения.	
		Применение обобщённых функций в механике.	
		Линейные колебания в физике.	
	Итого		34

5. Образовательные технологии

Лекции проводятся с использованием меловой доски и мела. При проведении отдельных занятий материал может параллельно транслироваться на экран с

помощью мультимедийного проектора. Для проведения лекционных занятий необходима аудитория, оснащенная мульмедиа-проектором, экраном, доской, ноутбуком (с программным обеспечением для демонстрации презентаций).

В процессе преподавания дисциплины применяются такие виды лекций, как вводная обзорная лекция, проблемная лекция, лекция визуализация с использованием компьютерной презентационной техники. Для этого на факультете математики и компьютерных наук имеются специальные, оснащенные такой техникой, лекционные аудитории.

По теме «Преобразование Фурье обобщенных функций медленного роста» целесообразно провести мастер-класс с приглашением специалистов по математическому анализу.

При изложении темы «Обыкновенные дифференциальные уравнения в пространстве обобщенных функций» предполагается встреча со специалистами по дифференциальным уравнениям из ДГПУ и ДНЦ РАН.

Вузовская лекция должна выполнять не только информационную функцию, но также и мотивационную, воспитательную и обучающую.

Информационная функция лекции предполагает передачу необходимой информации по теме, которая должна стать основой для дальнейшей самостоятельной работы студента

Мотивационная функция должна заключаться в стимулировании интереса студентов к науке. На лекции необходимо заинтересовать, озадачить студентов с целью выработки у них желания дальнейшего изучения той или иной математической проблемы.

Воспитательная функция ориентирована на формирование у молодого поколения чувства ответственности, закладку нравственных, этических норм поведения в обществе и коллективе, формирование патриотических взглядов, мотивов социального поведения и действий, естественнонаучного мировоззрения.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Для успешного освоения отдельных разделов рекомендуется выполнить в письменном виде и сдать преподавателю по одной самостоятельной работе. Ниже приведены примерные варианты самостоятельных работ. При выполнении заданий рекомендуется использовать учебные пособия [1] — [6] из списка рекомендованной литературы (п. 8 настоящей Программы).

6.1. Примерные варианты самостоятельных работ по теме «Пространства основных и обобщенных функций»

Вариант 1

1.	Доказать,	что фу	нкция	$\Box(x) \ \Box e^{\Box x2}$	2 , $x\square R$,	принадлежит	основному	пространст	ъу
	S.								

- 2. Доказать, что если непрерывная функция f обращается в нуль в области G в смысле обобщенных функций, то f(x)=0 для всех $x\square G$.
- 3. Доказать, что если функция f(x) имеет производную в классическом смысле, то она совпадает с производной в смысле обобщенных функций.

4. Доказать, что ряд $\Box^a_{\ k}\Box\Box x\Box k\Box$ сходится в $K\Box$ при любых $\overset{a}{\ \ \ }\Box$ R.

- 6. Доказать равенство: $x_n \square \square_n \square \square_x \square \square \square \square \square \square \square_n n! \square \square_x \square$.

Вариант 2

- 1. Верно ли, что $e^x \square \square x \square \square S(R)$ для $\square \square \square S$?
- 2. Доказать равенство $\Box x \Box^{\sin x * \theta(x)\cos x = \frac{1}{2}x_+ \cdot \sin x}$.

 $e_{\Box ixt}$

- 4. Пусть $a_k \Box Ak^{\frac{1}{m}} \Box B$ для некоторого m > 0 и $\Box k \Box 0\Box 1,\Box 2,...$. Тогда тригоно
 п метрический ряд $\Box a_k e^{ikx} \operatorname{сходится} \mathsf{B} \ K\Box \Box R\Box.$
- 5. Доказать, что функционал □□,□□ □□□0□ сингулярен.
- 6. Доказать равенство $\Box x \Box \sin x * \Box \Box x \Box \sin x \Box \overline{2} \Box \Box \Box x \Box \sin x \Box x_{\Box} \Box \cos x \Box$.
- 7. Доказать, что если ряд $\Box a_m \Box^{\Box_m \Box} \Box x \Box$ сходится в K', то все коэффициенты a_m ,

начиная с некоторого номера, равны нулю.

