МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

рабочая программа дисциплины **Теория меры и интегралов**

Кафедра: дифференциальных уравнений и функционального анализа

Факультете: математики и компьютерных наук

Образовательная программа 02.03.01 Математика и компьютерные науки

Профили подготовки «Математический анализ и приложения»

Уровень высшего образования: <u>бакалавриат</u>

Форма обучения: очная

Статус дисциплины: <u>входит в обязательную часть ОПОП,</u> дисциплина по выбору ОПОП

Рабочая программа дисциплины «Теория меры и интегралов» составлена в 2022 году в соответствии с требованиями ФГОС ВО по направлению подготовки 02.03.01 Математика и компьютерные науки (уровень бакалавриата) от 23.08.2017 № 807 (с изменениями №1456 от 26.11.2020)

Разработчик: кафедра дифференциальных уравнений и функционального анализа,

Рагимханов В.Р., к. ф.-м.н., доцент:

Рабочая программа дисциплины одобрена:

на заседании кафедры ДУ и ФА от «15» марта 2022 г., протокол № 8

Зав. Кафедрой

Сиражудинов М.М.

на заседании Методической комиссии факультета математики и компьютерных наук от «23» марта 2022 г., протокол № 7

Председатель

Ризаев М.К.

Рабочая программа дисциплины согласована с учебно-методическим управлением «31» марта 2022 г.

Начальник УМУ Тасангаджиева А.Г.

Аннотация рабочей программы дисциплины

Дисциплина «Теория меры и интегралов» входит в обязательную часть образовательной программы бакалавриата по направлению 02.03.01 Математика и компьютерные науки.

Дисциплина реализуется на факультете математики и компьютерных наук кафедрой дифференциальные уравнения и функциональный анализ.

К основным задачам данного курса относятся изучение основных понятий, определений и теорем теории меры; четкое понимание как строится интеграл по мере; знание основных предельных теорем теории интеграла Лебега, теоремы Радона-Никодима, теорем Фубини и Тонелли.

Дисциплина нацелена на формирование следующих компетенций выпускника: универсальная компетенция (УК): УК-1; общепрофессиональная компетенция (ОПК): ОПК-1; профессиональная компетенция (ПК): ПК-1.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия и самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме: *контрольной работа и коллоквиума, промежуточный контроль в форме* экзамена.

Объем дисциплины 3 зачетных единиц, в том числе 108 в академических часах по видам учебных занятий

Семестр			Форма				
				промежуточной			
	Ко	нтактн	CPC,	аттестации (зачет,			
	Всего			в том	дифференцирован		
		Лек	Лабораторн	числе	ный зачет,		
		ции	ые занятия	ские	ции	экзам	экзамен
				занятия		ен	
8	108	16		24		32+36	Экзамен

1. Цели освоения дисциплины

Целями освоения дисциплины *теория меры и интегралов* является научить слушателей понимать основные положения теории меры и абстрактной теории интеграла. Понятие и факты курса составляют фундамент многих разделов современного анализа.

2.Место дисциплины в структуре ООП бакалавриата

Дисциплина *Теория меры и интегралов* входит в основную часть образовательной программы по направлению 02.03.01 Математика и компьютерные науки и входит в модуль профильной направленности.

Предполагает знание основных понятий и методов математического анализа, знаний свойств функций, основных классов функций действительного переменного.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения.

Код и наименование компетенции из ОПОП УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	Код и наименование индикатора достижения компетенций УК-1.1. Знает принципы сбора, отбора и обобщения информации	Планируемые результаты обучения Знает: структуру задач в области математики, теоретической механики и физики, а также базовые составляющие таких задач. Умеет: анализировать постановку данной математической задачи, необходимость и (или) достаточность информации для ее решения. Владеет: навыками сбора, отбора и обобщения научной информации в области математических дисциплин	Процедура освоения
	УК-1.2. Умеет соотносить разнородные явления и систематизировать их в рамках избранных видов профессиональной деятельности.	Знает: принципы математического моделирования разнородных явлений, систематизации научной информации в области математики и компьютерных наук. Умеет: системно подходить к решению задач на разнородные явления в области математики и компьютерных наук. Владеет: навыками систематизации разнородных явлений путем математических интерпретаций и оценок Знает:	
	УК-1.3 Имеет практический опыт работы с	знает: современные методы сбора и анализа научного материала с	

