МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Дагестанский государственный университет» Факультет информатики и информационных технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Интеллектуальные системы

Кафедра Информационных Технологий и Безопасности Компьютерных Систем

Образовательная программа 09.04.02 Информационные системы и технологии

Профиль подготовки: Информационно-телекоммуникационные системы и сети

Уровень высшего образования: магистратура

Форма обучения: очно-заочная

Статус дисциплины: входит в обязательную часть ОПОП

Рабочая программа дисциплины Интеллектуальные системы

составлена в 2021 году в соответствии с требованиями ФГОС ВО- бакалавриата по направлению подготовки 09.03.02 Информационные системы и технологии от «_19__» _сентября_2017_г. № 926.

Разработчик(и):): Муртузалиева А.А. ст.пр. КИТиБКС Янцеу
Рабочая программа дисциплины одобрена: на заседании кафедры ИТиБКС от «_28» _июня2021г., протокол № 11 Зав. кафедрой Ахмедова З.Х.
на заседании Методической комиссии
Рабочая программа дисциплины согласована с учебно-методическим управлением « 9 » <u>изслея 202 м</u> . — (подпись)

Аннотация рабочей программы дисциплины

Дисциплина «Интеллектуальные системы» входит в обязательную часть образовательной программы *магистратуры* по направлению <u>09.04.02</u> «Информационные системы и технологии». Дисциплина реализуется на факультете ИиИТ кафедрой ИТиБКС.

Содержание дисциплины охватывает круг вопросов, связанных с основными понятиями, подходами, методами и технологиями, используемых в современных интеллектуальных системах (ИС) управления сложными техническими системами. Дана классификация основных способов представления в ИС знаний и методов их компьютерной обработки. Приведены типовые модели процессов получения и обработки информации в ИС для формирования баз данных, баз знаний и построения экспертных систем, применяемых в области автоматизации управления техническими системами. Дисциплина нацелена на формирование общепрофессиональной компетенции ОПК-5, ОПК-6 и профессиональной компетенции ПК-1 выпускника.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические (семинарские) занятия, самостоятельная работа студента, контроль самостоятельной работы.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля: текущий контроль успеваемости в форме устных опросов, докладов и промежуточный контроль в форме экзамена.

Объем дисциплины ____5___зачетных единиц, в том числе в академических часах по видам учебных занятий

Объем дисциплины в очно-заочной форме обучения

			Форма						
					промежуточной				
Семестр			Контактн	ая работа обу	чающихся с п	реподав	ателем	СРС, в	аттестации (зачет,
ме	0			из них том			дифференцированн		
Ce	сего	010	Лекци	Лаборатор	Практичес	КСР	консультац	числе	ый зачет, экзамен
	B	всег	И	ные	кие		ии	экзаме	
				занятия	занятия			Н	
3	180	32	16		16			148	экзамен

1. Цели освоения дисциплины

Цель: привить устойчивые навыки решения задач искусственного интеллекта, обоснованного применения методов инженерии знаний при проектировании интеллектуальных систем.

2. Место дисциплины в структуре ОПОП магистрата

Дисциплина **Б1.О.02.01** «Интеллектуальные системы» входит в обязательную часть образовательной программы магистратуры по направлению подготовки **09.04.02** «Информационные системы и технологии».

Дисциплина взаимосвязана с дисциплинами «Информатика», «Информационные технологии», «Технологии программирования», «Теория информационных процессов и систем «Математическая логика и теория алгоритмов».

