

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Φ изический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Тепловые свойства конденсированных сред

Кафедра физика конденсированного состояния и наносистем физического факультета

Образовательная программа магистратуры 03.04.02 – Физика

Направленность (профиль) программы: **Физика наносистем**

Форма обучения: **Очная**

Статус дисциплины: **дисциплина по выбору**

Махачкала, 2022 год

Рабочая программа дисциплины «Тепловые свойства конденсированных сред» составлена в 2022 году в соответствии с требованиями ФГОС ВО – магистратура по направлению подготовки **03.04.02** – Физика от 07 августа 2020г. № 914.

	Разработчик: кафедра физики конденсированного состояния и наносистем,	
	Палчаев Д.К.,, д.фм.н., профессор.	
	Рабочая программа дисциплины одобрена:	
	на заседании кафедры физика конденсированного состояния и наносистем	
	от 19. 03. 2022 г. протокол № 7	
/	Зав. кафедрой Рабаданов М.Х.	
	на заседании Методической комиссии физического факультета	
	от 23. 03. 2022 г. протокол № 7	
	Председатель <i>Мургиева</i> Ж.Х.	
	Рабочая программа дисциплины согласована с учебно-методическим управлением	
	«_31_»марта2022 г.	
	Начальник УМУ Гасангаджиева А.Г.	

Аннотация рабочей программы дисциплины

Дисциплина «**Тепловые свойства конденсированных сред**» входит в вариативную часть, по выбору Блока 1, образовательной программы магистратуры по направлению **03.04.02**— **Физика**, профиль подготовки: **Физика наносистем**.

Дисциплина реализуется на физическом факультете кафедрой физика конденсированного состояния и наносистем.

Содержание дисциплины охватывает круг вопросов, связанных с изучением тепловых свойств конденсированных сред, с учетом структурных особенностей функциональных материалов, в том числе наноструктурированных систем, физической сущности явлений, происходящих в этих материалах при тепловых возбуждениях и наличии градиента температуры.

Дисциплина нацелена на формирование следующих компетенций выпускника: универсальных — УК-6; общепрофессиональных ОПК-1, ОПК,-3 ОПК-4; профессиональных — ПК-3, ПК-5, ПК-6. Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия, самостоятельная работа.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: *лекции*, *практические занятия*, *самостоятельная работа*.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме: контрольная работа, выступление на семинаре фронтальный опрос и промежуточной аттестации зачет.

Объем дисциплины 3 зачетных единиц, в том числе в академических часах по видам учебных занятий: 108 ч.

Ce-			Уч	ебные заня	тия			Форма проме-
местр				в том числе	е			жуточной атте-
	Кон	нтактная	я работа обуч	ающихся с	препода	вателем	CPC,	стации зачет,
	Bce	Все из них				в том	дифференциро-	
	ГО	Лек-	Лабора-	Практи-	КСР	консуль-	числе	ванный зачет,
		ции	торные	ческие		тации	зачет	экзамен
			занятия	занятия				
2	108	16		14		••••	78	зачет

1. Цели освоения дисциплины

Основная цель данного курса состоит в том, чтобы магистры, изучающие данную дисциплину, должны иметь сведения и базовые знания о тепловых свойствах при различных внешних воздействиях и физической сущности явлений, происходящих в этих материалах при тепловых возбуждениях и наличии градиента температуры.

В лекциях будет обращаться внимание на признанные положения теории и практики, которыми должны руководствоваться магистранты, при исследовании и интерпретации тепловых свойств конденсированных сред, в том числе наноструктурированных.

2. Место дисциплины в структуре ОПОП магистратуры

Дисциплина «**Тепловые свойства конденсированных сред**» входит в блок **Б1.В.ДВ.03.02** образовательной программы ОПОП магистратуры по направлению **03.04.02**— «**Физика**», профиля подготовки «**Физика наносистем**».

Данная дисциплина призвана выработать профессиональные компетенции, связанные со способностью использовать теоретические знания в области общей физики, кван-

товой механики, теоретической физики, статистической физики для решения конкретных практических задач на примере задач физики функциональных материалов.