	1 1	1	
	информационными	использованием информационных	
	источниками, опыт	технологий; основные методы работы	
	научного поиска,	с ресурсами сети Интернет.	
	создания научных	Умеет:	
	текстов.	применять современные методы и	
		средства автоматизированного	
		анализа и систематизации научных	
		данных;	
		практически использовать научно-	
		образовательные ресурсы Интернет в	
		научных исследованиях и в	
		деятельности педагога.	
		Владеет:	
		навыками использования	
		информационных технологий в	
		организации и проведении научного	
		исследования; навыками	
		использования	
		современных баз данных; навыками	
		применения мультимедийных	
		технологий обработки и	
		представления информации;	
		навыками автоматизации	
		подготовки документов в	
		различных текстовых и графических	
		редакторах.	
ОПК-1.	ОПК-1.1.	Знает:	Конспектирование
Способен	Обладает базовыми	теоретические основы базовых	и проработка
консультировать и	знаниями, полученными	математических дисциплин	лекционного
использовать	в области	(математического анализа,	материала.
фундаментальные	математических	комплексного и	Устный опрос.
знания в области	и (или)	функционального анализа, алгебры,	Коллоквиум.
математического	естественных наук	аналитической геометрии,	Контрольная
анализа,		дифференциальной геометрии и	работа
комплексного и		топологии, дифференциальных	Самостоятельная
функционального		уравнений, дискретной математики и	работа
анализа, алгебры,		математической логики,	
аналитической		теории вероятностей, математической	
геометрии,		статистики и случайных процессов,	
дифференциальной		численных методов), а также	
геометрии и		теоретической механики, физики.	
топологии,		Умеет:	
дифференциальных		решать задачи, связанные с	
уравнений,		исследованием свойств функций и их	
дискретной		производных, с интегрированием, с	
математики и		изучением функциональных рядов, с	
математической		дифференциальными	
логики, теории		уравнениями, с численным решением	
вероятностей,		дифференциальных уравнений, с	
математической		алгебраическими уравнениями и их	
статистики и		системами.	
случайных		Владеет:	
процессов,		базовыми методами современного	
численных методов,		математического анализа по	
теоретической		исследованию математических и	
механики в		естественнонаучных задач	

профессиональной	ОПК-1.2.	Знает:	
деятельности	Умеет использовать их в	способы использования знаний в	
	профессиональной	различных областях математики при	
	деятельности	решении конкретных	
	Achteribile 111	задач в области математики и	
		естественных	
		наук. Умеет:	
		применять различные методы	
		современного математического	
		анализа по исследованию	
		математических и	
		естественнонаучных задач.	
		Владеет:	
		навыками применения	
		методов овременного	
		математического анализа при	
		решении конкретных задач в области	
		математики и естественных наук	
	ОПК-1.3. Имеет навыки	Знает:	
	выбора	различные методы современного	
	методов решения задач	математического анализа по	
	профессиональной	исследованию математических и	
	деятельности на основе	естественнонаучных задач.	
	теоретических знаний	Умеет:	
		корректно выбрать методы решения	
		конкретной задачи в области	
		математики и естественных наук.	
		Владеет:	
		навыками выбора методов решения	
		задач современного математического	
		анализа	
ПК-1.	ПК-1.1.	Знает:	Конспектирование
Способен	Обладает базовыми	основы математического анализа и	и проработка
демонстрировать	знаниями, полученными	различные приложения	лекционного
базовые знания	в области	дифференциального и интегрального	материала.
математических и	математических и (или)	исчисления в математических и	Участие в
естественных наук,	естественных наук,	естественных науках; современные	практических
основ	программирования и	языки	занятиях.
программирования и	информационных	программирования и современные	Выполнение
информационных	технологий.	информационные технологии.	домашних заданий.
технологий		Умеет:	Самостоятельная
		применять дифференциальное и	работа.
		интегральное исчисления для	pacorai
		решения различных задач	
		математических и естественных	
		наук; составлять программы на	
		современных языках	
		программирования.	
		Владеет:	
		базовыми методами	
		дифференциального и интегрального	
		исчислений; навыками	
		программирования на современных	
	ПК-1.2.	языках. Знает:	
	Умеет находить,	области применения	
		дифференциального и интегрального	
	формулировать и	дифференциального и интегрального	

решать стандартные	исчисления; различные языки	
задачи в собственной	программирования.	
научно-	Умеет:	
исследовательской	решать задачи, связанные: с	
деятельности в	исследованием свойств функций и их	
математике и	производных, с изучением	
информатике.	функциональных рядов, с оценкой	
	погрешности аппроксимации	
	функций; применять различные языки	
	программирования в численном	
	анализе.	
	Владеет:	
	методами дифференциального	
	исчисления для исследования	
	функций и навыками приложения	
	интегрального исчисления к	
	геометрии, физике	
ПК-1.3.	Знает:	
Имеет практический	методы исследования функций с	
опыт научно-	помощью производных, вычисления	
исследовательской	интегралов; методы исследования	
деятельности в	сходимости рядов; численные методы	
математике и	анализа; современные	
информатике	информационные технологии.	
	Умеет:	
	применять методы исследования	
	функций с помощью производных,	
	вычисления интегралов и методы	
	исследования	
	сходимости рядов в численном	
	анализе с использованием	
	современных информационных	
	технологий.	
	Владеет:	
	навыками решения задач численного	
	анализа с использованием методов	
	дифференциального и интегрального	
	исчислений	

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет зачетных единиц 3, академических часов 108.

4.2. Структура дисциплины.

