МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Точно решаемые модели

Кафедра <u>теоретической и вычислительной физики</u>, физического факультета

Образовательная программа

03.02.02 Физика

Профиль подготовки *Фундаментальная физика*

Уровень высшего образования <u>Бакалавриат</u>

> Форма обучения очная

Статус дисциплины: <u>дисциплина по выбору</u>

Рабочая программа дисциплины «Точно решаемые модели» составлена в 2022 году в соответствии с требованиями ФГОС ВО по направлению подготовки 03.03.02 - «Физика» (уровень бакалавриат) от « 7 » августа 2020г. № 891.

Разработчик(и): Кафедра теоретической и вычислительной физики, Абдулвагабов Мизафрудин Шахович, к.ф.-м.н.,доцент

Рабочая программа дисциплины одобрена: на заседании кафедры теоретической и вычислительной физики 23 марта 2022г., протокол №7.

Зав. кафедрой

Муртазаев А.К.

21 марта 2022г., протокол №7.

Зав. кафедрой

Муртазаев А.К.

на заседании Методической комиссии физического факультета от «23» марта 2022г., протокол №7

the

Начальник УМУ

Гасангаджиева А.Г

Аннотация рабочей программы дисциплины

Дисциплина <u>«Точно решаемые модели»</u> входит в часть, формируемая образовательные отношения, дисциплины по выбору образовательной программы бакалавриата по направлению 03.03.02 - «Физика» (профиль — Фундаментальная физика).

Дисциплина реализуется на физическом факультете кафедрой теоретической и вычислительной физики.

Содержание дисциплины охватывает круг вопросов, связанных с изучением двумерных решеточных моделей в статистической физике, допускающих аналитическое решение и их приложения к современным задачам.

Дисциплина нацелена на формирование следующих компетенций выпускника:

общепрофессиональных - ОПК-1; профессиональных - ПК-10, ПК-11,ПК-12.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: *лекции, практические занятия, самостоятельную работу.*

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме <u>текущий контроль в форме опросов и контрольной работы</u> и промежуточный контроль в форме <u>зачета</u>

Объем дисциплины 2 зачетные единицы, в том числе в академических часах по видам учебных занятий

Ce		Учебные занятия								
мес			промежуточ							
тр		Контактная работа обучающихся с СРС,								
	Bce		В	аттестации						
	ГО	Всег			том	(зачет,				
		o	Лекц	Лаборат	Практи	КСР	консул	числ	дифференци	
			ИИ	орные	ческие		ьтации	e	рованный	
				занятия	заняти			экза	зачет,	
					Я			мен	экзамен	
7	72	68	34	-	34	-	-	4	зачет	

1. Цели освоения дисциплины.

Целями освоения дисциплины «Точно решаемые модели» являются изучение двумерных решеточных моделей в статистической физике, допускающих аналитическое решение и их приложения к современным задачам.

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина входит в вариативную часть образовательной программы бакалавриата по направлению 03.03.02 - «Физика» (профиль — Фундаментальная физика).

Студенты, проходящие специализацию по кафедре общей и теоретической физики должны иметь базовые знания о точно решаемых методах в теоретической физике. Для освоения дисциплины необходимы математический дифференциальные дисциплин: анализ, уравнения, дифференциальная геометрия и топология, электродинамика и квантовая теория, статистическая физика. Освоение дисциплины позволит в дальнейшем изучать курсы естественнонаучного цикла, спецкурсы по выбору студента. Данная дисциплина призвана выработать профессиональные компетенции, связанные со способностью использовать теоретические знания в области квантовой механики, статистической физики, теория поля, классической электродинамики ДЛЯ решения конкретных точно решаемых задач статистической физики.