Магистры, изучающие данную дисциплину, должны иметь сведения и базовые знания в объеме знаний курса обшей физики и физики конденсированного состояния и наносистем, квантовой механики, статистической физики, физики фазовых переходов. Данная дисциплина является базовой для дальнейшего изучения дисциплин: физические свойства диэлектрических и наноструктурированных материалов, а так же научно — исследовательской, научно — педагогической и научно — производственной практик.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Студенты в ходе изучения дисциплины должны современные представления теплофизические свойствах конденсированных сред.

Знать: физическую сущность явлений, происходящих в материалах в условиях производства и эксплуатации; взаимосвязь структуры материалов с их тепловыми свойствами.

уметь: оценивать поведение материала при воздействии на них различных эксплуатационных факторов; обоснованно выбирать материал;

владеть: навыками работы с приборами, позволяющими определять тепловые свойства и оценивать функциональные характеристики материалов.

Код и наименование компетенции из ОПОП	Код и наименование индикатора достижения компетенций (в соответствии с ОПОП	Планируемые результаты обучения
УК-6. Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки.	иук-6.1. Оценивает свои ресурсы и их пределы (личностные, ситуативные, временные), целесообразно их использует для успешного выполнения порученного задания. иук-1.2. Определяет приоритеты профессионального роста и способы совершенствования собственной деятельности на основе самооценки по выбранным критериям. иук-1.3. Выбирает и реализует с использованием инструментов непрерывного образования возможности развития профессиональных компетенций и социальных навыков.	Знает: структуру и основные компоненты основных и дополнительных образовательных программ; закономерности и принципы построения и функционирования образовательных систем; педагогические закономерности организации образовательного процесса; специфику использования ИКТ в педагогической деятельности. Умеет: проектировать индивидуальные образовательные маршруты освоения программ учебных предметов, курсов, дисциплин (модулей); осуществлять разработку программ отдельных учебных предметов, в том числе программ дополнительного образования в соответствии с нормативно-правовыми актами в сфере образования; разрабатывать результаты обучения и системы их оценивания, в том числе с использованием ИКТ; разрабатывать программы воспитания, в том числе адаптивные совместно с со ответ-

ИУК-1.4. Выстраивает гибкую профессиональную траекторию, с учетом накопленного опыта профессиональной деятельности, динамично изменяющихся требований рынка труда и стратегии личного развития.

ствующими специалистами.

Владеет: педагогическими и другими технологиями, в том числе информационно-коммуникационными, используемые при разработке основных и дополнительных образовательных программ и их элементов.

ОПК-1.

Способен примефундаментальные знания в области физики для решения научноисследовательских задач, а также владеть основами педагогики. необходимыми для осуществления преподавательской деятельности

ОПК-1.1.

Владеет фундаментальными знаниями в области физики

ОПК-1.2.

Использует фундаментальные знания в области физики при решении научно-исследовательских дач.

ОПК-1.3.

Применяет специальные технологии и методы для реапреподавательской деятельности.

Знает: как применять фундаментальные знания в области физики диэлектриков и тепловых свойств для решения научноисследовательских задач в рамках учебных предметов; способы объективной оценки знаний обучающихся на основе тестирования и других методов контроля в соответствии с реальными учебными возможностями детей.

Умеет: применять фундаментальные знания в области физики диэлектриков и тепловых свойств для решения научноисследовательских задач; формулировать вопросы для интерактивного общения в рамках учебных предметов; осушествлять отбор лиагностических средств, форм контроля и оценки; применять различные диагностические средства, формы контроля и оценки сформированности образовательных результатов обучающихся.

Владеет: интерактивными методами, приемами и алгоритмами реализации контроля и оценки результатов образовательной деятельности обучающихся; способами выявлять трудности в обучении и корректировать пути достижения образовательных результатов.

ОПК-3.