Названия разделов и тем дисциплины	стр	семестра	Аудит	горные за чис		, В ТОМ	. работа	Формы текущего контроля успеваемости (по
	Семестр	Неделя сем	еля сем	практ. занятия	лабор. работы	Контр. сам. раб.	Самостоят	неделям семестра) Форма промежуточной аттестации (по семестрам)
Модуль 1. Теория меры			5	<u> </u>	, <u>P</u>	Н 5		семестрам)

Всего по модулю 1	8		6	6		24	Контрольная работа,
1. Основные классы			1	1		6	коллоквиум
множеств.			1	1		0	
			2	2	+ + -	6	
2. Функции множеств.			2	2		0	
Меры. Продолжении меры			1	1			
3. Заряды.			1	1		6	
4. Измеримые функции		<u> </u>	2	2		6	
Модуль 2. Абстрактный и		aл Лебе		1		· · · · · · · · · · · · · · · · · · ·	
Всего по модулю 2	8		10	18		8	Контрольная работа, коллоквиум
1. Определение интеграла			2	4		2	
Лебега и его основные							
свойства.							
2. Основные предельные			2	4		2	
теоремы для интеграла							
Лебега							
3. Связь интегралов Лебега			2	4		2	
и Римана. Интеграл							
Лебега-Стилтьеса							
4. Теорема Радона-			2	2		1	
Никодима.							
5. Произведение мер и			2	4		1	
теорема Фубини							
Модуль 3. Промежуточна	я атт	естация					
Подготовка к экзамену						36	экзамен
ИТОГО	108		16	24		32+36	36

4.3. Содержание дисциплины, структурированное по темам (разделам)

4.3.1. Содержание лекционных занятий по дисциплине

Модуль 1. Теория меры

Тема 1: «Основные классы множеств» и Тема 2: «Функции множеств. Меры. Продолжении меры»

Лекция № 1:

- 1) Полукольцо, полуалгебра, кольцо, алгебра, σ -кольцо, σ -алгебра и монотонный класс.
- 2) Порожденные классы множеств.
- 3) Борелевские множества
- 4) Основные классы функций множеств.
- 5) Меры и их элементарные свойства.
- 6) Примеры мер.

Тема 2: «Функции множеств. Меры. Продолжении меры» и Тема 3: «Заряды»

Лекция № 2:

- 1) Продолжение меры с полукольца A на кольцо k(A).
- 2) Внешняя мера.
- 3) Теорема Каратеодори.
- 4) Мера Лебега на прямой.
- 5) Мера Лебега на \mathbb{R}^n .

Тема 3: «Заряды» и Тема 4: «Измеримые функции»

Лекция № 3:

- 1) Определение заряда.
- 2) Разложения Хана и Жордана.
- 3) Измеримые функции.
- 4) Измеримое пространство и измеримые отображения.
- 5) Борелевские функции. Функции, измеримые по Лебегу.
- 6) Простые функции. Критерий измеримости в терминах простых функций.
- 7) Свойства измеримых функций.
- 8) Эквивалентные функции.
- 9) Сходимость почти всюду и сходимость по мере.

Модуль 2. Абстрактный интеграл Лебега

Тема 1: «Определение интеграла Лебега и его основные свойства» Лекция №4:

- 1) Определение интеграла Лебега.
- 2) Элементарные свойства интеграла Лебега.
- 3) Счетная аддитивность интеграла Лебега.
- 4) Другие свойства интеграла Лебега.

Тема 2: «Основные предельные теоремы для интеграла Лебега» Лекция №5:

- 1) Теорема об интегрировании монотонной последовательности.
- 2) Теорема Лебега о сходимости мажорированной последовательности.
- 3) Теорема Витали.

Тема 3: «Связь интегралов Лебега и Римана на отрезке прямой» Лекция №6:

- 1) Интегрируемость по Риману влечет интегрируемость по Лебегу.
- 2) Критерий интегрируемости функции по Риману на отрезке.

Тема 4: «Теорема Радона-Никодима» Лекция №7:

- 1) Абсолютная непрерывность и сингулярность одной меры относительной другой.
- 2) Теорема Радона-Никодима.

Тема 5: «Произведение мер и теорема Фубини»

Лекиия №8:

- 1) Измеримые множества в произведении пространств.
- 2) Измеримые функции на произведении пространств.
- 3) Произведение мер.
- 4) Теорема Фубини.

4.3.2. Содержание лабораторно-практических занятий по дисциплине

Модуль 1. Теория меры

Тема 1: «Основные классы множеств» и Тема 2: «Функции множеств. Меры. Продолжении меры»

Практическое занятие № 1:

- 1) Полукольцо, полуалгебра, кольцо, алгебра, σ -кольцо, σ -алгебра и монотонный класс.
- 2) Порожденные классы множеств.
- 3) Борелевские множества
- 4) Основные классы функций множеств.
- 5) Меры и их элементарные свойства.
- 6) Примеры мер.

Тема 2: «Функции множеств. Меры. Продолжении меры» и Тема 3: «Заряды»

Практическое занятие № 2:

- 1) Продолжение меры с полукольца A на кольцо k(A).
- 2) Внешняя мера.
- 3) Теорема Каратеодори.
- 4) Мера Лебега на прямой.
- 5) Мера Лебега на \mathbb{R}^n .

Тема 3: «Заряды» и Тема 4: «Измеримые функции»

Практическое занятие № 3:

- 1) Определение заряда.
- 2) Разложения Хана и Жордана.
- 3) Измеримые функции.
- 4) Измеримое пространство и измеримые отображения.
- 5) Борелевские функции. Функции, измеримые по Лебегу.
- 6) Простые функции. Критерий измеримости в терминах простых функций.
- 7) Свойства измеримых функций.