Данная дисциплина является одной из основных в подготовке студентов по направлению «Физика» и по профилю «Фундаментальная физика».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Код инаименование компетенции из ОПОП	Код и наименование индикатора достижения компетенций (в соответствии с ОПОП	ние результаты обучения освоен ра ия ий (в			
ОПК-1. Способен применять базовые знания в области физико- математических и (или) естественных наук в сфере своей профессиональной деятельности	ОПК-1.1. Выявляет и анализирует проблемы, возникающие в ходе профессиональной деятельности, основываясь на современной научной картине мира	Знает: физико- математический аппарат, необходимый для решения задач профессиональной деятельности - тенденции и перспективы развития современной физики, а также смежных областей науки и техники. Умеет: выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, анализировать и обрабатывать соответствующую научнотехническую литературу с учетом зарубежного опыта. Владеет: навыками находить и критически анализировать и иформацию, выявлять естественнонаучную сущность проблем.	Устный опрос, разноуровневые задачи и задания		
ОПК-1.2. З Реализует и и совершенствует новые методы, идеи, подходы и алгоритмы решения теоретических и прикладных задач		Знает: основные понятия, идеи, методы, подходы и алгоритмы решения теоретических и прикладных задач физики; - новые методологические подходы к решению задач в области профессиональной деятельности. Умеет: реализовать и			

	профессиональной	совершенствовать новые
	деятельности.	методы, идеи, подходы и
		алгоритмы решения
		теоретических и
		прикладных задач в
		области профессиональной
		деятельности.
		Владеет: навыками
		реализовать и
		совершенствовать новые
		методы, идеи, подходы и
		алгоритмы решения
		теоретических и
		прикладных задач в
		области профессиональной
		деятельности
	ОПК-1.3.	Знает: - основы
	Проводит	качественного и
	качественный и	количественного анализа
	количественный	методов решения
	анализ	выявленной проблемы.
	выбранного	Умеет: - выбирать метод
	методов решения	решения выявленной
	выявленной	проблемы, проводить его
		качественный и
	проблемы, при	количественный анализ,
	необходимости	при необходимости
	вносит	вносить необходимые
	необходимые	коррективы для
	коррективы.	достижения оптимального
		результата. Владеет: -
,		навыками проводить
		качественный и
,		количественный анализ
		методов решения
		выявленной проблемы,
,		оценивать эффективность
		выбранного метода.

ПК-10. Владеет	ПК-10.1. Владеет	Знает: основные	Устный опрос,
методами теоретической	специальными	физические явления и	разноуровневые
физики в применении к	знаниями в области	основные принципы	задачи и задания
профессиональным задачам.	квантовой теории	квантовой теории,	
задачам.		границы их применения	
		и применение принципов	
		в важнейших	
		практических	
		приложениях; основные	
		физические величины и	
		константы теоретической	
		физики, их определения,	
		смысл, способы и	
		единицы измерения;	
		фундаментальные	
		физические	
		эксперименты в области	
		исследования частиц и	
		волн, и их роль в	
		развитии науки.	
		Умеет: объяснить	
		основные наблюдаемые	
		природные и	
		техногенные явления,	
		эффекты и точки зрения	
		фундаментальных	
		физических	
		взаимодействий, указать	
		какие законы описывают	
		то или иное явление	
		(эффект);	
		интерпретировать смысл	
		физических величин и	
		понятий; использовать	
		методы адекватного	
		физического и	
		математического	
		моделирования и методы	
		теоретического анализа к	
		решению конкретных	
		проблем. Владеет:	