Способен применять знания в области информационных технологий, использовать современные компьютерные программные продукты и ресурсы информационнокоммуникационной «Интернет» сети для решения запрофессиональной деятельности, в том чис-

ОПК-3.1.

Владеет основными методикапоиска информации для решепрофессиональных задач с использованием информационнокоммуникационных технологий.

ОПК-3.2.

Применяет специализированное программно-математическое обеспечение для проведения исследований и решения профессиональной деятельности..

Знает: содержание учебно-проектной деятельности для получения необходимых знаний; основы организации индивидуальной И совместной учебнопроектной деятельности обучающихся.

Умеет: формулировать проблемную тематику учебного проекта; определять содержание и требования к результатам индивидуальной и совместной учебнопроектной деятельности; организовывать индивидуальную и совместную учебно-проектной деятельность обучающихся;

- работать в научном коллективе, распределять и делегировать выполняемую работу.

Владеет: способами планирования и осуществления руководства действиями ле находящимися за пределами профильной подготовки.

ОПК-3.3.

Разрабатывает эффективные алгоритмы решения инженерных задач с использованием современных языков программирования и математического моделирования

обучающихся в индивидуальной и совместной учебно-проектной деятельности.

ОПК-4. Способен определять сферу внедрения результатов научных исследований в области своей профессиональной деятельности.

ОПК-4.1.

Определяет ожидаемые результаты научных исследований.

ОПК -4.2.

Предлагает возможные варианты внедрения результатов исследований в области профессиональной деятельности.

ОПК-4.3.

Знает области применения результатов научных исследований в своей профессиональной деятельности

Знает: теоретические и экспериментальные основы физики тепловых свойств, а так же методов исследований изучаемых процессов и явлений, ожидаемые результаты научных исследований и области применения

Умеет: самостоятельно ставить задачу и решать ее; анализировать и интерпретировать результаты эксперимента исследования тепловых свойств на основе современных теоретических моделей; правильно организовать и планировать эксперимент; определять ожидаемые результаты, представлять варианты внедрения результатов исследований.

Владеет: основами современных методов экспериментальных исследований тепловых свойств; знаниями ожидаемых результатов, а так же знаниями вариантов внедрения результатов исследований; адекватными методами планирования и решения научноисследовательских задач.

ПК-3.

Способен участвовать в разработке основных образовательных программ, разрабатывать отдельные их компоненты в том числе при углубленном изучении учебных лиспиплин.

ПК-3.1.

Способен на основе знаний в соответствующей предметной области определять содержание учебно- проектной деятельности обучающихся

ПК-3.2.

Демонстрирует способность организовывать индивидуальную и совместную учебно- проектную деятельность обучающихся в соответствующей предметной области.

ПК-3.3.

Разрабатывает план, программы, методы, основные принципы и технологии организации и проведения проектной и учебноисследовательской деятельности обучающихся.

Знает: содержание учебно-проектной деятельности для получения необходимых знаний; основы организации индивидуальной и совместной учебно-проектной деятельности в области исследования структуры и свойств, а так же интерпретации тепловых свойств наноматериалов.

Умеет: формулировать проблемную тематику учебного проекта; определять содержание и требования к результатам индивидуальной и учебно-проектной деятельности; организовывать индивидуальную и совместную учебно-проектной деятельности;

Владеет: способами планирования и осуществления руководства действиями в индивидуальной и совместной учебнопроектной деятельности.

ПК-5.

Способен самостоятельно проводить физические исследования, анализировать. делать научные обобшения и вывовыдвигать новые идеи, интерпретировать и представлять результаты научных исследований.

ПК-5.1.

Способен анализировать и обобщать результаты патентного поиска по тематике проекта в области фундаментальной физики.

ПК-5.2. Создает теоретические модели, позволяющие прогнозировать свойства исследуемых объектов, и разрабатывает предложения по внедрению результатов.

ПК-5.3. Осуществляет сбор научной информации, готовит обзоры, аннотации, составляет рефераты и отчеты, библиографии.

ПК-5.4. Участвует в научных дискуссиях и процедурах защиты научных работ различного уровня, выступает с докладами и сообщениями по тематике проводимых исследований.

