МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Параллельные вычисления

Кафедра дискретной математики и информатики факультета математики и компьютерных наук

Образовательная программа бакалавриата 02.03.02 - Фундаментальная информатика и информационные технологии

Направленность (профиль) программы:

Информатика и компьютерные науки

Форма обучения:

очная

Статус дисциплины:

дисциплина по выбору

Рабочая программа дисциплины «Параллельные вычисления» составлена в 2022 году в соответствии с требованиями ФГОС ВО - бакалавриат по направлению подготовки/специальности 02.03.02- Фундаментальная информатика и информационные технологии.

Приказ №808 Минобрнауки России от 23 августа 2017 г.

Разработчик: кафедра дискретной математики и информатики, Ханикалов Х.Б.ст. преподаватель кафедры дискретной математики и информатики.

Рабочая программа дисциплины одобрена:							
на заседании кафедры дискретной математики и информатики от $28.02.2022$, протокол N 6.							
Зав. кафедрой Магомедов А.М. (подпись)							
и на заседании Методической комиссии ФМиКН от 24.03.2022, протокол № 6. Председатель Ризаев М.К. (подпись)							
Рабочая программа дисциплины согласована с учебно-методическим управлением « <u>81</u> » <u>03</u> 2022 г. / Начальник УМУ Гасангаджиева А.Г.							
(подпись)							

Аннотация рабочей программы дисциплины

Дисциплина "Параллельные вычисления" является дисциплиной по выбору ОПОП бакалавриата по направлению 02.03.02 «Фундаментальная информатика и информационные технологии».

Дисциплина реализуется на факультете математики и компьютерных наук кафедрой дискретной математики и информатики.

Содержание дисциплины охватывает круг вопросов, связанных с современными знаниями в области параллельного и распределенного программирования.

Дисциплина нацелена на формирование следующих компетенций выпускника: общепрофессиональных – ОПК-2, профессиональных – ПК-4.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости: в форме контрольной работы и итогового зачета в конце семестра.

Объем дисциплины - 2 зачетные единицы, в том числе в академических часах по видам учебных занятий:

		Учебные занятия						Форма проме-
			жуточной атте-					
Семестр								стации (зачет,
Me	Q				из них		СРС, в	дифференциро-
Ce	сего	о 12	Лек-	Лабора-	Практи-		том числе	ванный зачет,
	В	Всего	ции	торные	ческие		экзамен	экзамен
				занятия	занятия			
8	72	14	8		6		58	зачет

1. Цели освоения дисциплины

Целями освоения дисциплины «Параллельные вычисления» являются освоение студентами базовых знаний и приобретение навыков в области параллельной обработки информации, технологий организации параллельных вычислений на многопроцессорных вычислительных комплексах с распределенной или общей оперативной памятью.

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина "Параллельные вычисления" является дисциплиной по выбору ОПОП бакалавриата по направлению 02.03.02 и изучается в соответствии с графиком учебного процесса в 8 семестре.

Дисциплина логически и содержательно взаимосвязана с такими дисциплинами, как «Основы программирования», «Языки программирования», «Языки и методы программирования», «Введение в анализ информационных технологий». В течение преподавания курса предполагается, что студенты знакомы с основными понятиями алгебры, комбинаторики, логики, информатики, которые читаются на факультете перед изучением данной дисциплины.

Знания, навыки и умения, приобретенные в результате прохождения курса, будут востребованы при выполнении итоговой квалификационной работы, связанной с реализацией высокоэффективных параллельных алгоритмов.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с $\Phi \Gamma O C$ ВО по данному направлению подготовки: ОПК - 2, ПК - 4.

Код и наименование компетенции из ОПОП	Код и наименование индикатора достижения компетенций	Планируемые результаты обучения	Процедура освоения
ОПК-2. Способен применять компьютер- ные/суперкомпьютерные методы, современное программное обес- печение, в том числе отечествен- ного происхождения, для реше- ния задач профессиональной дея- тельности	ОПК-2.1. Знает основные положения и концепции в области программирования, архитектуру языков программирования, знает основную терминологию, знаком с содержанием Единого Реестра Российских программ. ОПК-2.2. Умеет анализировать типовые языки программирования, составлять программы.	Знает: основные новые математические модели в современных естествознании, технике, экономике и управлении. Умеет: давать сравнительный анализ новых математических моделей в современных естествознании, технике, экономике и управлении. Владеет: основами новых математических моделей в современных естествознании, технике, экономике и управлении. Знает: основные методы математических моделей в современных естествознании, технике, экономике и управлении. Знает: основные методы математических моделей в современных естествознании, технике, экономике и управлении. Умеет: самостоятельно анализиротельно анализиро-	Конспектирование и изучение лекционного материала. Устный опрос.
		вать действительность и процессы в современных естествознании, технике, экономике и управлении; принимать обоснованные решения в	