Освоение дисциплины необходимо как предшествующее для дисциплин «Проектирование информационных систем управления», «Корпоративные информационные сети». Производственная практика, Преддипломная практика и Выпускная квалификационная работа

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения)

Код и наименование	Код и наименование индикатора	Планируемые результаты	Процедура освоения
компетенции из	достижения компетенций (в соответствии	обучения	
ОПОП	с ОПОП		

ОПК-5. Способен разрабатывать и модернизировать программное и аппаратное обеспечение информационных и автоматизированных систем;	ИД-5.1.Знает основы системного администрирования СУБД, современные стандарты информационного взаимодействия систем. Ид-5.2.Умеет выполнять параметрическую настройку информационных и автоматизированных систем. ИД-5.3.Имеет навыки инсталляции программного и аппаратного обеспечения информационных и автоматизированных систем	Знает современные стандарты информационного взаимодействия интеллектуальных систем. Умеет выполнять параметрическую настройку интеллектуальных систем. Имеет навыки инсталляции программного и аппаратного обеспечения интеллектуальных систем	Устный опрос, письменный опрос, круглый стол
ОПК-6. Способен использовать методы и средства системной инженерии в области получения, передачи, хранения, переработки и представления информации посредством информационных технологий;	ИД-6.1.Знает основные языки программирования и работы с базами данных, операционные системы и оболочки, современные программные среды разработки информационных систем и технологий. ИД-6.2.Умеет применять языки программирования и работы с базами данных, современные программные среды разработки информационных систем и технологий для автоматизации бизнес-процессов, решения прикладных задач различных классов, ведения баз данных и информационных хранилищ. ИД-6.3.Имеет навыки программирования, отладки и тестирования прототипов программно-технических комплексов задач.	знает: теоретические основы систем ИИ, модели представления и методы обработки знаний, место языков искусственного интеллекта среди других современных языков программирования и обработки данных Умеет реализовывать модели представления знаний (включая их симбиоз) на языках логического и функционального программирования; Владеет: — основными средствами представления знаний в интеллектуальных системах, — основными методами решения задач, разработанных в научном направлении «искусственный интеллекту». — способами формализации интеллектуальных задач с помощью языков искусственного интеллекта, методами управления знаниями	Устный опрос, письменный опрос, круглый стол
ПК-1 Способен разрабатывать и исследовать модели объектов профессиональной деятельности, предлагать и адаптировать методики, определять качество проводимых исследований, составлять отчеты о проделанной работе, обзоры, готовить публикации	ИД1.1 ПК-1.1 Знает отечественную и международную нормативную базу в области профессиональной деятельности, актуальную научную проблематику в области информационных систем и технологий, методы, средства и практику планирования, организации, проведения и внедрения научных исследований, методы разработки информационных моделей хозяйствующих субъектов, методы формирования показателей эффективности и конкурентоспособности научно-исследовательских работ в области информационных систем и технологий, лучшие практики отечественного и зарубежного опыта разработки и исследований моделей объектов профессиональной деятельности ИД 1.2. Умеет применять актуальную нормативную документацию в области профессиональной деятельности, анализировать новую научную проблематику и научно-исследовательские разработки в области информационных систем и технологий, применять методы и средства планирования, организации, проведения и внедрения научных исследований, применять методы разработки информационных, объектных, документных моделей хозяйствующих субъектов, проектировать систему управления научно-исследовательскими работами в организации, готовить научные и научно-практические публикации в области профессиональной деятельности ИД1.3.ПК-1.3 Владеет навыками проведения анализа новых направлений исследований в	Умеет разрабатывать и исследовать способы теоретических и экспериментальных моделей объектов профессиональной деятельности Умеет анализировать новую научную проблематику и научно-исследовательские разработки в области информационных систем и технологий, применять методы и средства планирования и внедрения научных исследований Владеет навыками проведения анализа новых направлений исследований в области профессиональной деятельности, обоснования перспектив проведения исследований в области профессиональной деятельности деятельности	Устный опрос, письменный опрос, круглый стол

области профессиональной деятельности,	
обоснования перспектив проведения	
исследований в области профессиональной	
деятельности, формирования программ	
проведения исследований в новых	
направлениях, осуществления методического	
руководства проведения научных	
исследований рабочими группами, анализа	
результатов работ соисполнителей,	
участвующих в выполнении работ с другими	
организациями	

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины

Объем дисциплины составляет 5 зачетных единиц.