ПК-6.1.

Имеет представления о методиках и технологиях физических исследований с помощью современного оборудования.

ПК-6.2.

Знает теорию и методы физических исследований в физике конденсированного состояния.

ПК-6.3.

Знает теорию и методы физических исследований в области физике конденсированного состояния

ПК-6.4.

Способен собирать, обрабатывать, анализировать и обобщать результаты экспериментов и исследований в соответствующей области знаний, проводить эксперименты и наблюдения, составлять отчеты по теме или по результатам проведенных экспериментов

Знает: методы исследований, проведения, обработки и анализа, в том числе экспресс — анализа, результатов испытаний и измерений; критерии выбора методов и методик исследований и как разрабатывать предложения по внедрению результатов; свойства исследуемых объектов в целях формирования теоретических моделей; как осуществлять сбор научной информации, представлять обзоры, аннотации, составлять рефераты.

Умеет: проводить испытания, измерения и обработку результатов; обобщать результаты патентного поиска; формировать предложения по внедрению результатов; участвовать в научных дискуссиях и процедурах защиты научных работ различного уровня.

Владеет: выбором испытательного и измерительного оборудования, необходимого для проведения исследований; методом обобщения результаты выполняемых работ; выступает с докладами и сообщениями по тематике проводимых исследований.

Знает: методы исследований, проведения, обработки и анализа результатов испытаний и измерений; критерии выбора методов и методик исследований; правила и условия выполнения работ, технических расчетов, оформления получаемых результатов.

Умеет: проводить испытания, измерения и обработку результатов; регистрировать показания приборов; проводить расчёты критически анализировать результаты делать выводы.

Владеет: выбором испытательного и измерительного оборудования, необходимого для проведения исследований; выполнением оценки и обработки результатов исследования; навыками выбора экспериментальных и расчетнотеоретических методов решения поставленной задачи исходя из имеющихся материальных и временных ресурсов.

ПК-6.

Способен эксплуатировать современную аппаратуру и оборудование для выполнения научных и прикладных физических исследований в области физике конденсированного состояния.

- **4.** Объем, структура и содержание дисциплины. 4.1. Объем дисциплины составляет **3** зачетные единицы, **108** академических часов.
- 4.2. Структура дисциплины.

№ п/ п	Раздел и темы дисци- плины	Семестр	ты, г стоят студ	Пракич. включ. гельну ентов занятия сость (н	ая сам ю раб и труд	ио- оту цо-	Самостоятельн. рабо-	Формы теку- щего контроля успеваемости (по неделям се- местра) Форма проме- жуточной атте- стации (по се- местрам)
	Мод	уль 1. П	онятие	ангар	мониз	зма		
1	Положительный и отрицательный ангармонизм колебаний. Тепловое расширение конденсированных сред. Природа отрицательного теплового расширения	1	2				7	Фронтальный опрос
2	Теплоемкость конденсированных сред. Решеточная и электронная теплоемкость.	1	2	2			12	семинарское за- нятие
3	Теплопроводность конденсированных сред. Решеточная и электронная теплопроводность.	1	2				7	
Ито	ого: Модуль 1- 36 часов		6	2			28	
	Модул	ь 2. Эне	ргетич	еский	спект	р фо	нонов.	
4	Энергетический спектр фононов. Ангармонизм колебаний решетки. Роль объема в формировании тепловых свойств.	1	2	2			14	семинарское за- нятие
5	Тепловое расширение, теплоемкость и теплопроводность в области перехода порядок - беспорядок	1	2	2			14	Устный опрос
Ито	ого: Модуль 2- 36 часов		4	4			28	
	Модуль 3. Особенности фо	рмирова	ния ді	иэлектр	ическ	их св	ойств в 1	наносистемах
6	Особенности формирования тепловых свойств в наноматериалах.	1	4	4			10	семинарское за- нятие
7	Аномалии температурных зависимостей тепловых свойств, обусловленные	1	4	4			10	семинарское за- нятие

наноразмерностью.						
Итого: Модуль 3- 36 часов		8	8		20	
Итого	108	16	14		78	Зачет

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине

Модуль 1.