Вариант 3

e□ixt

 e_{ixt}

- 2. Доказать, что если $\Box(x)\Box S$, то функции $\Box^{\Box_n\Box}(x)$ для любого $n\Box 0$ абсолютно интегрируемы на всей прямой \mathbb{R} .

 $\Box x \Box$

- 5. Верно ли, что $x^n \square \square x \square \square S(R)$, $n \square N$ для $\square \square \square S$?
- 6. Доказать равенство $\Box \Box x \Box^{\cos x * \theta(x)\cos x} = \frac{1}{2} [\theta(x)\sin_{x\Box x_{\Box}\Box\cos x}\Box.$
- 7. Доказать, что если функция f(x) имеет производную в классическом смысле, то она совпадает с производной в смысле обобщенных функций.

Вариант 4

1. Доказать предельное соотношение (в K') при t □□□: x □i0

- 2. Доказать, что ряд $\square a_k \square \square x \square k \square$ сходится в K'при любых $a_k \square R$.
- 3. Доказать, что если $f_n \square x \square \square \cos nx$, то $f_n^{\square k \square} \square 0$, $\square k \square 0$.
- 4. Доказать равенство $x^n \square^{\square_n \square} \square x \square \square \square \square \square \square^n n! \square \square x \square$.

 $\Box\Box\Box0$.

6. Пусть g(x) – локально интегрируемая функция, $\alpha_i = const$. Доказать, что

13

	равенство $g \coprod x \coprod \square \coprod \square_k \square \coprod x \square x_k \coprod \square 0$ (в K') имеет место тогда и только тогда,
	$k\Box 1$
	когда $g(x) = 0$ (в K') и $\alpha k = 0, k = 1,, n$.
7.	Показать, что функционал $\Box y\Box,\Box\Box$ \Box $\Box\Box x\Box\Box\Box\Box x\Box\Box\Box\Box\Box\Box\Box dx$ является производной
	O Company of the Comp
	\square $\square x^\square npux$ \square 0, обобщенной функции y \square x \square \square .
	$\square \ 0 \ npux \square \ 0$

6.3. Другие виды самостоятельной работы, распределенные по темам, со ссылками на рекомендуемую литературу

	· · · · · · · · · · · · · · · · · · ·
Разделы (модули) и темы для самостоятельного изучения	Виды и содержание самостоятельной работы
Модуль 1. Обобщенные функции і	і действия над ними
1. Дифференцирование	Доклады на темы:
обобщенных функций.	 Применение обобщенных производных при суммировании расходящихся рядов ([1], [2], [5]). Разбиение единицы и его применение ([1], [2], [5]).
2. Прямое произведение и свертка обобщенных функций.	Доклады на темы: 1. Регуляризация обобщенных функций и ее применение([3], [5]). 2. Случаи существования свертки обобщенных функций. Сверточная алгебра ([1], [2], [5]).
Модуль 2. Преобразование Фурье	обобщенных функций
1. Обобщенные функции	Решение задач и упражнений ([4], [7], [8],
медленного роста.	[10]).

2. Преобразование Фур	рье	Решение задач и упражнений ([4], [7], [8],
основных функций	ИЗ	[10]).
пространства Шварца.		
3. Преобразование Фур	рье	Доклад на тему:
обобщенных функций медленно	ого	Обратное преобразование Фурье
роста		обобщенной функции. Формула
		обращения
		([6], [9]).
4. Фундаментальные реше	ния	Доклад на тему: фундаментальные реше-
дифференциальных операторов		ния операторов математической физики и
		их применения
5. Применение обобщени	ных	Доклад на тему: применение обобщенной
функций в физике		многоточечной задачи Коши в механике