4.2. Структура дисциплины

4.2.1. Структура дисциплины в очно-заочной форме обучения

№ п/п	Разделы и темы дисциплины		местра	вклн	очая сам работу с	бной раб постояте тудентон сть (в ча	льную в и	ная работа	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)
			Неделя семестра	Лекции	Практические занятия	Лабораторны е занятия	Контроль	Самостоятельная работа	concenquiny
	Модуль 1. Модели и средс	тва	предсп	павлен	ия знані	ий			
1	Представление знаний в информационных системах как элемент искусственного интеллекта и новых информационных технологий. Модели представления знаний	3		1	1			8	Устный опрос Доклад Контрольная работа
2	Архитектура и технология разработки экспертных систем			1	1			12	Устный опрос Доклад Контрольная работа
3	Нечеткая логика			2	2			8	Устный опрос Доклад Контрольная работа
	Итого по модулю 1			4	4			28	
	Модуль1								
4	Эволюционные алгоритмы. Генетический алгоритм.			2	2			14	Устный опрос Доклад Контрольная работа
5	Нейронные сети			2	2			14	Устный опрос Доклад Контрольная работа
	Итого по модулю 2			4	4			28	
	Модуль3								
6	Язык обработки списков LISP. Функции. Предикаты			1	1			9	Устный опрос Доклад Контрольная работа, практические задания
7	Рекурсия. Циклические предложения.			1	2			10	Устный опрос Доклад Контрольная работа, практические задания
8	Поиск на Lisp. Функционалы. Свойства	3		2	1			9	Устный опрос Доклад Контрольная работа,

	символов.						практические задания
	Итого по модулю3		4	4		28	
	Модуль 4						
9	Внутреннее представление списков. Применяющие функционалы.		1	1		9	Устный опрос Доклад Контрольная работа
10	Массивы.	3	1	1		10	Устный опрос Доклад Контрольная работа
11	Чтение и запись информации в файл.	3	2	2		9	Устный опрос Доклад Контрольная работа
	Итого по модулю 4:		4	4		28	
	Модуль 5				36		экзамен
	итого:		16	16	36	112	180

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине.

Модуль 1.

Введение в искусственный интеллект.

Философские аспекты искусственного интеллекта. Философские, технические, научные предпосылки для создания искусственного разума. Исторический обзор работ в области ИИ. Современные области исследований и теоретические проблемы искусственного интеллекта. Тенденции развития теории искусственного интеллекта.

Интеллектуальные информационные системы.

Определение искусственного интеллекта. Понятие интеллектуальной информационной системы, ее основные свойства. Классификация интеллектуальных информационных систем. Жизненный цикл интеллектуальных информационных систем и критерий перехода между этапами этого цикла.

Основные понятия искусственного интеллекта

Формализуемые и неформализуемые задачи. Данные и знания. Трансформация данных и знаний при обработке на ЭВМ. Виды знаний. Метазнания. Эвристики. История создания искусственного интеллекта. Процесс мышления. Формализованные и неформализованные знания. Основные понятия и классификация систем, основанных на знаниях. Принципы приобретения знаний. Теоретические аспекты извлечения знаний. Коммуникативные и текстологические методы извлечения знаний.

Модели представления знаний.

Логическая модель представления знаний и правила вывода. Продукционная модель представления знаний и правила их обработки. Выводы, основанные на продукционных правилах. Теория фреймов и фреймовых систем. Объекты с фреймами. Основные атрибуты (слоты) объекта. Процедурные фреймы и слоты. Представление знаний в виде семантической сети. Модель доски объявлений. Модель представления знаний в виде сценария.

Архитектура и технология разработки экспертных систем

Введение в экспертные системы. Роли эксперта, инженера знаний и пользователя. Общее описание архитектуры экспертных систем. База знаний, правила, машина вывода, интерфейс пользователя, средства работы с файлами. Технология разработки экспертных систем. Логическое программирование и экспертные системы. Языки искусственного интеллекта. Подсистема анализа и синтеза входных и выходных сообщений. Диалоговая подсистема. Объяснительные способности экспертных систем.