<u>Тема 1.</u> Гармонические и ангармонические колебания кристаллической решетки. Тепловое расширение конденсированных сред. Положительный и отрицательный ангармонизм колебаний.

<u>Тема 2.</u> Акустические и оптические колебания Дисперсии упругих волн. Фононы. Теплоемкость конденсированных сред. Решеточная теплоемкость. Теплоемкость электронного газа.

Модуль 2

<u>Тема 3.</u> Теплопроводность конденсированных сред. Фононная и электронная теплопроводности. Закон Видемана — Франца для электронной теплоемкости и теплопроводности.

<u>Тема 4.</u> Связь теплопроводности с коэффициентом теплового расширения при положительном и отрицательном ангармонизмах колебаний атомов

Модуль 3.

<u>Тема 5.</u> Особенности формирования температурных зависимостей теплового расширения, теплоемкости и теплопроводности в наноматериалах.

<u>Тема 6.</u> Аномалии температурных зависимостей тепловых свойств, в том числе при фазовых переходах, обусловленные наноразмерностью.

4.3.2. Содержание практических занятий по дисциплине

Модуль 1.

<u>Тема 1</u>. Тепловое расширение области перехода порядок - беспорядок

<u>Тема 2</u>. Температурные зависимости решеточной и электронной теплоемкостей Теплоемкость в области перехода порядок – беспорядок.

Модуль 2

Тема 3. Теплопроводность материалов с аморфной структурой

<u>Тема 4.</u> Характеристическое фононное теплосопротивление. Вывод через фундаментальные параметры вещества.

Модуль 3.

Тема 5. Влияние сил поверхностного натяжения наноразмерных систем на тепловые свойства веществ. Аномалии теплоемкости и теплопроводности наноразмерных материалов при фазовых.

5. Образовательные технологии.

В соответствии с требованиями ФГОС ВОпо направлению подготовки реализация компетентностногоподхода дисциплина предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий (компьютерных симуляций, разбор конкретных ситуаций, лекция-беседа, лекция-дискуссия, лекцияконсультация, проблемная лекция, лекция-визуализация) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся. В рамках учебных курсов предусмотрены лекции в сочетании с научными экспериментами на установках кафедры. Активные и интерактивные формы, лекции, практические занятия, контрольные работы, коллоквиумы, зачеты и экзамены, компьютеры. В течение семестра магистры решают задачи, указанные преподавателем, к каждому семинару. В семестре проводятся контрольные работы (на семинарах). Зачет выставляется после решения всех задач контрольных работ, выполнения домашних и самостоятельных работ. Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью программы, особенностью контингента обучающихся, и в целом в учебном процессе по данной дисциплине они должны составлять не менее 6 часов из 20 часов аудиторных занятий.

При проведении занятий используются компьютерные классы, оснащенные современной компьютерной техникой. При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа проекционным оборудованием и интерактивной доской.

По всему лекционному материалу подготовлен конспект лекций в электронной форме и на бумажном носителе, большая часть теоретического материала излагается с применением слайдов (презентаций) в программе **PowerPoint**, а также с использованием интерактивных досок. Для выполнения физического практикума по физике наносистем и подготовке к практическим (семинарским) занятиям разработаны учебно-методические пособия и разработки, которые в сочетании с внеаудиторной работой способствуют формированию и развития профессиональных навыков обучающихся.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым магистры имеют свободный доступ.

В рамках учебного процесса предусмотрено приглашение для чтения лекций ведущих ученых из центральных вузов, академических институтов России и зарубежных ученых.

6. Учебно-методическое обеспечение самостоятельной работы магистров.