навыками использования основных физических законов и принципов в практических приложениях; навыками применения основных методов теоретического анализа для решения естественнонаучных задач; анализом полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;	Т		T
законов и принципов в практических приложениях; навыками применения основных методов теоретического анализа для решения естественнонаучных задач; анализом полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальной точки и системы материальных точек;			_
практических приложениях; навыками применения основных методов теоретического анализа для решения естественнонаучных задач; анализом полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальный материальный точки и системы материальных точек;		основных физических	F
приложениях; навыками применения основных методов теоретического анализа для решения естественнонаучных задач; анализом полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;		законов и принципов в	и задания
применения основных методов теоретического анализа для решения естественнонаучных задач; анализом полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальной точки и системы материальных точек;		практических	
методов теоретического анализа для решения естественнонаучных задач; анализом полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической модели динамики материальной точки и системы материальных точек;		приложениях; навыками	
анализа для решения естественнонаучных задач; анализом полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и анализа для решения естественнонаучных знаниями знаниями полученных результатов той или иной теоретической модели Знает: основные законы динамики материальной точки и системы материальных точек;		применения основных	
естественнонаучных задач; анализом полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;		методов теоретического	
задач; анализом полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;		анализа для решения	
полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;		естественнонаучных	
экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической материальной точки и системы материальных точек;		задач; анализом	
результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;		полученных	
исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;		экспериментальных	
происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;		результатов в	
микромире, адекватное соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;		исследовании процессов,	
соответствие результатов той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;		происходящих в	
Той или иной теоретической модели ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;		микромире, адекватное	
ПК-10.2. Владеет специальными знаниями в области теоретической модели Знает: основные законы динамики материальной точки и системы материальных точек;		соответствие результатов	
ПК-10.2. Владеет специальными знаниями в области теоретической механики и материальных точек;		той или иной	
специальными знаниями в области теоретической механики и материальных точек;		теоретической модели	
знаниями в области теоретической механики и материальных точек;		Знает: основные законы	
теоретической точки и системы механики и материальных точек;		динамики материальной	
механики и материальных точек;		точки и системы	
D. H. O. VICTOR O. H. VIVIA V. VIVIA V. VIVIA V.		материальных точек;	
электродинамики основные законы	электродинамики	основные законы	
движения материальной		движения материальной	
точки относительно		точки относительно	
неинерциальных систем		неинерциальных систем	
отсчета; колебания		отсчета; колебания	
систем со многими		систем со многими	
степенями свободы и их		степенями свободы и их	
основные		основные	
характеристики; законы и		характеристики; законы и	
принципы аналитической		принципы аналитической	
механики,		механики,	
электродинамики;		электродинамики;	
движение материальной		движение материальной	
точки при больших		точки при больших	
скоростях; основные			
уравнения		_	
гидродинамики и		• •	
электродинамики.		_	

Умеет: объяснить физические наблюдаемые природные и другие явления с помощью законов и методов теоретической механики и электродинамики; определить какие законы описывают данное явление или эффект; использовать методы абстракции, физического и математического моделирования для решения конкретных задач в области теоретической механики и электродинамики. Владеет: основными физическими законами и принципами использования теоретической механики и электродинамики в практических приложениях; методами использования основных методов теоретического анализа для решения естественно-научных задач; анализом полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели

FT 10	2 П	T	
11K-10 методі	.3. Применяет	Знает: теоретические	
	математической	основы, основные	
		понятия, законы и	
	ювки и	модели линейных и	
_	ия задач в ссиональной	нелинейных уравнений	
	ьности	математической физики.	
		Умеет: понимать,	
		излагать и критически	
		анализировать базовую	
		общефизическую	
		информацию;	
		пользоваться	
		теоретическими	
		основами, основными	
		понятиями и моделями	
		линейных и нелинейных	
		уравнений	
		математической физики.	
		Владеет: методами	
		обработки и анализа	
		экспериментальной и	
		теоретической	
		физической информации	
ПК-10	.4. Способен	Знает: основные этапы	
	ьзовать	развития и	
	вные методы етической	возникновения	
физик		теоретической физики,	
		об ученых, внесших	
		основной вклад в	
		развитии теоретической	
		физики; основные законы	
		и методы теоретической	
		физики; возможности	
		применения этих законов	
		и методов для освоения,	
		изучения дисциплин, как	
		квантовая механика,	
		термодинамика,	
		статфизика и т.д.;	
		основные стандарты,	
		формы, правила	

составления научной документации и их отдельные особенности. Умеет: критически оценивать следствия тех или иных решений, открытий в теоретической физике, на дальнейший ход развития науки в целом; применять знания, полученные при изучении теоретической физики, для решения конкретных физических задач; разработать вариант решения различных задач смежных дисциплин на основе законов теоретической физики; написать статьи, доклады для выступления на различных форумах, заседаниях, семинарах. Владеет: возможностью применять методы теоретической физики, ход и историю развития теоретической физики для формирования общих взглядов на характер науки, научных исследований; типовыми методологиями, приемами, технологиями, применяемыми при написании, составлении обзоров проведенных научных исследований; существующими