- 8) Эквивалентные функции.
- 9) Сходимость почти всюду и сходимость по мере.

Модуль 2. Абстрактный интеграл Лебега

Тема 1: «Определение интеграла Лебега и его основные свойства» Практическое занятие №4:

- 1) Определение интеграла Лебега.
- 2) Элементарные свойства интеграла Лебега.

Практическое занятие №5:

- 1) Счетная аддитивность интеграла Лебега.
- 2) Другие свойства интеграла Лебега.

Тема 2: «Основные предельные теоремы для интеграла Лебега» Практическое занятие №6:

- 1) Теорема об интегрировании монотонной последовательности.
- 2) Лемма Фату.

Практическое занятие №7:

- 1) Теорема Лебега о сходимости мажорированной последовательности.
- 2) Теорема Витали.

Тема 3: «Связь интегралов Лебега и Римана на отрезке прямой» Практическое занятие №8:

- 1) Интегрируемость по Риману влечет интегрируемость по Лебегу.
- 2) Критерий интегрируемости функции по Риману на отрезке.

Практическое занятие №9:

- 1) Вычисление интегралов Римана и Лебега.
- 2) Применения критерия интегрируемости функции по Риману на отрезке.

Тема 4: «Теорема Радона-Никодима»

Практическое занятие №10:

- 1) Абсолютная непрерывность и сингулярность одной меры относительной другой.
- 2) Теорема Радона-Никодима.

Тема 5: «Произведение мер и теорема Фубини»

Практическое занятие №11:

- 1) Измеримые множества в произведении пространств.
- 2) Измеримые функции на произведении пространств.
- 3) Произведение мер.

Практическое занятие №12:

- 1) Применение теоремы Фубини.
- 2) Применение теоремы Тоннели.

5. Образовательные технологии

В основе преподавания дисциплины Теория меры и интегралов лежит лекционносеминарская система обучения, что связано с необходимостью активного продумывания теоретического материала, содержащего глубокие и абстрактные понятия. Индивидуальные особенности обучающихся учитываются подбором заданий разного уровня сложности для самостоятельной работы студентов.

По данной дисциплине учебным планом предусмотрено также проведение занятий в интерактивных формах. Лекции проводятся в аудиториях, оснащенных видеопроекторами. В университете функционирует Центр современных образовательных технологий, в котором предусматриваются мастер-классы специалистов.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

- 1) Рагимханов Р.К., Рамазанов А.-Р.К., Рагимханов В.Р. Лекции по теории меры и интеграла. Учебное пособие Махачкала: Изд. ДГУ, 2016.
- 2) Рагимханов Р.К., Рамазанов А.-Р.К., Рагимханов В.Р. Аддитивные функции множества и смежные вопросы. Учебное пособие Махачкала: Изд. ДГУ, 2012.
- 3) Рагимханов Р.К., Сиражудинов М.М. Функции с ограниченной вариацией. Интеграл Стилтьеса и его приложения. Мах-ла: ИПЦ ДГУ, 2008.
- 4) Магомедов Г.А., Рагимханов Р.К., Сиражудинов М.М. *Основы теории меры*. Махла: ИПЦ ДГУ, 1997.

Задания для самостоятельной работы

- 1. Структуры и свойства минимальных классов, порожденных полукольцом.
- 2. Произведение систем множеств. Кольцо, о кольцо в произведении множеств.
- 3. Нижний и верхний пределы последовательности множеств. Предел последовательности множеств и его свойства.
- 4. Борелевская σ алгебра множеств.
- 5. Определения конечно аддитивной функции множества и ее полной вариации.
- 6. Свойства аддитивной функции множества.
- 7. Свойства полной вариации а.ф.м..
- 8. Определения верхней (= положительной) и нижней (= отрицательной) вариации аддитивной функции множества (а.ф.м.). Теорема Жордана о разложении ограниченной а.ф.м..
- 9. Введение понятия нуль-множества и его использование в анализе.

- 10. Свойства положительной а.ф.м..
- 11. Определение счетно-аддитивной функции множества (=меры = заряда). Пространства с мерой.
- 12. Свойства о- а.ф.м..
- 13. Свойства полной вариации, верхней и нижней вариации для конечной меры.
- 14. Непрерывность конечной положительной меры.
- 15. Теорема Хана о разложении вещественной меры.
- 16. Понятия абсолютной непрерывности, сингулярности а.ф.м. относительно другой а.ф.м. и соответствующие утверждения.
- 17. Теорема Лебега о разложении σ- а.ф.м..
- 18. Определение внешней меры и теорема Каратеодори.
- 19. Лебеговский метод продолжения меры.
- 20. Терема Хана о продолжении.
- 21. Теорема Александрова о продолжении регулярной меры.
- 22. Мера Бореля.
- 23. Определение функции ограниченной вариации и простейшие свойства полной вариации.
- 24. Свойства функции ограниченной вариации
- 25. Неопределенная полная вариация функции и ее свойства.
- 26. Критерий непрерывности и односторонней непрерывности неопределенной полной вариации.
- 27. Критерий функции ограниченной вариации.
- 28. Неопределенные положительная и отрицательная вариации и их свойства.
- 29. Определение функции скачков и их свойства.
- 30. Дифференциальные свойства функции ограниченной вариации.
- 31. Свойства производной неопределенной полной вариации.
- 32. Абсолютно непрерывные функции и их полные вариации.
- 33. Критерий абсолютной непрерывности функции (= теорема Лебега).
- 34. Разложение функции ограниченной вариации на сумму трех компонент.
- 35.Полнота пространства функций ограниченной вариации.
- 36.Сходимость в пространстве функций ограниченной вариации.