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Типовые контрольные задания

7.1.1. Примерные темы рефератов по дисциплине:

- 1) Сверточная алгебра обобщенных функций К _п. Уравнения в сверточной алгебре К _п
- 2) Преобразование Радона обобщенных функций и его применение.
- 3) Преобразование Хартли обобщенных функций и его применение.
- 4) Теория обобщенных функций вещественной переменной (секвенциальный подход).
- 5) Теория обобщенных функций вещественных переменных (секвенциальный подход).
- 6) Свертка и скалярное произведение обобщенных функций (секвенциальный подход).
- 7) Обобщенные функции и ряды Эрмита медленного роста.
- 8) Преобразование Гильберта обобщенных функций и его применения.
- 9) Преобразование Ханкеля обобщенных функций и его применения.
- 10) Пассивные системы и обобщенные функции.

7.1.2. Примерные контрольные вопросы для подготовки к коллоквиуму по теме «Обобщенные функции и действия над ними»

- 1. Задачи, приводящие к необходимости введения обобщенных функций.
- 2. Пространства K^m , K, S основных функций. Сходимость. Примеры. Доказать, что K плотно в S.
- 3. Доказать, что если $\Box(x)\Box S$, то функции $\Box^{\Box_n\Box}(x)$ для любого $n\Box 0$ абсолютно интегрируемы на всей прямой R.
- 4. Теорема о существовании основной функции $\Box\Box K$, равной единице на заданном компактном множестве.
- 5. Определение обобщенной функции. Пространства обобщенных функций. Регулярные и сингулярные обобщенные функции.
- 6. Равенство обобщенных функций. Носитель о.ф. Умножение о.ф. на бесконечно дифференцируемую функцию.
- 7. Лемма дю Буа-Реймонда.
- 8. Линейная замена аргумента в обобщенной функции. Четность дельтафункции Дирака.
- 9. Производная о.ф. Корректность определения. Линейность и непрерывность. Связь с производной в обычном смысле.
- 10. Ряды обобщенных функций. Почленная дифференцируемость рядов о.ф.
- 11. Доказать, что если ряд, составленный из обычных функций, сходится в смысле обобщенных функций на каждом компакте, то его можно почленно дифференцировать любое число раз, и полученные ряды будут сходиться в $K\square$.
- 12.Пусть $a_k \square Ak \not \sqcap B$ для некоторого m>0 и $\square k \square 0\square 1,\square 2,...$. Тогда тригоно- \square метрический ряд $\square a_k e^{ikx}$ сходится в $K\square \square R\square$.
- 13. Дельтообразные последовательности.
- 14. Первообразная обобщенной функции. Теорема о существовании.
- 15.Первообразные высших порядков обобщенных функций. Теорема о существовании.
- 16. Прямое произведение обобщенных функций. Корректность определения.
- 17.Доказать, что если $g \square K^{\square}\square R^m\square$, $\square\square K\square R^{n\square m}\square$, то функция $\square\square x\square$ \square $\square g\square y\square$, $\square\square x$, $y\square$ принадлежит $K\square R^n\square$, причем справедлива формула $D^{\square}\square \square x\square$ $\square \square g\square y\square$, $D^{\square}_x\square \square x$, $y\square$ \square .
- 18.Свойства прямого произведения о.ф.
- 19. Свертка обычных функций. Случаи существования свертки.
- 20. Свертка обобщенных функций. Корректность определения и свойства.

- 21. Теорема о существовании свертки обобщенной функции с основной функцией.
- 22. Регуляризация обобщенных функций. Плотность пространства K в пространстве обобщенных функций $K\square$.