		методами, законами	
		теоретической физики,	
		которые можно	
		применить для решения	
		задач в различных	
		областях человеческой	
		деятельности.	
ПК-11. Способен	ПК-11.1. Базовые	Знает: типы связей в	Письменный опрос,
понимать теорию и	теоретические	конденсированных средах,	разноуровневые
методы исследования физики	знания по физике конденсированного	классификацию веществ –	задачи и
конденсированного	состояния из	металлы полупроводники	
состояния вещества	фундаментальных	и диэлектрики; связь	
	разделов общей и теоретической	структуры и свойств	
	физики;	конденсированных сред;	
		диаграммы состояния	
		многоатомных	
		материалов.	
		Умеет: оценивать тип	
		связи в конденсированных	
		средах согласно их	
		классификации – металлы	
		полупроводники и	
		диэлектрики; строить	
		бинарные диаграммы	
		состояния материалов.	
		Владеет: знаниями об	
		энергии взаимодействия	
		между атомами для	
		различных типов связей;	
		знаниями по расшифровке	
		диаграмм состояния	
		многоатомных материалов	

ПК-11.2.	240071 17011111111	——,
Физические основы	Знает: принципы	ļ
и природа	формирования структуры	
кристаллических	и элементы	
классов и пространственных	кристаллофизики: типы	
групп.	кристаллических решеток;	
1 3	сингонии; плотность	
	упаковки элементарных	
	ячеек; виды дефектов в	
	кристаллах; методы	
	дифракционного анализа.	
	Умеет: определять типы	
	кристаллических решеток,	
	направления и плоскости	
	решеток; определять	
	элементы симметрии;	
	плотность упаковки	
	элементарных ячеек;	
	расшифровывать	
	результаты	
	дифракционного анализа.	
	Владеет: знаниями об	
	идеальных и реальных	
	структурах; методами	
	определения направления	
	и плоскости решеток, а так	
	же элементов симметрии;	
	методами оценки	
	плотности упаковки	
	элементарных ячеек;	
	методами дифракционного	
	анализа	
ПК-11.3.	Знает: формирование	
Современные	зарядовых возбуждений и	
представления о	их релаксацию; процессы	
формировании физических свойств	формирования	
конденсированных	равновесных и	
сред.	транспортных свойств;	
	температурные	
	зависимости	
	механических,	
	электрических, тепловых,	
	магнитных и оптических	
	mai illillidi. Il Olli Il IOOKIIA	12

свойств конденсированных сред; связь структуры с механическими электрическими, тепловыми, магнитными и оптическими свойствами.

Умеет: оценивать
параметры зарядовых
возбуждений и их
релаксации при
формировании
транспортных свойств;
интерпретировать
температурные
зависимости
механических,
электрических, тепловых,
магнитных и оптических
свойств конденсированных
сред.

Владеет: методами оценки параметров температурных зависимостей механических, электрических, тепловых, магнитных и оптических свойств конденсированных сред по экспериментальным данным; методами теоретической оценки параметров механических, электрических, тепловых, магнитных и оптических свойств; процессов формирования равновесных и транспортных свойств; методами интерпретации связи структуры с

механическими

		электрическими,	
		тепловыми, магнитными, и	
		оптическими свойствами.	
	ПК-11.4.	Знает: физику	
	Особенности	отличительных	
	свойств в моно-	особенностей	
	микрокристалличес ких, керамических	формирования свойств в	
	и нано материалах.	моно- и	
	1		
		микрокристаллических,	
		керамических и нано	
		материалах. Умеет: получать моно-	
		·	
		микрокристаллические,	
		керамические и нано-	
		материалы.	
		Владеет: технологиями	
		получения и исследования	
		свойств моно-	
		микрокристаллических,	
		керамических и нано	
ПК-12 Знает теорию и	ПК-12.1. Имеет	материалов	Устный опрос,
методы исследований в	представления о	Знает: методы обработки и	письменный опрос
области физики	методиках и	анализа	1
низкотемпературной	технологиях	экспериментальной и	
плазмы	физических	теоретической	
	исследований с помощью	информации в области	
	современного	физики	
	оборудования.	низкотемпературной	
		плазмы; физические	
		основы возникновения	
		самостоятельного и	
		несамостоятельного тока в	
		газах; Умеет: пользоваться	
		современной приборной	
		базой для проведения	
		экспериментальных и	

(или) теоретических физических исследований в области физики электрического пробоя; анализировать устройство используемых ими приборов и принципов их действия, приобрести навыки выполнения физических измерений, проводить обработку результатов измерений с использованием статистических методов и современной вычислительной техники. Владеет: методикой и теоретическими основами анализа экспериментальной и теоретической информации в области физики низкотемпературной плазмы; некоторыми диагностические методы исследования газоразрядной плазмы; методами обработки и анализа экспериментальной и теоретической информации в области физики низкотемпературной плазмы навыками исследования физических процессов, протекающих в газах высокого давления.