Рефераты, доклады и задания по темам для самостоятельной работы

Разделы и темы для самостоятельного изучения	Виды и содержание самостоятельной работы				
Раздел 1. Основные классы множеств, их с	войства и структура				
1. Основные классы множеств	Доклад на тему: Пи-классы и ламбда-классы множеств				
2. Порожденные классы множеств	Доклад на тему: Приложения теоремы о монотонном				
	классе				
Раздел 2. Конечно и счетно-аддитивные фу	нкции множества и их свойства				
1. Функции множества. Меры.	Реферат на тему: Основные свойства функций множества.				
2. Продолжение мер.	Доклад на тему: Измеримость по Каратеодори				
Раздел 3. Теория функций ограниченной вариации вещественного аргумента					
1. Функции вещественной переменной с	Доклад на тему: функция скачков.				
ограниченной вариации					

2. Вещественны функции вещественной	Доклад на тему: Теорема Хелли
переменной с ограниченной вариации	
Раздел 4. Теория меры на прямой	
1. Меры Стилтьеса и Бореля-Стилтьеса	Реферат на тему: Построение меры Лебега в R ¹
2. Мера Стилтьеса-Лебега	Доклады на темы:
	1. Борелевские множества на прямой.
	2. Суслинские множества на прямой.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Типовые контрольные задания

Примерный перечень вопросов к коллоквиуму

- 1. Нижний и верхний пределы последовательности множеств. Предел последовательности множеств и его свойства.
- 2. Борелевская σ алгебра множеств.
- 3. Определения конечно аддитивной функции множества и ее полной вариации.
- 4. Свойства аддитивной функции множества.
- 5. Свойства полной вариации а.ф.м..
- 6. Определения верхней (= положительной) и нижней (= отрицательной) вариации аддитивной функции множества (а.ф.м.). Теорема Жордана о разложении ограниченной а.ф.м..
- 7. Введение понятия нуль-множества и его использование в анализе.
- 8. Свойства положительной а.ф.м..
- 9. Определение счетно-аддитивной функции множества (=меры = заряда). Пространства с мерой .
- 10. Свойства о- а.ф.м..
- 11. Свойства полной вариации, верхней и нижней вариации для конечной меры.
- 12. Непрерывность конечной положительной меры.
- 13. Теорема Хана о разложении вещественной меры.
- 14. Понятия абсолютной непрерывности, сингулярности а.ф.м. относительно другой а.ф.м. и соответствующие утверждения.
- 15. Теорема Лебега о разложении σ- а.ф.м..
- 16. Определение внешней меры и теорема Каратеодори.
- 17. Лебеговский метод продолжения меры.
- 18. Терема Хана о продолжении.
- 19. Теорема Александрова о продолжении регулярной меры.
- 20. Мера Бореля.
- 21.Определение функции ограниченной вариации и простейшие свойства полной вариации.
- 22. Свойства функции ограниченной вариации
- 23. Неопределенная полная вариация функции и ее свойства.
- 24. Критерий непрерывности и односторонней непрерывности неопределенной полной вариации.

- 25. Критерий функции ограниченной вариации.
- 26. Неопределенные положительная и отрицательная вариации и их свойства.
- 27. Определение функции скачков и их свойства.
- 28. Дифференциальные свойства функции ограниченной вариации.
- 29. Свойства производной неопределенной полной вариации.
- 30. Абсолютно непрерывные функции и их полные вариации.
- 31. Критерий абсолютной непрерывности функции (= теорема Лебега).
- 32. Разложение функции ограниченной вариации на сумму трех компонент.
- 33.Полнота пространства функций ограниченной вариации.

Примерные контрольные работы

Вариант 1.

- 1. Показать, что неотрицательная, аддитивная и сигма-полуаддитивная функция множества, заданная на кольце есть мера на этом кольце.
- 2. Доказать, что система всех подмножеств произвольного фиксированного множества является сигма-алгеброй.
- 3. Найдите полную вариацию функции $y = \frac{1}{5} (4x^3 x^4)$ на отрезке [a,b].
- 4. Доказать, что система всех интервалов (включая пустой) на числовой прямой не является полукольцом.
- 5. Пусть R кольцо. Доказать, что если мы возьмём симметрическую разность в качестве сложение и пересечение в качестве умножение, то R будет коммутативным кольцом в алгебраическом смысле, причем нулем этого кольца является пустое множество.
- 6. Докажите, что функция $f(x) = \begin{cases} 1, & x \neq \frac{1}{n}, \\ -x^2, & x = \frac{1}{n} \end{cases}$ интегрируема по Лебегу на [0, 1] и

найдите
$$(L)\int_{0}^{1} f(x)dx$$
.