Применение нечеткой логики в экспертных системах

Понятие о нечетких множествах и их связь с теорией построения экспертных систем. Коэффициенты уверенности. Взвешивание свидетельств. Отношение

правдоподобия гипотез. Функция принадлежности элемента подмножеству. Операции над нечеткими множествами. Дефазификация нечеткого множества. Нечеткие правила вывода в экспертных системах.

Генетический алгоритм

Понятие о генетическом алгоритме. Этапы работы генетического алгоритма. Кодирование информации и формирование популяции. Оценивание популяции. Селекция. Скрещивание и формирование нового поколения. Мутация. Настройка параметров генетического алгоритма. Канонический генетический алгоритм. Пример работы генетического алгоритма. Рекомендации к программной реализации генетического алгоритма. Применение генетического алгоритма для решения задач оптимизации и аппроксимации.

Искусственные нейронные сети

Понятие о нейронных системах. Биологические нейронные сети. Формальный нейрон. Искусственные нейронные сети. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Пример работы и обучения нейронной сети. Программная реализация. Применение нейронных сетей для решения задач аппроксимации, классификации, автоматического управления, распознавания и прогнозирования. Мультиагентные системы.

Модуль 2

Lisp

Язык обработки списков LISP. Понятие функции. Типы аргументов и функций. Префиксная нотация. Диалог с интерпретатором ЛИСПА. Иерархия вызовов. Блокировка QUOTE. Функция EVAL. Использование символов в качестве переменных. Функция SET. Функция SETQ. Обобщенная функция SETF. Базовые функции. Функция CAR. Функция CDR. Функция CONS. Связь между CAR, CDR и CONS. Комбинации функций CAR и CDR. N – элемент. Функция LIST. Функция LENGTH. Арифметические функции

Рекурсия. Циклические предложения LET. Условный выход из функции: PROG RETURN. Дополнительные функции печати. Циклические предложения. LOOP. Применение LOOP для численных итераций. Применение LOOP для итераций со списками. Обработка списков с DO.DOTIMES

Рекурсия. Численная рекурсия. Как работает рекурсивная функция. Трасса. Правила записи рекурсивной функции. Как писать рекурсивные функции. CDR рекурсия. Вычисление (list-sum '(2 5 3)). Несколько терминальных ветвей. Несколько рекурсивных ветвей. Общая форма

Поиск на Lisp. Функционалы. Свойства символов.

Алгоритм поиска на Лиспе. (Функциональный подход к задаче о фермере, волке, козе и капусте). Функционалы. Отображающий функционал MAPCAR. MAPCAR для нескольких списков. Лямбда выражения. Свойства символов. Чтение свойства. Присвоение свойства. Замена свойства. Удаление свойства. SYMBOL-PLIST

Модуль 3.

Внутреннее представление списков. Применяющие функционалы.

Внутреннее представление списков. Структура памяти. Представление списков через списочную ячейку. Представление списков через точечные пары. Списочная ячейка и базовые функции. Переменные и списки. EQ и EQUAL. Сборка мусора. Обработка списков без разрушения. Арренd. Разрушающие функции. NCONC. RPLACA, RPLACD. Использование разрушающих функций. Применяющие функционалы. APPLY. Сочетание аррly, nconc, mapcar – mapcan. Функционал FUNCALL

Массивы. Определение массива. Доступ к ячейке массива. Запись данных в массив. Обработка массивов. Длина массива. Обратная блокировка. Макросы. Разработка макро. Пример программы на лисп. Дифференцирование выражений. Модульный подход. Интерфейс программы. Загрузка программы

Чтение и запись информации в файл. Задание параметров при определении функций. Необязательные параметры & optional. Переменное количество аргументов & rest. Ключевые параметры. Входные и выходные потоки. Определение выходных и входных потоков. Чтение символов из файла

4.3.2. Содержание лабораторно-практических занятий по дисциплине. Модуль 1

Введение в искусственный интеллект.