		Т	
	К-12.2. Знает	Знает: теорию и методы	
	орию и методы изических	физических исследований	
_	сследований в	в физике плазмы Умеет:	
фи	изике плазмы	пользоваться	
		теоретическими основами,	
		основными понятиями,	
		законами и моделями	
		формирования искровых,	
		дуговых и объемных	
		разрядов; решать задачи	
		для описания поведения	
		элементарных частиц,	
		протекающих в плазме	
		газового разряда;	
		Владеет: навыками	
		проведения научных	
		исследований в области	
		физики	
		низкотемпературной	
		плазмы с помощью	
		современной приборной	
		базы (в том числе	
		сложного физического	
		оборудования) и	
		информационных	
		технологий с учетом	
		отечественного и	
		зарубежного опыта	
	К-12.3. Знает	Умеет: понимать, излагать	
	орию и методы изических	и критически	
_	сследований в	анализировать базовую	
	бласти физики	информацию в области	
пл	іазмы.	физики	
		низкотемпературной	
		плазмы; использовать	
		базовые теоретические	
		знания фундаментальных	
		разделов общей и	
		теоретической физики для	
		решения задач по физике	
		низкотемпературной	
		плазмы; проводить	

научные исследования в области физики низкотемпературной плазмы с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта. Владеет: навыки для анализа протекания электрического тока в различных типах газового разряда, а также их взаимодействия с внешними электромагнитными полями; устройством используемых ими приборов и принципов их действия, приобрести навыки выполнения физических измерений, проводить обработку результатов измерений с использованием статистических методов и современной вычислительной техники.

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет 2 зачетные единицы, 72академических часа.

4.2. Структура дисциплины.

П			иестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			ая работа	Формы текущего контроля успеваемо сти (по неделям	
№ п/п	Раздел дисциплины	Семестр	Неделя семестра	Лекции	Практич. занятия	Лабораторные занятия	Контроль самостоят. раб.		семестра) /Форма промежут очной аттестаци и (по семестра м)
	Модуль 1. Основы статистической механики.								
1.	Статистическое распределение. Статистическая независимость. Теорема Лиувиля. Статистическая матрица.	7		10	8	-			опрос
2.	Распределение Гиббса. Распределение Максвелла. Распределение вероятностей для осциллятора. Свободная энергия в распределении Гиббса.	,		8	8	-		2	опрос
	Итого по мос	улн	o 1	18	16	-			Конт.раб.
	Модуль 2. Одн	ом	ерна	ая мо	дель И	Ізині	г а.		
1.	Обобщенная модель Изинга. Модель Изинга с взаимодействием между ближайшими соседями.			8	4	_	-		опрос

2.	Свободная энергия и намагниченность. Корреляция. Критическое поведение вблизи T=0	7		4	4	-	-		опрос
3.	Модель среднего поля. Термодинамические свойства. Фазовый переход. Свойства при H=0 и критические			4	10	-	-	2	опрос
	показатели Решетка Бете. Размерность. Рекуррентные соотношения для намагниченности в центральной точке. Сферическая модель. Формулировка модели. Свободная энергия в сферической модели. Уравнение состояния и внутренняя энергия.								
	Итого по моду			16	18	-	-		коллокви ум
	ИТОГО			34	34		-	4	

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине.

Модуль 1. Основы статистической механики.

Статистическое распределение. Статистическая независимость. Теорема Лиувиля. Распределение вероятности для осциллятора. Метод средних значений. Свободная энергия и термодинамический потенциал. Распределение Гиббса. Свободная энергия в распределении Гиббса. Статистическая сумма. Статистическая матрица

Модуль 2. Одномерная модель Изинга.