Вариант 2.

- 1. Доказать, что неотрицательная, аддитивная и непрерывная снизу на кольце функция множества есть мера на этом кольце.
- 2. Доказать, что система В всех конечных подмножеств заданного множества А является кольцом.
- 3. Найдите полную вариацию функции $y = \sin 2x \cos x$ на отрезке $[0,\pi]$.
- 4. Доказать, что система всех отрезков (с добавлением пустого множества) на числовой прямой не является полукольцом..
- 5. Построить систему множеств, которая замкнута относительно операций пересечения и объединения, но не является даже полукольцом.

6. Докажите, что функция
$$f(x) = \begin{cases} x^2, & x \in I \cap [1;2], \\ 2x, & x \in I \cap [0;1], \end{cases}$$
 интегрируема по Лебегу на $\sin x, & x \in Q$ [0, 2] и найдите $(L) \int_0^2 f(x) dx$.

- 1. Структуры и свойства минимальных классов, порожденных полукольцом.
- 2. Произведение систем множеств. Кольцо, σ кольцо в произведении множеств.
- 3. Нижний и верхний пределы последовательности множеств. Предел последовательности множеств и его свойства.
- 4. Борелевская σ алгебра множеств.
- 5. Определения конечно аддитивной функции множества и ее полной вариации.
- 6. Свойства аддитивной функции множества.
- 7. Свойства полной вариации а.ф.м..
- 8. Определения верхней (= положительной) и нижней (= отрицательной) вариации аддитивной функции множества (а.ф.м.). Теорема Жордана о разложении ограниченной а.ф.м..
- 9. Введение понятия нуль-множества и его использование в анализе.
- 10. Свойства положительной а.ф.м..
- 11. Определение счетно-аддитивной функции множества (=меры = заряда). Пространства с мерой .
- 12. Свойства о- а.ф.м..
- 13. Свойства полной вариации, верхней и нижней вариации для конечной меры.
- 14. Непрерывность конечной положительной меры.
- 15. Теорема Хана о разложении вещественной меры.
- 16. Понятия абсолютной непрерывности, сингулярности а.ф.м. относительно другой а.ф.м. и соответствующие утверждения.
- 17. Теорема Лебега о разложении σ- а.ф.м..
- 18. Определение внешней меры и теорема Каратеодори.
- 19. Лебеговский метод продолжения меры.
- 20. Терема Хана о продолжении.
- 21. Теорема Александрова о продолжении регулярной меры.
- 22. Мера Бореля.
- 23. Определение функции ограниченной вариации и простейшие свойства полной вариации.
- 24. Свойства функции ограниченной вариации
- 25. Неопределенная полная вариация функции и ее свойства.
- 26. Критерий непрерывности и односторонней непрерывности неопределенной полной вариации.
- 27. Критерий функции ограниченной вариации.
- 28. Неопределенные положительная и отрицательная вариации и их свойства.
- 29. Определение функции скачков и их свойства.

- 30. Дифференциальные свойства функции ограниченной вариации.
- 31. Свойства производной неопределенной полной вариации.
- 32. Абсолютно непрерывные функции и их полные вариации.
- 33. Критерий абсолютной непрерывности функции (= теорема Лебега).
- 34. Разложение функции ограниченной вариации на сумму трех компонент.
- 35.Полнота пространства функций ограниченной вариации.
- 36.Сходимость в пространстве функций ограниченной вариации.

Вопросы к экзамену по дисциплине

- 1. Основные системы множеств. Минимальные классы множеств, содержащие данную систему множеству.
- 2. Структуры и свойства минимальных классов, порожденных полукольцом.
- 3. Произведение систем множеств. Кольцо, σ кольцо в произведении множеств.
- 4. Нижний и верхний пределы последовательности множеств. Предел последовательности множеств и его свойства.
- 5. Борелевская σ алгебра множеств.
- 6. Определения конечно аддитивной функции множества и ее полной вариации.
- 7. Свойства аддитивной функции множества.
- 8. Свойства полной вариации а.ф.м..
- 9. Определения верхней (= положительной) и нижней (= отрицательной) вариации аддитивной функции множества (а.ф.м.). Теорема Жордана о разложении ограниченной а.ф.м..
- 10. Введение понятия нуль-множества и его использование в анализе.
- 11. Свойства положительной а.ф.м..
- 12. Определение счетно-аддитивной функции множества (=меры = заряда). Пространства с мерой .
- 13. Свойства σ- а.ф.м..
- 14. Свойства полной вариации, верхней и нижней вариации для конечной меры.
- 15. Непрерывность конечной положительной меры.
- 16. Теорема Хана о разложении вещественной меры.
- 17. Понятия абсолютной непрерывности, сингулярности а.ф.м. относительно другой а.ф.м. и соответствующие утверждения.
- 18. Теорема Лебега о разложении σ- а.ф.м..
- 19. Определение внешней меры и теорема Каратеодори.
- 20. Лебеговский метод продолжения меры.
- 21. Терема Хана о продолжении.
- 22. Теорема Александрова о продолжении регулярной меры.
- 23. Мера Бореля.
- 24. Определение функции ограниченной вариации и простейшие свойства полной вариации.
- 25. Свойства функции ограниченной вариации
- 26. Неопределенная полная вариация функции и ее свойства.
- 27. Критерий непрерывности и односторонней непрерывности неопределенной полной вариации.
- 28. Критерий функции ограниченной вариации.
- 29. Неопределенные положительная и отрицательная вариации и их свойства.

