МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физический факультет

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ Микропроцессорные средства в электротехнике

Кафедра «*Инженерная физика*» факультета *физического* Образовательная программа

13.03.02 Электроэнергетика и электротехника

Направленность (профиль) программы **Возобновляемые источники энергии и гидроэлектростанции**

Уровень высшего образования

<u>бакалавриат</u>

Форма обучения очная

Статус дисциплины: _факультативы (ФТД.01)_

Аннотация рабочей программы дисциплины «Микропроцессорные средства в электротехнике»

1. Цели освоения дисциплины

Целями освоения дисциплины (модуля) «Микропроцессорные средства в электротехнике» являются освоение микропроцессорных средств автоматизации электротехнике.

Задачи дисциплины:

- изучение теоретических основ автоматизации в электроснабжении;
- формирование умения проектировать компоненты систем автоматизации в электроснабжении;
- формирование умения работать над проектами систем автоматизации в электроснабжении;
- формирование навыков использования информационных технологий при проектировании средств автоматизации в электроснабжении.

Предметом освоения дисциплины являются следующие объекты:

- база микропроцессорных устройств;
- обработка и преобразование информации в системах автоматизации;
- микропроцессорные системы в автоматизации электроэнергетических систем.

2. Программа курса

Раздел 1. База микропроцессорных устройств.

Тема 1. Кратко о развитии и современном состоянии ЭВМ и МПС.

Предмет и задачи дисциплины. Микропроцессорные устройства в ЭЭ -система SmartGrid: терминалы релейной защиты, цифровые электроподстанции, реклоузеры, дистанционное диспетчерское управление, микропроцессорные счетчики. АСКУЭ и т.д. Этапы развития ЭВМ. Большие компьютеры. Малые компьютеры. Микрокомпьютеры. Персональные компьютеры. Разновидности системных плат. Чипсеты системных плат. Программные средства МПС. Системное программное обеспечение. Операционные системы. Языки программирования. Трансляторы. Драйверы. Стандарты в МПС. Стандарты на системные шины ПК. Виды обмена по системной магистрали. Современные шины периферийных устройств: PCI, PCI Express2, COM(RS232), USB2. Интерфейс жестких дисков SATA2.

Тема 2. Цифровые схемы.

Схемотехнические решения: диодно-транзисторная логика, транзисторнотранзисторная логика, логика на базе КМОП-транзисторов, сочетание логики КМОП и биполярных транзисторов. Согласование цифровых микросхем. Применение микросхем с открытым коллектором, и тремя устойчивыми состояниями. Комбинационные цифровые схемы: И-НЕ, И-ИЛИ-НЕ, шифратор, дешифратор, мультиплексор, цифровой компаратор, преобразователи кодов Цифровые схемы последовательного типа: триггеры, счетчики, регистры, элементы памяти. Генераторы импульсов. Микросхемы цифровой обработки сигналов: сумматоры, цифровые умножители, цифровые фильтры. Постоянные

запоминающие устройства (ПЗУ): масочные, программируемые, с ультрафиолетовым стиранием, с электрическим стиранием. Оперативные запоминающие устройства статического и динамического типа (ОЗУ). ППЗУ на основе флешпамяти. Элементы внешних запоминающих устройств (ВЗУ).

Раздел 2. Обработка и преобразование информации в системах автоматизаиии.

Тема 3. Формы информации и ее кодирование.

Формы информации и точностные показатели. Универсальность цифровой информации. Буквенные коды. Цифровые коды и их преобразование: десятичная, двоично-десятичная, двоичная, восмеризная, шестнадцатиричная информация. Буквенно-цифровые коды: ASCII, ДКОИ, ANSI, Unicode. Физическое кодирование информации при передаче: манчестерский код (BIF-L) и др.

Тема 4. Цифровые устройства обработки сигналов.

Принципы и основы цифровой обработки сигналов (арифметические и логические операции. Обобщенная схема цифрового устройства обработки сигнала. Дискретизация аналогового сигнала, квантование по уровню и времени, погрешности обработки и хранения. Применение аналоговых фильтров на входе АЦП.

Тема 5. ЦАП и АЦП.

Принцип работы ЦАП. Принципиальные схемы и особенности АЦП: последовательного счета, последовательных приближений, параллельного считывания, интегрирующего.

Раздел 3. Микропроцессорные системы.

Тема 6. Микропроцессоры.

Базовая архитектура микропроцессора. Классификация микропроцессоров: RISC и CISC процессоры. Представление числовых данных в микропроцессоре: знаковых и беззнаковых чисел, рациональных чисел с фиксированной и плавающей запятой. Типовые блоки микропроцессора. Системная шина микропроцессора.

Тема 7. Микроконтроллеры.

Принципы работы микроконтроллеров, архитектура микроконтроллера на примере семейства MSC-51. Типовые порты и интерфейсы микроконтроллера. Использование портов ввода вывода для управления периферийными устройствами. Организация работы таймеров. Организация прерываний - радиальные и векторные прерывания. Асинхронный последовательный порт микроконтроллера. Синхронные последовательные порты: SPI, I2C.

Раздел 4. Программирование микроконтроллеров.

Тема 8. Средства программирования и отладки микроконтроллера.

Программное и аппаратное обеспечение для программирования и отладки. Внутрисхемная отладка. Программные средства для симуляции микроконтроллерных устройств.

Тема 9. Ассемблер MCS-51.

Язык ассемблер для микроконтроллера стандарта MCS-51. Организация ОЗУ и регистры MCS-51. Правила записи программ на языке ассемблера. Система команд микроконтроллера MCS-51.

Тема 10. Программирование микроконтроллеров на языках стандарта МЭК-61131-3.

Языки FC, FBD, LD, ST, IL в программных пакетах CoDeSiS, Step7.

Тема 11. Средства и языки программирования высокого уровня.

Использование языка высокого уровня для написания программы микроконтроллера на примере языка С. Использования интегрированной среды разработки для программирования микроконтроллеров на примере программного продукта CodeVisionAVR.

3. Результаты обучения

В результате изучения дисциплины обучающийся должен

знать:

- принцип работы микропроцессоров и микроконтроллеров;
- современные компьютерные технологии для получения информации в сфере автоматизации систем электроэнергетики;
- программное и аппаратное обеспечение для программирования микроконтроллеров;
- современные средства автоматизации и управления электроэнергетическими системами;
- элементы средств автоматизации и управления электроэнергетических объектов;
 - цифровые схемы устройств.

уметь:

- применять современные компьютерные технологии для получения информации в сфере автоматизации систем электроэнергетики;
- применять программное и аппаратное обеспечение для программирования микроконтроллеров;
 - выбирать элементы и устройства автоматизации в электроэнергетике;

владеть:

- навыками работы с информацией в системах автоматизации электроэнергетики;
- навыками применения программного и аппаратного обеспечения для программирования микроконтроллеров;
- навыками выбора элементов и устройств автоматизации в электроэнергетике.

4. Общая трудоемкость дисциплины

1 зачетная единица (36 академических часов).

5. Формы контроля

Промежуточная аттестация – зачет (6 семестр).