Обобщенная модель Изинга. Модель Изинга с взаимодействием между ближайшими соседями. Обобщенная модель Изинга. Модель Изинга с взаимодействием между ближайшими соседями. Модель среднего поля. Термодинамические свойства. Фазовый переход. Свойства при H=0 и критические показатели. Фазовый переход и критические точки. Универсальность. Гипотеза подобия (скейлинга).

Решетка Бете. Размерность. Рекуррентные соотношения для намагниченности

в центральной точке. Сферическая модель. Формулировка модели. Свободная энергия в сферической модели. Уравнение состояния и внутренняя энергия. Соотношение дуальности для модели Изинга на свободной решетке. Взаимная дуальность шестиугольной и треугольной решеток. Соотношение звездатреугольник. Трансфер-матрицы V,W. Два важных свойства матриц V и W.

4.3.2. Содержание лабораторно-практических занятий по дисциплине.

Модуль 1. Основы статистической механики.			
Название темы	Содержание темы	Объем в часах	
Основные принципы статистики.	Статистическое распределение. Статистическая независимость.	4	
	Свободная энергия и термодинамический потенциал. Статистическая сумма.	2	
	Среднее термодинамическое значение. Соотношения между производными термодинамических величин.	4	
Модуль 2. Одномерная модель Изинга.			
Точно решаемые модели	Приближенные методы. Точно решаемые модели.	4	
	Фазовые переходы и критические точки. Гипотеза подобия (скейлинга)	4	
Обобщенная модель Изинга.	Свободная энергия и теплоемкость. Средняя квадратичная флуктуация. Намагниченность Корреляции.	2	
Модуль 3. Модели Изинга на решетке Бете на квадратной решетке.			
Одномерная модель Изинга.	Свободная энергия и намагниченность. Трансфер - матрицы, свойства. Корреляции. Термодинамические свойства в модели среднего поля	4	

Модель Изинга	110	Решетка Бете. Свободная энергия. Трансфер - матрицы V,W.		2	
решетке Бете	на	Рекуррентные	соотношения	для	
pemerke bere		намагниченности	центральной	точки.	4
		Формулировка сфер	ической модели.		

5. Образовательные технологии.

В течение семестра студенты посещают лекции, решают задачи, указанные преподавателем, к каждому семинару. В семестре проводятся контрольные работы (на семинарах). Аттестация проводится после решения всех задач контрольных работ, выполнения домашних и самостоятельных работ.

При проведении занятий используются компьютерные классы, оснащенные современной компьютерной техникой. При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа проекционным оборудованием и интерактивной доской.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

В рамках учебного процесса предусмотрено приглашение для чтения лекций ведущих ученых из центральных вузов и академических институтов России.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов:

- проработка учебного материала (по конспектам лекций учебной и научной литературе) и подготовка докладов на семинарах и практических занятиях;
 - написание рефератов;
 - работа с тестами и вопросами для самопроверки;
 - решение некоторых задач с применением компьютера.

Разделы и темы для самостоятельного	Виды и содержание самостоятельной работы		
Статистическое распределение	Статистическое распределение. Статистическая матрица. Метод средних значений. Проблема N-частиц. Квантовое распределение вероятности.		
Фазовые переходы и критические точки	Фазовые переходы и критические точки. Намагниченность. Магнитная восприимчивость. Гипотеза подобия (скейлинг). Универсальность.		

Обобщенная модель Изинга	Решеточный газ. Уравнение Ван- Дер Вальса и классические показатели .Критическое уравнение состояния. Модель среднего поля для решеточного газа.
Дуальность и преобразования звездатреугольник плоских моделей Изинга.	Соотношение дуальности для модели Изинга на квадратной решетке. Взаимная дуальность шестиугольной и треугольной решеток. Соотношение звезда-треугольник. Самодуальность треугольной решетки. Соотношения симметрии

Результаты самостоятельной работы учитываются при аттестации бакалавра (экзамен). При этом проводятся: тестирование, опрос на практических занятиях, заслушиваются доклады, проверка контрольных работ и т.д.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Типовые контрольные задания