ПК-4. Способность применять в профессиональной деятельности современные языки программирования и методы параллельной обработки данных, операционные системы, электронные библиотеки и пакеты программ, сетевые технологии.

ПК-4.1.

Знает современные языки программирования и методы параллельной обработки данных. Знаком с содержанием Единого Реестра Российских программ для электронных вычислительных машин и баз данных.

Знает: основы математического анализа и различные приложения дифференциального и интегрального исчисления в математических и естественных науках; современные языки программирования и современные информационные технологии. Умеет: применять дифференциальное и интегральное

исчисления для решения различных задач математических и естественных наук; составлять программы на современных языках программирова-

Владеет: базовыми методами дифференциального и интегрального исчислений; навыками программирования на совре-

ния.

Конспектирование и изучение лекционного материала.

ПК-4.2.

Умеет реализовывать численные методы решения прикладных задач в профессиональной сфере деятельности, пакеты программного обеспечения, операционные системы, электронные библиотеки, сетевые технологии.

менных языках. Знает: области ференциального и интегрального исчисления; различные языки программирования. Умеет: решать задачи, связанные: свойств функций и их производных, с изучением функциональных рядов, с оценкой погрешприменять различ-

применения дифс исследованием ности аппроксимации функций;

ные языки программирования в численном анализе. Владеет: методадифференци-ΜИ ального исчисления для исследования функций и навыками приложения интегрального исчисления к геометрии, физике. ПК-4.3. Знает: методы исследования функ-Имеет практичеций с помощью ский опыт разрапроизводных, выботки интеграчисления интеграции информацилов; методы исонных систем. следования сходимости рядов; численные методы анализа; современные информационные технологии. Умеет: применять методы исследования функций с помощью производных, вычисления интегралов и методы исследования сходимости рядов в численном анализе с использованием современных информационных технологий. Владеет: навыками решения задач численного анализа с использованием методов дифференциального и интегрального исчислений.

4.1. Объем дисциплины составляет 2 зачетные единицы, 72 академических часа.

4.2. Структура дисциплины.

№ π/π	Разделы и темы дисциплины по модулям		Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)					Формы текуще- го контроля успеваемости и промежуточ-
				Всего	Лекции	Практические занятия	Лаборатор- ные занятия	Сам. работа в т.ч. зачет, эк- замен	ной аттестации
	Модуль 1. Принципы постро	ения	н пара	ллелі	ьных і	вычисл	ительн	ых систем	
1	Тема 1. Введение в предмет. Основные понятия и определения.	8	1	12	2			10	Опрос
2	Тема 2. Принципы по- строения параллельных вычислительных систем.	8	2	12	2			10	Опрос
3	Тема 3. Классификация параллельных компьютеров и систем.	8	3	12	2			10	Прием самосто- ятельных работ
	Итого по модулю 1:			36	6			30	
	Модуль 2. Технологии пара	ллел	ІЬНОГ(о про	грамм	ирован	ия		
4	Тема 1. Технология Open MP	8	4	18	4			14	Опрос
5	Тема 2. Технология MPI	8	5	18	4			14	Прием самостоятельных работ
	Итого по модулю 2:			36	8			28	Зачет
	ИТОГО			72	14			58	

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине

Модуль 1. Принципы построения параллельных вычислительных систем Тема 1. Введение в предмет. Основные понятия и определения.

Понятие параллельных вычислений. Необходимость параллельных вычислений. Сдерживающие факторы. Характеристика необходимых знаний и умений.

Тема 2.

Принципы построения параллельных вычислительных систем.

Основные виды ЭВМ. Принципы фон-Неймана. Структура традиционных ЭВМ. Способы повышения производительности компьютеров.