- 30. Определение функции скачков и их свойства.
- 31. Дифференциальные свойства функции ограниченной вариации.
- 32. Свойства производной неопределенной полной вариации.
- 33. Абсолютно непрерывные функции и их полные вариации.
- 34. Критерий абсолютной непрерывности функции (= теорема Лебега).
- 35. Разложение функции ограниченной вариации на сумму трех компонент.
- 36.Полнота пространства функций ограниченной вариации.
- 37. Сходимость в пространстве функций ограниченной вариации.
- 38. Условия сходимости последовательности функций ограниченной вариации к функции ограниченной вариации.
- 39. Условия поточечной сходимости последовательности функций ограниченной вариации к функции ограниченной вариации.
- 40. Принцип выбора Э. Хелли.
- 41. Меры Бореля-Стилтьеса и Лебега- Стилтьеса.
- 42. Характеристика борелевских мер.

7.2. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях 20 баллов,
- коллоквиум 30 баллов,
- выполнение аудиторных контрольных работ 40 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос (экзамен) - 100 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

Основная литература:

Основная

- 1) Канторович Л.В. Функциональный анализ / Канторович, Леонид Витальевич. 2-е изд., перераб. М.: Наука, 1977. 741 с.: ил.; 22 см. Список лит.: с.719-730. Указ. предм.: и обозначений: с. 731-741. 3-20.
- 2) Рамазанов А. К. Лекции по теории меры и интеграла: учеб. пособие / Рамазанов А. К., Р. К. Рагимханов; Минобрнауки России, Дагест. гос. ун-т. Махачкала: Изд-во ДГУ, 2016. 279,[2] с. 389-50.
- 3) Магомедов Г.А. Основы теории меры : учебное пособие / Магомедов Г.А., Р. К. Рагимханов, М. М. Сиражудинов. Махачкала : ИПЦ ДГУ, 1997. 149 с. 10-00.

- 4) Рамазанов А.К. Функциональный анализ : учеб. пособие для вузов. Ч.1 / Рамазанов А.К., Р. К. Рагимханов ; Минобрнауки России, Дагест. гос. ун-т. Махачкала : Изд-во ДГУ, 2013. 318,[1] с. 222-00.
- 5) Данилин А.Р. Функциональный анализ для магистрантов [Электронный ресурс]: учебное пособие/ Данилин А.Р.— Электрон. текстовые данные.— Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2013.— 192 с.— Режим доступа: http://www.iprbookshop.ru/66614.html.— ЭБС «IPRbooks» (25.05.2018)
- 6) Дороговцев А.Я. Элементы общей теории меры и интеграла: учебник / Дороговцев А.Я. Киев: Выща шк. Головное изд-во, 1989. 152 с. 2 ил. Библиогр.: 16 назв. ISBN 5-11-001190-7.

Дополнительная

- 7) Фёдоров В.М. Курс функционального анализа: учебник / Фёдоров В. М. СПб. [и др.]: Лань, 2005. 351 с.; 20 см. (Учебники для вузов. Специальная литература). Библиогр.: с. 351. ISBN 5-8114-0589-8: 187-66.
- 8) Кириллов А. А. Теоремы и задачи функционального анализа: [учебное пособие для вузов] / Кириллов А.А., А. Д. Гвишиани. М.: Наука, 1979. 384 с.: ил. Библиогр.: с. 369-372. Предм. указ.: с. 373-377. 1-10.
- 9) Глазырина П.Ю. Функциональный анализ. Типовые задачи [Электронный ресурс]: учебное пособие/ Глазырина П.Ю., Дейкалова М.В., Коркина Л.Ф.— Электрон. текстовые данные.— Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2016.— 216 с.— Режим доступа: http://www.iprbookshop.ru/66213.html.— ЭБС «IPRbooks» (25.05.2018)

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

№	Название	Электронный адрес	Содержание
1.	Math.ru	www.math.ru	Сайт посвящён математике (и математикам. Этот сайт —
			для школьников, студентов, учителей и для всех, кто
			интересуется математикой. Тех, кого интересует зона
			роста современной науки математика.
2.	Exponenta.ru	www.exponenta.ru	Студентам:
			- запустить установленный у Вас математический пакет
			выбрать в списке примеров, решенных в среде этого пакета
			подходящий и решить свою задачу по аналогии;
			Преподавателям:
			- использовать математические пакеты для поддержки
			курса лекций.
			Всем заинтересованным пользователям:
			1. – можно ознакомиться с примерами применения
			математических пакетов в образовательном процессе.
			2. – найти демо-версии популярных математических

			пакетов, электронные книги и свободно распространяемые программы.
3.	Математика	www.mathematics. ru	учебный материал по различным разделам математики — алгебра, планиметрия, стереометрия, функции, графики и другие.
4.	Российское образование.	www.edu.ru	федеральный образовательный портал: учреждения, программы, стандарты, ВУЗы, тесты ЕГЭ.
5.	Электронные каталоги Научной библиотеки ДГУ	http://elib.dgu.ru, http://edu.icc.dgu.r u	
6.	Общероссийский математический портал (Math-Net. Ru)	www.mathnet.ru	Портал, предоставляет различные возможности в поиске информации о математической жизни в России Портал содержит разделы: журналы, видеотека, библиотека, персоналии, организации, конференции.