7.1.1. <u>Перечень примерных тем для коллоквиума.</u>

- 1. Фазовые переходы и критические точки. Гипотеза подобия (Скейлига).
- 2. Термодинамические функции. Статистическая сумма.
- 3. Модель жидкости. Решеточный газ.
- 4. Уравнение Ван Дер Вальса и классические показатели.
- 5. Одномерная модель Изинга. Свободная энергия и намагниченность.
- 6. Одномерная модель Изинга. Корреляции.
- 7. Критическое поведение вблизи абсолютного нуля корреляционной длины.
- 8. Модель среднего поля. Термодинамические свойства.
- 9. Модель среднего поля. Фазовый переход.
- 10. Свойства при нулевой напряженности магнитного поля и критические показатели. Спонтанная намагниченность.
- 11. Критическое уравнение состояния.
- 12. Модель среднего поля для решеточного газа.
- 13. Намагниченность как функция напряженности магнитного поля в модели Изинга на решетке Бете.
- 14. Расчет свободной энергии в модели Изинга на решетке Бете.

7.1.2. Тематика контрольных работ.

- 1. Статистическое распределение.
- 2. Метод средних значений.

- 3. Статистические суммы.
- 4. Проблема и частиц.
- 5. Обобщенная модель Изинга.
- 6. Модель среднего поля.
- 7. Модель Изинга на решетке Бете.
- 8. Свободная энергия в модели Изинга на решетке Бете.
- 9. Сферическая модель.
- 10. Дуальность и преобразование звезда-треугольник плоских моделей Изинга.
- 11. Трансфер-матрицы V,W.
- 12. Модель Изинга на квадратной решетке.

7.2. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

Лекции

•	посещение занятий	10 баллов,
•	активное участие на лекциях	15 баллов,
•	устный опрос, тестирование, коллоквиум	-60 баллов,
•	и др. (выполнение домашних работ, доклады, рефераты)	15 баллов.

Практические занятия

•	посещение занятий	10 баллов,
•	активное участие на практических занятиях	15 баллов,
•	выполнение домашних работ	15 баллов,
•	выполнение самостоятельных работ	-20 баллов,
•	выполнение контрольных работ	-40 баллов.

Промежуточный контроль по дисциплине включает:

• устный опрос	-60 баллов,
• письменная контрольная работа	-30 баллов,
• тестирование	10 баллов.

8. Перечень основной и дополнительной учебной литературы,

необходимой для освоения дисциплины.

а) основная литература:

- 1. Березин Ф.А. Лекции по статистической физике [Электронный ресурс] / Ф.А. Березин. Электрон. текстовые данные. Москва, Ижевск: Регулярная и хаотическая динамика, Ижевский институт компьютерных исследований, 2002. 192 с. 5-93972-193-1. Режим доступа: http://www.iprbookshop.ru/16556.html (17.10.2018)
- 2. Ландау, Л. Д., Лифшиц, Е. М. Статистическая физика. («Теоретическая физика», Т. V) Часть 1: М.: Физматлит, 2010
- 3. Бэкстер Р., «Точно решаемые модели в статистической механике», М.: Мир, 1985г.
- 4. Блохинцев Д.И. Основы квантовой механики. М: Лань, 2004 г.
- 5. Ма Ш. Современная теория критических явлений. М.: Мир, 1980г.

б) дополнительная литература:

- 1. **Бэкстер, Родни.** Точно решаемые модели в статистической механике : [монография] / Бэкстер, Родни ; пер. с англ.: Е.П.Вольского, Л.И.Дайхина под ред. А.М.Бродского. М. : Мир, 1985. 486 с. Библиогр.: с. 471-478. Предм. указ.: с. 479-481. 130-00. **Местонахождение: Научная библиотека** ДГУ
 - Давыдов А.С. Квантовая механика. М.: Наука, 1973 г.
- 2. Соколов А.А., Тернов И.М., Жуковский В.Ч. Квантовая механика. М.: Наука, 1979 г.
- 3. Квасников И.А. Термодинамика и статистическая физика. Теория неравновесных систем. Изд.: МГУ, 1991г.
- 4. Рейф Ф. Статистическая физика. М.: Наука, 1986г.
- 5. Гречко Л.Г. и др., Сборник задач по теоретической физике 1984г.