Тема 3. Классификация параллельных компьютеров и систем

Классификация Флинна, Хокни, Шнайдера. Взаимосвязь классификаций. Параллельные компьютеры с общей и разделенной памятью. Параллельные компьютеры с сетевой структурой. Характеристика типовых схем коммуникации в многопроцессорных вычислительных системах.

Модуль 2. Технологии параллельного программирования

Тема 1. Технология OpenMP. История и цели OpenMP. Директивы и функции. Директива отр. Видимость данных. Области видимости переменных. Директива parallel. Распределение работы. Директива for. Способы разделения работы между потоками. Синхронизация потоков. Библиотека функций OpenMP.

Тема 2. Технология MPI. История, цели и задачи. Основные понятия и определения. Структура MPI приложения. Определение количества и ранга процессов. Передача и прием сообщений. Определение времени выполнения MPI программы. Коллективные операции передачи данных. Синхронизация вычислений.

4.3.2. Практические и лабораторные занятия по плану отсутствуют.

5. Образовательные технологии

Процесс изложения учебного материала сопровождается презентациями и демонстрацией решения задач в интерактивном режиме с использованием мультимедийного проектора.

Систематически проводится сравнение реализации потоков и нитей средствами различных языков Delphi, С# и др. Задания, предлагаемые студентам по различным темам, индивидуализированы, рекомендации по их выполнению, а также по исправлению ошибок, даются как непосредственно на лабораторных занятиях, так и по электронной почте.

Часть рекомендаций и указаний к решению заданий, которая относится ко всей учебной группе, размещается на сайте кафедры. Предусмотрено ведение образовательного блога.

Общение студентов по электронной почте с преподавателями кафедры носит регулярный характер, практикуется и общение с выпускниками кафедры — представителями российских компаний.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

6.1 Виды самостоятельной работы и её контроля

Самостоятельная работа студентов складывается из:

- проработки лекционного материала (настоятельно рекомендуется самостоятельное практическое решение всех разобранных на лекциях упражнений);
- изучения рекомендованной литературы и материалов соответствующих форумов интернет;
- подготовки к сдаче промежуточных форм контроля (контрольных работ).

№	Вид самостоя-	Вид контроля	Учебно-методическое
	тельной работы		обеспечение
1.	Проработка лек-	Контрольный фронталь-	См. разделы 8, 9 данного
	ционного мате-	ный опрос	документа
	риала		
2.	Изучение реко-	Контрольный фронталь-	См. разделы 8, 9 данного
	мендованной ли-	ный опрос, прием и	документа
	тературы и мате-	представление рефера-	
	риалов соответ-	TOB.	
	ствующих фору-		
	мов интернет		
3.	Подготовка к	Контрольные работы по	См. разделы 8, 9 данного
	сдаче промежу-	каждому модулю.	документа
	точных форм		
	контроля		

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1 Типовые контрольные задания

7.1.1 Вопросы для самостоятельной работы

- 1. Основные проблемы использования параллельной обработки данных.
- 2. Закон Мура о росте производительности последовательных компьютеров.
- 3. Модели многопроцессорных систем и распределенной памятью. Модель конвейерной системы.
- 4. Основные проблемы параллельных вычислений: синхронизация, взаимоисключение, блокировка (тупики).

- 5. Распараллеливание алгоритмов: параллелизм данных и параллелизм кода;
- 6. Параллельные алгоритмы умножения вектора на матрицу.
- 7. Алгоритм исключения элементов матрицы (исключение Гаусса).
- 8. Параллельная реализация алгоритмов умножения двух матриц.
- 9. Алгоритмы маршрутизации.
- 10.. Основные возможности системы DVM.

7.1.2. Типовые контрольные задания

Задание 1.

Напишите программу, в которой создается k нитей, и каждая нить выводит на экран свой номер и общее количество нитей в параллельной области в формате:

```
I am <Hомер нити> thread from <Количество нитей> threads!
```

Задание 2.

Изучите конструкции для управления работой с данными shared и private. Напишите программу, в которой создается k нитей, и каждая нить выводит на экран свой номер через переменную rank следующим образом:

```
rank = omp_get_thread_num();
printf("I am %d thread.\n", rank);
```

Экспериментами определите, общей или частной должна быть переменная rank.

Задание 3.