7.1.3. Примерные контрольные вопросы для подготовки к коллоквиуму по теме «Преобразование Фурье обобщенных функций меленного роста»

- 1. Преобразование Фурье и обратное преобразование Фурье функций пространства Шварца. Примеры. Формула обращения преобразования Фурье.
- 2. Взаимная однозначность и непрерывность преобразования Фурье в пространстве Шварца.
- 3. Преобразование Фурье обобщенных функций медленного роста. Примеры и свойства.
- 4. Обратное преобразование Фурье обобщенных функций. Формула обращения.
- 5. Взаимная однозначность и непрерывность преобразования Фурье в пространстве *S'*.
- 6. Преобразование Фурье обобщенных функций с компактным носителем.
- 7. Преобразование Фурье свертки обобщенных функций.
- 8. Системы линейных однородных дифференциальных уравнений с бесконечно дифференцируемыми коэффициентами в пространстве обобщенных функций и обобщенными неоднородностями.
- 9. Системы линейных дифференциальных уравнений с бесконечно дифференцируемыми коэффициентами и обобщенными неоднородностями.
- 10.Обобщенное решение неоднородного дифференциального уравнения на данном множестве.
- 11. Фундаментальное решение дифференциального оператора с постоянными коэффициентами.
- 12. Выражение решения неоднородного уравнения через фундаментальное решение.
- 13. Метод вариации постоянных нахождения частного обобщенного решения дифференциального уравнения.
- 14. Фундаментальное решение волнового оператора.
- 15. Фундаментальное решение оператора теплопроводности.
- 16. Фундаментальное решение оператора Лапласа.

- 17. Линейные колебания в механике. Применение обобщенных функций для решения задачи с начальными данными.
- 18. Решение двухточечной задачи для уравнения колебаний материальной точки.
- 19. Применение обобщенных функций в методах фильтрации и Фурьесинтеза обращения преобразования Радона.

7.1.4. Примерные варианты контрольных работ по теме «Пространства основных и обобщенных функций»

Контрольная работа 1 ab 1. Доказать, что функция $\square(x)$ \square $\square_{\square e}$ $\square_{x\square a}\square\square_{b\square x}\square$ при $x\square\square a,b\square$, принадлежит основному \Box 0 при $x\Box\Box a,b\Box$ пространству $K(\mathbb{R})$. 2. Доказать, что если последовательность $\Box \Box_m(x)$ $\Box^{\Box} \Box K \Box R \Box$ сходится в пространстве K к функции φ , то $a\Box_n \Box a\Box$ для любой бесконечно дифференцируемой функции а. 4. Доказать, что функционалы $\Box\Box\Box\Box$ 1, $\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$ $\Box xx\Box dx$ и $\Box\Box\Box\Box\Box\Box$ 12, $\Box\Box\Box$ $\Box V_{D\Box\Box}\Box\Box\Box\Box\Box x\Box\Box\Box\Box\Box\Box\Box 0\Box dx$ ЯВ- $\Box x$ $\square x \square$ ляются обобщенными функциями. Показать, что $= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, $= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $x^2 \square 1$, $000 - 1x 000^{\circ} 0 00000 - x1_2 000.$

5. Показать, что функционал $\Box_y\Box_,\Box\Box_\Box$ $\Box_\Box\Box_x\Box\Box\Box\Box\Box_x\Box\Box\Box\Box\Box\Box$ является производной

0

обобщенной функции $y \square x \square_{\square} \square \square \square_{\square} x^{\square} npux \square$ 0'.

 $\Box \Box 0 npux \Box 0$

- 6. Показать, что: $\Box\Box\Box x\Box\Box\Box\Box x\Box$, $\Box\Box\Box x\Box h\Box\Box\Box x\Box h\Box$, supp $\Box\Box x\Box h\Box\Box\Box h\Box$.
- 7. Доказать, что если ряд $\Box^{\square} a_{m\square} \Box_{m} \Box x \Box$ сходится в $K\Box$, то все коэффициенты a_m ,

 $m\square 0$

начиная с некоторого номера, равны нулю.