Промежуточный контроль. В течение семестра магистры выполняют:

- повторение пройденного материала;
- подготовка к лабораторно-практическим работам;
- оформления лабораторно-практических работ (заполнение таблиц, решение задач, написание выводов);
- подготовки к контрольным работам;
- выполнения индивидуальных заданий по основным темам дисциплины; написание курсовых работ по проблемам дисциплины " теплофизические свойства конденсированных сред»

Итоговый контроль. Зачет в конце 1 семестра, включающий проверку теоретических знаний и умение решения по всему пройденному материалу.

Примерное распределение времени самостоятельной работы студентов

	Примерная трудоёмкость, а.ч.							
Вид самостоятельной работы	Очная	Очно-	заочная					
	Очная	заочная						
Текущая СРС								
работа с лекционным материалом, с учебной ли-	22							
тературой								
самостоятельное изучение разделов дисциплины	20							
подготовка к лабораторным работам, к практиче-	20							
ским и семинарским занятиям								
подготовка к контрольным работам, коллоквиу-	6							
мам, зачётам								
подготовка к экзамену (экзаменам)								
<u> </u>								
Творческая проблемно-орие	нтированная	CPC						
поиск, изучение и презентация информации по	10							
заданной проблеме, анализ научных публикаций								
по заданной теме								
Итого СРС:	78 часов							

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Типовые контрольные задания и тесты

Контрольные задания

- 1. Электронная теплоемкость металлов.
- 2. Фононная теплоемкость диэлектриков.
- 3. Магнонная теплоемкость. Спиновые волны.
- 4. Магнетокалорический эффект и магнитное охлаждение.
- 5. Тепловые свойства высокотемпературных сверхпроводников.
- 6. Тепловые свойства манганитов и модель двойного обмена.

Вопросы для текущего контроля, промежуточной аттестации

- 1. Обратная решетка.
- 2. Колебания линейных цепочек.
- 3. Общая классификация колебательных мод.; число различных мод; акустические и оптические колебания.
- 4. Закон Дюлонга и Пти. Область применения этого закона.
- 5. Понятие о функции распределения частот в твердом теле.
- 6. Колебания неидеальных решеток, локальные моды.
- 7. Классическая и квантовая теория теплоемкости твердого тела.
- 8. Квантование колебаний решетки; фононы.
- 9. Приближение Дебая.
- 10. Квантовый гармонический осциллятор.
- 11. Ангармонизм колебаний кристаллических решеток.
- 12. Основы теории Дебая теплоемкости твердых тел.
- 13. Определение дебаевской температуры.

- 14. Связь дебаевской температуры и скорости распространения волн в кристаллах.
- 12. Тепловые свойства (теплоемкость, теплопроводность, тепловое расширение).
- 13. Связь фононной теплопроводность с коэффициентом Тепловое расширение.

7.2. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Примерная оценка по 100 бальной шкале форм текущего и промежуточного контроля

1. Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

Лекции

- посещение занятий
 активное участие на лекциях
 устный опрос, тестирование, коллоквиум
 и др. (доклады, рефераты)
 Практические занятия
 посещение занятий
 активное участие на практических занятиях
 5 баллов,
 5 баллов,
 5 баллов,
 5 баллов,
 5 баллов,
 - выполнение домашних работ
 выполнение самостоятельных работ
 выполнение контрольных работ
 домашних работ
 д
- 2. Промежуточный контроль по дисциплине включает:
- 8. Учебно-методическое обеспечение дисциплины.
- a) Сайт кафедры физики конденсированного состояния и наносистем: http://cathedra.dgu.ru/Default.aspx?id=1503

б) Основная литература:

- 1. Черевко А.Г. Физика конденсированного состояния. Часть 1. Кристаллы и их тепловые свойств [Электронный ресурс]: учебное пособие / А.Г. Черевко. Электрон. текстовые данные. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2016. 81 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/69566.html
- 2. Физика твèрдого тела / Блейкмор, Джон ; Под ред. Д.Г. Андрианова, В.И. Фистуля. М. : Мир, 1988. 608 с. : ил. ; 22 см. Библиогр.: с. 11-12. Библиогр. в конце глав. Предм. указ.: с. 599-606. ISBN 5-03-001256-7 : 3-00. Местонахождение: Научная библиотека ДГУ
- 3. Блатт, Фрэнк Дж. Физика электронной проводимости в твердых телах / Блатт, Фрэнк Дж.; Пер. с англ. Г.Л. Краско и Р.А. Суриса. М.: Мир, 1971. 470 с.: ил.; 22 см. 2-22. Местонахождение: Научная библиотека ДГУ
- 4. Ашкрофт, Н. Физика твердого тела : [в 2-х т.]. [Т.]2 / Н. Ашкрофт, Н. Мермин ; пер. с англ.: К.И.Кугеля и А.С.Михайлова; под ред. М.И.Каганова. М. : Мир, 1979. 422 с. :

- ил.; 25 см. Библиогр. в конце гл. Предм. указ.: с. 392-417. 2-90. Местонахождение: Научная библиотека ДГУ
- 5. Киттель, Чарлз. Введение в физику твердого тела / Киттель, Чарлз; пер. А.А.Гусева и А.В.Пахнева; под общ. ред. А.А.Гусева. М.: Наука, 1978. 791 с.: ил.; 22 см. Список лит.: с. 769-791. 2-10. Местонахождение: Научная библиотека ДГУ
- 6. Тепловые свойства твердых тел: задания для проведения лаб. работ / М-во образования РФ, Дагест. гос. ун-т; [Сост. Палчаев Д.К., Мурлиева Ж.Х., Палчаева Х.С.]. Махачкала: ИПЦ ДГУ, 2002. 38 с. 5-00.
- 7. Энергетический спектр фонов и тепловые свойства конденсированных сред: учебнометод. пособие / [Д.К.Палчаев и др.]Минобрнауки России, Дагест. гос. ун-т. Махачкала: Изд-во ДГУ, 2014. 55-00. Местонахождение: Научная библиотека ДГУ

Дополнительная литература

- 1. Разумовская И.В. Физика твердого тела. Часть 2. Динамика кристаллической решетки. Тепловые свойства решетки [Электронный ресурс] / И.В. Разумовская. Электрон. текстовые данные. М.: Прометей, 2011. 64 с. 978-5-4263-0032-3. Режим доступа: http://www.iprbookshop.ru/9611.html
- 2. Гольдаде В.А. Физика конденсированного состояния [Электронный ресурс] / В.А. Гольдаде, Л.С. Пинчук. Электрон. текстовые данные. Минск: Белорусская наука, 2009. 648 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/11505.html

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

1. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Даггосуниверситет имеет доступ к комплектам библиотечного фонда основных отечественных и зарубежных академических и отраслевых журналов по профилю подготовки магистров по направлению **03.04.02 Физика**:

- 1. Электронно-библиотечная система (ЭБС) IPRbooks (<u>www.iprbookshop.ru</u>). Лицензионный договор № 6984/20 на электронно-библиотечную систему IPRbooks от 02.10.2020 г.
- 2. Лицензионное соглашение № 6984/20 на использование адаптированных технологий ЭБС IPRbooks (www.iprbookshop.ru) для лиц с OB3 от 02.10.2020.
- 3. Электронно-библиотечная система (ЭБС) «Университетская библиотека онлайн»: www.biblioclub.ru. Договор об оказании информационных услуг № 131-09/2010 от 01.10.2020г. 537 наименований.
- 4. Электронно-библиотечная система «ЭБС ЛАНЬ https://e.lanbook.com/. Договор №СЭБ НВ-278 на электронно-библиотечную систему ЛАНЬ от 20.10.2020 г. Срок действий договора со 20.10.2020 г. по 31.12.2023г.
- 5. Научная электронная библиотека http: //elibrary.ru. Лицензионное соглашение № 844 от 01.08.2014 г. Срок действия соглашения с 01.08.2014 г. без ограничения срока.
- 6. Национальная электронная библиотека https://нэб.рф/. Договор №101/НЭБ/101/НЭБ/1597 о предоставлении доступа к Национальной электронной библиотеке от 1 августа 2016 г. Срок действия договора с 01.08.2016 г. без ограничения срока. Договор может пролонгироваться неограниченное количество раз, если ни одна из сторон не желает его расторгнуть.