Напишите программу, в которой две нити параллельно вычисляют сумму чисел от 1 до N. Распределите работу по нитям с помощью оператора if языка С. Для сложения результатов вычисления нитей воспользуйтесь OpenMP-параметром reduction.

Залание 4.

Изучите OpenMP-директиву параллельного выполнения цикла for. Напишите программу, в которой k нитей параллельно вычисляют сумму чисел от 1 до N. Распределите работу по нитям с помощью OpenMP-директивы for.

Задание 5.

Изучите параметр schedule директивы for. Модифицируйте программу «Сумма чисел» из задания 4 таким образом, чтобы дополнительно выводилось на экран сообщение о том, какая нить, какую итерацию цикла выполняет:

```
[<Hoмep нити>]: calculation of the iteration number <Hoмep итерации>.
```

Задайте k = 4, N = 10.

Залание 6.

Напишите OpenMP-программу, которая вычисляет число π с точностью до N знаков после запятой. Используйте следующую формулу:

$$\pi = \left(\frac{4}{1+x_0^2} + \frac{4}{1+x_1^2} + \ldots + \frac{4}{1+x_{N-1}^2}\right) \times \frac{1}{N}, \text{ где } x_i = (i+0.5) \times \frac{1}{N}, i = \overline{0, N-1}$$

Распределите работу по нитям с помощью OpenMP-директивы for.

Задание 7.

Изучите OpenMP-директивы создания параллельных секций sections и section. Напишите программу, содержащую 3 параллельные секции, внутри каждой из которых должно выводиться сообщение:

[<Hoмep нити>]: came in section <Hoмep секции>

Вне секций внутри параллельной области должно выводиться следующее сообшение:

[<Homep нити>]: parallel region

Запустите приложение на 2-х, 3-х, 4-х нитях. Проследите, как нити распределяются по параллельным секциям.

Задание 8.

Перепишите программу, в которой параллельно вычисляется сумма чисел от 1

до N (см. задание 4), без использования параметра reduction. Вместо параметра reduction используйте директиву atomic.

Залание 9.

Перепишите параллельную программу вычисления числа π (см. задание 6) без использования параметра reduction. Вместо параметра reduction используйте директиву critical.

7.1.3. Темы для рефератов

- 1. Сравнение архитектуры СРИ и GPU
- 2. Эволюция GPU
- 3. Использование нескольких GPU

- 4. Современные направления развития параллельных вычислительных систем
- 5. Создание потоков и нитей в Delphi
- 6. Средства распараллеливания в современных языках программирования
- 7. Вытесняющая мультизадачность
- 8. Алгоритмы исключения тупиковых ситуаций
- 9. Мультизадачность в Windows 10.0
- 10. Отечественные супер-эвм

7.1.4. Контрольные вопросы для зачёта

- 1. Архитектура компьютеров с общей памятью.
- 2. Архитектура многоядерных процессоров.
- 3. Архитектура компьютеров с общей памятью. Вычислительные кластеры.
- 4. Метакомпьютинг, грид-технологии, облачные вычисления
- 5. Пиковая и реальная производительность компьютеров.
- 6. Формирования классов параллельных вычислительных систем.
- 7. Технологии параллельного программирования: эффективность, продуктивность,

переносимость.

- 8. Технологии параллельного программирования МРІ
- 9. Асинхронные вычисления
- 10. Синхронные вычисления
- 11. Рекуррентные формулы
- 12. Создание простейших параллельных программ, компиляция и запуск параллельных программ
- 13. Создание параллельных программ с использованием виртуальных топологий.
- 14. здание параллельных программ алгоритма умножения матрицы на вектор
- 15. Создание параллельных программ для решения систем линейных алгебраических уравнений методом простой итерации в двух вариантах

7.2. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

1. Общий результат по модулю выводится как интегральная оценка, складывающая из текущей работы - 50% и текущего контроля - 50%.

Текущая работа по дисциплине включает:

- посещение занятий 30 баллов,
- выполнение домашних (аудиторных) контрольных работ 50 баллов.

Текущий контроль по дисциплине включает:

- устный опрос 50 баллов,
- письменная контрольная работа 50 баллов.