Контрольная работа 2

1. Доказать, что функция $\square(x)$ $\square \square \square \square^{\sin_{m\square 1}}$ __xb _-aa npu $^{x\square}\square_{a,b}\square$, принадлежит основному

 \Box 0 при $x\Box\Box a,b\Box$

пространству $K^m[a, b]$.

- 2. Доказать, что если последовательность $\Box \Box_m(x) \Box_n \Box K \Box R \Box$ сходится в K пространстве K к функции φ , то $a\Box n \Box a\Box$ для любой бесконечно дифференцируемой функции a.
- 3. Доказать, что следующие функции стремятся к $\delta(x)$ при $\Box\Box\Box$ 0:

a)
$$e^{\frac{x^2}{1} - \frac{1}{1} - \frac{1}{1}}$$
 $e^{-\frac{1}{1}} = \frac{1}{1} + \frac{1}{1} +$

4. Показать, что функционал $\Box_y\Box,\Box\Box\Box = \Box_x\Box\Box\Box x\Box\Box\Box x\Box\Box\Box = \Box_x\Box\Box\Box = x\Box\Box dx$ является производной

обобщенной функции $y \square \ln x \square \square \square \square \ln x n p u x \square 0$,.

 \square 0 npux \square 0

5. Вычислить $dt = \frac{d_3}{dt}$.

6.	Пусть $g(x)$ — локально интегрируемая функция, α_i = $const$. Доказать, что равенство (в $K\square$) n $K\square$
	$g\square x\square\square\square\square_k\square\square x\square^{\chi}_{k}$ $\square\square 0$ имеет место тогда и только тогда, когда
	$g\square x\square\square 0$ и $k\square 1$ $\alpha_k=0,\ k=1,,n$
7.	Доказать равенство: $x_n \square \square_n \square_k \square \square \square_k \square \square \square_n \square \square_n \square_k \square \square_k \square \square_k \square \square_k \square \square_k \square \square_k \square_k \square$
	Контрольная работа 3
1.	Доказать, что если $\square(x)\square S$, то функции $\square^{\square_n\square}(x)$ для любого $n\square$ 0
	абсолютно интегрируемы на всей прямой R .
2.	Доказать, что для того чтобы для функции $\square\square$ K существовала $\square\square$ K
	такая, что $\Box\Box\Box\Box$ необходимо и достаточно, чтобы $\Box\Box\Box t\Box dt$ \Box 0.
3.	Доказать, что следующие функции стремятся к $\delta(x)$ при $\Box\Box\Box$ 0:
	a) $\Box \overline{1} \overline{x_2 \Box \Box \Box z}$, $\overline{6}$) $\overline{\Box \Box 1 x_2} \sin_2 \overline{\Box} x$.
4.	Доказать, что если $f_n\Box x\Box\Box$ соѕ nx , то $f_n\Box k\Box$ $\Box 0$, $\Box k\Box$ 0 . d
5.	Вычислить: а)
6.	Разложив функцию $f \square x \square \square^{x} \square^{x_2}$ в ряд Фурье на отрезке $[0,2\pi]$ и дважды $2 4 \square$
	продифференцировав полученный ряд, доказать формулу
7.	Пусть $\stackrel{q}{}_k \square A^k{}_m \square B$ для некоторого $m > 0$ и $\square k \square 0 \square 1, \square 2,$ Доказать, \square

что тогда тригонометрический ряд $\Box^a_{\ k}e^{ikx}$ сходится в $K\Box\Box R\Box$.

7.1.5. Примерные варианты контрольных работ по модулю «Преобразование Фурье обобщенных функций»

Контрольная работа 1

- 1. Найти преобразование Фурье обобщенной функции $F[\theta(1-|x|)x](\xi)$.
- 2. Найти фундаментальное решение дифференциального оператора $\frac{d_{2}}{dt} \Box d dt$
- 3. В пространстве обобщенных функций найти общее решение дифференциального уравнения $y \square \square xy \square \square$.