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. ЭБС IPRbooks: http://www.iprbookshop.ru/
 Лицензионный договор № 2693/17от 02.10.2017г. об оказании услуг по предоставлению доступа. Доступ открыт с с 02.10.2017 г. до 02.10.2018 по подписке (доступ будет продлен)
- 2. Электронно-библиотечная сист*ема* «Университетская библиотека онлайн» <u>www.biblioclub.ru</u> договор № 55_02/16 от 30.03.2016 г. об оказании информационных услуг.(доступ продлен до сентября 2019 года).
- 3. Доступ к электронной библиотеки на http://elibrary.ru основании

- лицензионного соглашения между ФГБОУ ВПО ДГУ и «ООО» «Научная Электронная библиотека» от 15.10.2003. (Раз в 5 лет обновляется лицензионное соглашение)
- 4. Национальная электронная библиотека https://нэб.рф/. Договор №101/НЭБ/101/НЭБ/1597 от 1.08.2017г. Договор действует в течении 1 года с момента его подписания.
- 5. Федеральный портал «Российское образование» http://www.edu.ru/ (единое окно доступа к образовательным ресурсам).
- 6. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
- 7. Российский портал «Открытого образования» http://www.openet.edu.ru
- 8. Сайт образовательных ресурсов Даггосуниверситета http://edu.icc.dgu.ru
- 9. Информационные ресурсы научной библиотеки Даггосуниверситета http://elib.dgu.ru (доступ через платформу Научной электронной библиотеки elibrary.ru).
- 10. Федеральный центр образовательного законодательства http://www.lexed.ru
- 11. http://www.phys.msu.ru/rus/library/resources-online/ электронные учебные пособия, изданные преподавателями физического факультета МГУ.
- 12. http://www.phys.spbu.ru/library/ электронные учебные преподавателями физического факультета Санкт- Петербургского госуниверситета.
- 13. **Springer.** Доступ ДГУ предоставлен согласно договору № 582-13SP подписанный Министерством образования и науки предоставлен по контракту 2017-2018 г.г., подписанный ГПНТБ с организациями-победителями конкурса. http://link.springer.com. Доступ предоставлен на неограниченный срок

10. Методические указания для обучающихся по освоению дисциплины.

Перечень учебно-методических материалов, предоставляемых студентам во время занятий:

- рабочие тетради студентов;
- наглядные пособия;
- словарь терминов;
- тезисы лекций,
- раздаточный материал по тематике лекций.

Оптимальным путем освоения дисциплины является посещение всех лекций и семинаров, выполнение предлагаемых заданий в виде задач, тестов и устных вопросов.

На лекциях рекомендуется деятельность студента в форме активного слушания, т.е. предполагается возможность задавать вопросы на уточнение понимания темы и рекомендуется конспектирование лекции. На семинарских занятиях деятельность студента заключается в активном обсуждении задач, решенных другими студентами, решении задач самостоятельно, выполнении контрольных заданий. В случае, если студентом пропущено лекионное или семинарское занятие, он может освоить пропущенную тему самостоятельно с опорой на план занятия, рекомендуемую литературу и консультативные рекомендации преподавателя.

Перед проведением экзамена проводится коллективная аудиторная консультация, на которой даются советы по подготовке к экзамену. В целом рекомендуется регулярно посещать занятия и выполнять текущие задания, что обеспечит достаточный уровень готовности к сдаче экзамена.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

- Программное обеспечение для лекций: MS PowerPoint (MS PowerPoint Viewer), Adobe Acrobat Reader, средство просмотра изображений, табличный процессор.
- Программное обеспечение в компьютерный класс: MS PowerPoint (MS PowerPoint Viewer), Adobe Acrobat Reader, средство просмотра изображений, Интернет, E-mail.
- Электронная библиотека механико-математического факультета МГУ http://lib.mexmat.ru/
- Научно-образовательный центр при МИАН http://www.mi.ras.ru/

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Лекционные и практические занятия проводятся в аудиториях факультета.

Технические средства обучения, используемые в учебном процессе для освоения дисциплины:

1. компьютерное оборудование, которое используется в ходе изложения

- лекционного материала;
- 2. пакет плакатов и графиков, используемых в ходе текущей работы, а также для промежуточного и итогового контроля;
- 3. электронная библиотека курса и Интернет-ресурсы для самостоятельной работы.