2. Промежуточный контроль Собеседование – 50 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

- а) основная литература:
- 1. Биллиг В.А. Параллельные вычисления и многопоточное программирование [Электронный ресурс] / В.А. Биллиг. 2-е изд. Электрон. текстовые данные. М.: Интернет Университет Информационных Технологий (ИНТУИТ), 2016. 310 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/73705.html
- 2. Боресков А.В. и др. Параллельные вычисления на GPU. Архитектура и программная модель CUDA. Учеб. пособие. 2-е изд. М.: Издательство Московского университета, 2015. 336с.
- 3. Антонов А.С. Технологии параллельного программирования MPI и OpenMP: Учебное пособие. М.: Изд-во МГУ, 2012. 344с.
- б) дополнительная литература:
- 1. Косяков М.С. Введение в распределенные вычисления. СПб: НИУ ИТМО, $2014.-155~\rm c.$
- 2. Барский А.Б. Параллельные информационные технологии [Электронный ресурс]: учебное пособие / А.Б. Барский. Электрон. текстовые данные. Москва, Саратов: Интернет-Университет Информационных Технологий (ИНТУИТ), Вузовское образование, 2017. 503 с. 978-5-4487-0087-3. Режим доступа: http://www.iprbookshop.ru/67379.html
- 3. Левин М.П. Параллельное программирование с использованием OpenMP [Электронный ресурс] / М.П. Левин. Электрон. текстовые данные. М.: Интернет Университет Информационных Технологий (ИНТУИТ), 2016. 133 с. 978-5-94774-857-4. Режим доступа: http://www.iprbookshop.ru/52216.html

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», полезных для освоения дисциплины

- 1. Поток выполнения [Электронный ресурс] // URL = https://ru.wikipedia.org/wiki/
- 2. Операционная платформа. Определения и классификация [Электронный

pecypc] // URL = http://gigabaza.ru/doc/33138.html /

- 3. Процессы и потоки in-depth. Обзор различных потоковых моделей [Электронный ресурс] // URL = http://habrahabr.ru/post/40227/
- 4. http://www.intuit.ru Электронный ресурс.
- 5. http://www.parallel.ru Материалы на сайте Лаборатории параллельных информационных технологий МГУ.
- 6. http://elibrary.ru eLIBRARY Научная электронная библиотека.
- 7. http://edu.dgu.ru/ Образовательный сервер ДГУ.

10. Методические указания для обучающихся по освоению дисциплины

Учебная программа по параллельным вычислениям состоит из 14 лекций и самостоятельной учебной работы студентов. По каждой теме преподаватель указывает студентам необходимую литературу (учебники, учебные пособия, сборники задач и упражнений), а также соответствующие темам параграфы и номера упражнений и задач.

Самостоятельная работа студентов складывается из работы над лекциями, с учебниками, решения рекомендуемых задач, подготовки к контрольным работам и сдаче зачета.

- 1. При решении практических заданий программистский подход непременно должен присутствовать (без него решение не будет полноценным), однако, он не должен заслонять сугубо алгоритмические (построение, оптимизация, верификация и др.) аспекты.
- 2. Необходимо обратить внимание на распознавание ситуаций, когда распараллеливание: а) допустимо, б) целесообразно, в) необходимо. Нельзя игнорировать «накладные расходы» ресурсов, выделяемых собственно распараллеливанию вычислений.
- 3. Важно различать архитектурные и теоретические проблемы распараллеливания.
- 4. При решении проблемы автоматического распараллеливания особое внимание следует уделить созданию внутреннего представления программы, органично соответствующего проблематике решаемой задачи.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

При осуществлении образовательного процесса студентами и профессорскопреподавательским составом используются следующее программное обеспечение: Microsoft Visual Studio Express, Microsoft Windows, Ubuntu Linux, Skype, прикладные программы Matlab, Mathematica, а также сайты образовательных учреждений и журналов, информационно-справочные системы, электронные учебники.

При проведении занятий рекомендуется использовать компьютеры, мультимедийные проекторы, интерактивные экраны.

Студентам предоставляется доступ к российским и международным электронным библиотекам через компьютеры университета.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Университет обладает достаточной базой аудиторий для проведения всех видов занятий, предусмотренных образовательной программой дисциплины параллельные вычисления. Кроме того, на факультете 4 компьютерных класса и 4 учебных класса, оснащенных компьютерами с соответствующим программным обеспечением и мультимедиа-проекторами.

В университете имеется необходимый комплект лицензионного программного обеспечения.