Контрольная работа 2

- 1. Найти преобразование Фурье обобщенной функции $F\left[\operatorname{sign} \frac{x-1}{2}\right](\xi)$.
- 2. Найти фундаментальное решение дифференциального оператора $\frac{d}{dt^2} 2\frac{d}{dt} + 1$.
- 3. В пространстве обобщенных функций найти общее решение дифференциального уравнения $y \square \square \square y \square x_{\square}$.

Контрольная работа 3

- 1. Найти преобразование Фурье обобщенной функции $F\left[P\frac{1}{(x+1)^2}\right](\xi)$.
- 2. Найти общее обобщенное решение дифференциального уравнения $xf \square \square$ sign $x \square \square$.
- 3. Найти фундаментальное решение дифференциального оператора $\frac{d^2}{dt^2} + \frac{d}{dt} 2$.

7.1.6. Примерные задания тестов

Тест №1

1.	Какие из приведенных ниже функционалов f являются обобщенными
	функциями (из $K^{'}$):
	1) $\Box f$, $\Box \Box \Box \Box \Box x \Box dx$; 2) $\Box f$, $\Box \Box \Box$
	4) $\Box f$, $\Box\Box$ $\Box\Box\Box\Box\Box\Box\Box\Box$; 5) $\Box f$, $\Box\Box$ $\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$; 6) $\Box f$
	$,\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$.
2.	Вычислить: $x \square \square x \square$.
	1) 1; 2) x^2 ; 3) 0; 4) $\Box\Box x\Box$.
3.	Вычислить значения функционала $\Box\Box\Box$ $x\Box$ на функциях $\Box\Box x\Box\Box K$.
	$1) \square \square 0 \square; 2) \square \square \square 0 \square; 3) \square \square 1 \square; 4) \square \square \square 1 \square.$
	4. Вычислить пределы в $K\square$ последовательности $\int_{-n}^{f} \square x \square \square$
	обобщен□сh <i>nx</i>
	ных функций при $n\square\square$.
	1) $\Box\Box x\Box$; 2) 0; 3) 1; 4) 2 \Box . 5. Пусть $\int_{n}^{f}\Box x\Box\Box$ соз nx . Чему равен предел
lin	$\prod_{n=0}^{f} \square \square x \square$ в пространстве обоб-
	$n\Box\Box$
	щенных функций.
	1) 0; 2) не существует; 3) 1; 4) sin <i>x</i> .
6.	Вычислить $x_{\square}^{\square_4\square}\square x\square$.
	1) $\Box 4_{\square}^{\square_3\square}\Box x\Box$; 2) $3_{\square}^{\square_3\square}\Box x\Box$; 3) 0; 4) $\Box 4_{\square}^{\square_5\square}\Box x\Box$
7.	Вычислить $\square \square_{X} \square^{*} \square^{3}$.

$$\overset{-}{1}\,^4;\,2)\,4\overset{x}{_{\square}}{}^4;\,3)$$
 свертка не определена; 4) 0. 1) $\overset{x}{_{\square}}4$

- 8. Найти преобразование Фурье $F \square \square \square x \square 2 \square \square \square \square$. 1) $e^{\square 2i \square}$; 2) $e^{2i \square}$; 3) $e^{\square 2 \square}$; 4) $e^{2 \square}$.
- 9. Найдите фундаментальное решение дифференциального оператора $= \Box 1$. dt
 - 1) $\Box\Box t\Box e^t$; 2) $\Box\Box t\Box e^{\Box t}$; 3) $\Box\Box t\Box$; 4) $e^{\Box it}$.
- 10.Выберите фундаментальное решение волнового оператора $\overline{t} \square \square_2$. $\square_2 x$

1)
$$1 \square \square t \square x \square$$
; 2) $1 \square \square t \square x \square$; 3) $2 \square \square t \square x \square$; 4) $\square \square t \square x \square$; 4) $\square \square \square t \square x \square$; 4) $\square \square \square \square z$