10. Методические указания для обучающихся по освоению дисциплины.

Дисциплина «Теория меры и интегралов» является основной частью, изучаемых будущими студентами. Специфика дисциплинѕ состоит в том, что рассмотрение теоретических вопросов здесь тесно связано с решением практических задач.

На лекциях особенно большое значение имеет реализация следующих задач:

- 1) глубокое осмысливание ряда понятий и положений, введенных в теоретическом курсе;
- 2) раскрытие прикладного значения теоретических сведений;
- 3) развитие творческого подхода к решению практических и некоторых теоретических вопросов;
- 4) закрепление полученных знаний путем многократного практического использования;
- 5) приобретение прочных навыков типовых расчетов;
- 6) расширение кругозора, приобретение полезных сведений, касающихся технических данных реальных объектов и конкретных условий их эксплуатации.

Наряду с перечисленными выше образовательными целями, занятия преследуют и важные цели воспитательного характера, а именно:

- а) воспитание настойчивости в достижении конечной цели;
- б) воспитание дисциплины ума, аккуратности, добросовестного отношения к работе;
- в) воспитание критического отношения к своей деятельности, умения анализировать свою работу, искать оптимальный путь решения, находить свои ошибки и устранять их.

Учебная программа дисциплине *теория меры и интегралов* распределена по темам и по часам на лекции, практические и лабораторные занятия; предусмотрена также самостоятельная учебная работа студентов. По каждой теме преподаватель указывает студентам необходимую литературу (учебники, учебные пособия, сборники задач и упражнений), а также соответствующие темам параграфы и номера упражнений и задач.

Самостоятельная работа студентов складывается из работы над лекциями, с учебниками, решения рекомендуемых задач, подготовки к защите лабораторных работ, а также из подготовки к контрольным работам, коллоквиумам и сдаче зачетов и экзаменов.

При работе с лекциями и учебниками особое внимание следует уделить изучению основных понятий и определений по данному разделу, а также особенностям примененных методов и технологий доказательства теорем. Решение достаточного количества задач по данной теме поможет творческому овладению методами доказательства математических утверждений.

После изучения каждой темы рекомендуется самостоятельно воспроизвести основные определения, формулировки и доказательства теорем. Для самопроверки рекомендуется также использовать контрольные вопросы, приводимые в учебниках после каждой темы.

Основная цель практических занятий – подготовка студентов к самостоятельной работе над теоретическим материалом и к решению задач и упражнений.

Методические рекомендации

Для подготовки к практическим занятиям нужно изучить следующие литературные источники:

- 1) Колмогоров А., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1976.
- 2) Федоров В.М. Теория функций и функционального анализа ч.1, М.: изд. МГУ, 2000.
- 3) Рагимханов Р.К., Сиражудинов М.М. Функции с ограниченной вариацией. Интеграл Стилтьеса и его приложения. Мах-ла: ИПЦ ДГУ, 2008.
- 4) Рагимханов Р.К., Рамазанов А.-Р.К., Рагимханов В.Р. Аддитивные функции множества и смежные вопросы. Учебное пособие Махачкала: Изд. ДГУ, 2012.

Решать задачи и упражнения из учебных пособий

- 1) Кириллов А.А., Гвишиани А.Д. Теоремы и задачи функционального анализа. М.: Наука, 1988.
- 2) Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П. Действительный анализ в задачах. М., 2005.
- 3) Треногин В.А., Писаревский Б.М., Соболева «Задачи и упражнения по функциональному анализу» Наука 2002

Для проверки остаточных знаний использовать тесты и вопросами для самопроверки Для подготовки к экзамену: повторить лекционный материал, проанализировать список рекомендованной литературы, решить самостоятельно задачи и примеры из учебного пособия: Кириллов А.А., Гвишиани А.Д. Теоремы и задачи функционального анализа. М.: Наука, 1988.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

При осуществлении образовательного процесса по предмету рекомендуются компьютерные технологии, основанные на операционных системах Windows, Ubuntu, Linux, прикладные программы Mathcad, Matlab, Mathematica, а также сайты образовательных учреждений и журналов, информационно-справочные системы, электронные учебники.

При проведении занятий рекомендуется использовать компьютеры, мультимедийные проекторы, интерактивные экраны.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Университет обладает достаточной базой аудиторий для проведения всех видов занятий, предусмотренных образовательной программой дисциплины математический анализ. Кроме того, на факультете 4 компьютерных класса и 4 учебных класса, оснащенных компьютерами с соответствующим программным обеспечением и мультимедиа-проекторами.

В университете имеется необходимый комплект лицензионного программного обеспечения.