- 7. **Scopus.** Scopus издательства Elsevier B.V. Письмо РФФИ от 19.10.2020 г. № 1189 о предоставлении лицензионного доступа к содержанию базы данных Scopus издательства Elsevier B.V. в 2022 г. https://www.scopus.com
- 8. Wiley Online Library. Коллекция журналов Freedom Collection издательства Elsevier. Письмо РФФИ от 17.07.2010 г. № 742 о предоставлении лицензионного доступа к электронному ресурсу Freedom Collection издательства Elsevier в 2022 г. https://onlinelibrary.wiley.com/
- 9. Международное издательство Springer Nature
- 10. Коллекция журналов, книг и баз данных издательства Springer Nature. Письмо РФФИ от 17.07.2020 г. № 743 о предоставлении лицензионного доступа к содержанию баз данных издательства Springer Nature в 2022 г. на условиях национальной подписки https://link.springer.com/
- 11. Журналы American Physical Society
- 12. Базы данных APS (American Physical Society). Письмо РФФИ от 10.11.2020 г. № 1265 о предоставлении лицензионного доступа к содержанию баз данных American Physical Society в 2022 г. http://journals.aps.org/about
- 13. Журналы Royal Society of Chemistry. База данных RSC DATABASE издательства Royal Society of Chemistry Письмо РФФИ от 20.10.2020 г. № 1196 о предоставлении лицензионного доступа к содержанию баз данных Royal Society of Chemistry в 2022 г. http://pubs.rsc.org/
- 14. Журнал Science (AAAS) http://www.sciencemag.org/
- 15. Единое окно http://window.edu.ru/ (интернет ресурс)
- 16. Дагестанский региональный ресурсный центр http://rrc.dgu.ru/
- 17. Нэикон http://archive.neicon.ru/

10. Методические указания для обучающихся по освоению дисциплины.

Подготовка к семинарскому занятию включает закрепление и углубление теоретических знаний. В том числе: планирование самостоятельной работы, уяснение задания; подбор литературы; составление плана работы по пунктам.

Следующий этап — непосредственная подготовка к занятию — начинается с изучения рекомендованной литературы, т.к. на лекции рассматривается не весь материал, а только его часть. Остальная его часть восполняется в процессе самостоятельной работы. Записи имеют первостепенное значение для самостоятельной работы студентов. Самостоятельная работа выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Во время самостоятельной работы обучающиеся должны изучать и конспектировать учебную, научную и справочную литературу, выполнять задания, направленные на закрепление знаний и отработку умений и навыков, готовиться к текущему и промежуточному контролю по дисциплине.

Среди учебно-методических материалов, предоставляемых студентам во время занятий:

- презентации;
- тезисы лекций,
- ресурс электронных изданий по теме.
- 11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.
 - 1. Программное обеспечение для лекций: MS PowerPoint (MS PowerPoint Viewer), AdobeAcrobatReader, средство просмотра изображений, табличный процессор.

2. Программное обеспечение в компьютерный класс: MS PowerPoint (MS PowerPointViewer), AdobeAcrobatReader, средство просмотра изображений, Интернет, E-mail.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

- 1. Закрепление теоретического материала и приобретение практических навыков исследования свойств и обработки данных обеспечивается в последующем в лабораториях при проведении Специального физического практикума (Б1.Б2) в 10 (А) семестре. При проведении занятий используются лаборатории, оснащенные современным технологическим и измерительным оборудованием.
- 2. При изложении теоретического материала используется лекционная аудитория, оснащенная проекционным оборудованием и интерактивной доской. Кафедра располагает необходимыми установками, технологическим оборудованием, приборами, не только для выполнения специального физического практикума, но и выполнения соответствующих курсовых и диссертационных работ. Имеется богатая библиотека, в том числе электронные книги, копий периодических изданий и т. д.