7.2. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля – 50% и промежуточного контроля – 50%.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях 10 баллов,
- коллоквиум 40 баллов,
- выполнение аудиторных контрольных работ -40 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос -50 баллов,
- письменная контрольная работа 50 баллов.

d

П

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) основная литература:

- 1) Владимиров В.С. Уравнения математической физики. М.: Наука, 1971.
- 2) Гельфанд И. М., Шилов Г.Е. Обобщенные функции. М.: Физматгиз, Вып. 1-3, 1958.
- 3) Кеч В., Теодореску П.. Введение в теорию обобщенных функций с приложениями в технике. М: Мир, 1978.
- 4) Шилов Г.Е. Математический анализ. Второй спец. курс. М.: Изд. МГУ, 1984.

б) дополнительная литература:

- 5) Владимиров В.С. и др. Сборник задач по уравнениям математической физики. М.: Наука, 1982.
- 6) Берман Г. Распределения, комплексные переменные и преобразование Фурье. М.: Мир, 1968.
- 7) Владимиров В.С. Обобщенные функции в математической физике. 1979.
- 8) Асташова И.В. Функциональный анализ [Электронный ресурс]: учебное пособие/ Асташова И.В.— Электрон. текстовые данные.— М.: Евразийский открытый институт, 2011.— 112 с.— Режим доступа: http://www.iprbookshop.ru/11120.html.— ЭБС «IPRbooks»
- 9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.
 - 1. 2319 http://window.edu.ru/window/catalog?p_rubr=2.2.74.12

10. Методические указания для обучающихся по освоению дисциплины.

Язык обобщенных функций (или распределений, как их еще называют в литературе) является основным языком многих современных направлений математики. Дисциплина «Обобщенные функции» способствует выработке этого языка у будущих бакалавров. Поэтому творческое овладение этой дисциплиной особенно важно для тех, кто собирается продолжить учебу в магистратуре и аспирантуре по различным направлениям. Специфика дисциплины состоит в том, что здесь подвергаются пересмотру такие базовые понятия классического анализа, как предел, производная и др. Обобщение этих понятий не только расширяет круг решаемых задач, но и

значительно упрощает решение этих задач, автоматизируя многие математические операции.

Систематическое изложение научных материалов, освещение главных тем данной дисциплины проводится в ходе лекционного курса. Изучение теоретического курса выполняется самостоятельно каждым студентом по итогам каждой из лекций, используя конспект (электронный) лекций, «Перечень учебники, представленные В разделе 8 основной дополнительной учебной литературы, необходимой ДЛЯ освоения дисциплины», результаты контролируются преподавателем на практических занятиях.

Если возникают вопросы, следует обратиться на кафедру к преподавателю, согласно графику консультаций ведущего преподавателя. Обращаясь за консультацией, необходимо указать, каким учебником пользовались и какой раздел, глава, параграф вам не понятен.

Решения задач и самостоятельные работы по заданию (индивидуальному, где требуется) преподавателя сдаются в конце каждой зачетной единицы.

Для сдачи зачетной единицы «Дифференциальные уравнения в пространстве обобщенных функций» необходимо проанализировать лекционный материал с использованием источников литературы, предварительно повторить темы «Дифференциальные уравнения высокого порядка» и «Системы линейных дифференциальных уравнений».

Для подготовки к практическим занятиям нужно изучить соответствующий теоретический материал из следующих литературных источников, рекомендованных в п. 8: [1], [2], [5], [6], [10].

Решать задачи и упражнения из учебных пособий и задачников: [1], [5], [6].

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Для осуществления образовательного процесса по дисциплине: «Обобщенные функции» необходимы:

Системное программное обеспечение: OC Windows 7/8/10;

Прикладное программное обеспечение: MSOffice 2007/2010/2013; **Сетевые приложения**: электронная почта, поисковые системы Google, Yandex.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Для проведения лекционных занятий на факультете необходима аудитория на 25-35 мест, оборудованная ноутбуком, экраном и цифровым проектором.