Философские аспекты искусственного интеллекта. Философские, технические, научные предпосылки для создания искусственного разума. Исторический обзор работ в области ИИ. Современные области исследований и теоретические проблемы искусственного интеллекта. Тенденции развития теории искусственного интеллекта.

Интеллектуальные информационные системы.

Определение искусственного интеллекта. Понятие интеллектуальной информационной системы, ее основные свойства. Классификация интеллектуальных информационных систем. Жизненный цикл интеллектуальных информационных систем и критерий перехода между этапами этого цикла.

Основные понятия искусственного интеллекта

Формализуемые и неформализуемые задачи. Данные и знания. Трансформация данных и знаний при обработке на ЭВМ. Виды знаний. Метазнания. Эвристики. История создания искусственного интеллекта. Процесс мышления. Формализованные и неформализованные знания. Основные понятия и классификация систем, основанных на знаниях. Принципы приобретения знаний. Теоретические аспекты извлечения знаний. Коммуникативные и текстологические методы извлечения знаний.

Модели представления знаний.

Логическая модель представления знаний и правила вывода. Продукционная модель представления знаний и правила их обработки. Выводы, основанные на продукционных правилах. Теория фреймов и фреймовых систем. Объекты с фреймами. Основные атрибуты (слоты) объекта. Процедурные фреймы и слоты. Представление знаний в виде семантической сети. Модель доски объявлений. Модель представления знаний в виде сценария.

Архитектура и технология разработки экспертных систем

Введение в экспертные системы. Роли эксперта, инженера знаний и пользователя. Общее описание архитектуры экспертных систем. База знаний, правила, машина вывода, интерфейс пользователя, средства работы с файлами. Технология разработки экспертных систем. Логическое программирование и экспертные системы. Языки искусственного интеллекта. Подсистема анализа и синтеза входных и выходных сообщений. Диалоговая подсистема. Объяснительные способности экспертных систем.

Применение нечеткой логики в экспертных системах

Понятие о нечетких множествах и их связь с теорией построения экспертных систем. Коэффициенты уверенности. Взвешивание свидетельств. Отношение правдоподобия гипотез. Функция принадлежности элемента подмножеству. Операции над нечеткими множествами. Дефазификация нечеткого множества. Нечеткие правила вывода в экспертных системах.

Генетический алгоритм

Понятие о генетическом алгоритме. Этапы работы генетического алгоритма. Кодирование информации и формирование популяции. Оценивание популяции. Селекция. Скрещивание и формирование нового поколения. Мутация. Настройка параметров генетического алгоритма. Канонический генетический алгоритм. Пример работы генетического алгоритма. Рекомендации к программной реализации генетического

алгоритма. Применение генетического алгоритма для решения задач оптимизации и аппроксимации.

Искусственные нейронные сети

Понятие о нейронных системах. Биологические нейронные сети. Формальный нейрон. Искусственные нейронные сети. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Пример работы и обучения нейронной сети. Программная реализация. Применение нейронных сетей для решения задач аппроксимации, классификации, автоматического управления, распознавания и прогнозирования. Мультиагентные системы.

Модуль 2

Lisp

Язык обработки списков LISP. Понятие функции. Типы аргументов и функций. Префиксная нотация. Диалог с интерпретатором ЛИСПА. Иерархия вызовов. Блокировка QUOTE. Функция EVAL. Использование символов в качестве переменных. Функция SET. Функция SETQ. Обобщенная функция SETF. Базовые функции. Функция CAR. Функция CDR. Функция CONS. Связь между CAR, CDR и CONS. Комбинации функций CAR и CDR. N – элемент. Функция LIST. Функция LENGTH. Арифметические функции

Рекурсия. Циклические предложения LET. Условный выход из функции: PROG RETURN. Дополнительные функции печати. Циклические предложения. LOOP. Применение LOOP для численных итераций. Применение LOOP для итераций со списками. Обработка списков с DO.DOTIMES

Рекурсия. Численная рекурсия. Как работает рекурсивная функция. Трасса. Правила записи рекурсивной функции. Как писать рекурсивные функции. CDR рекурсия. Вычисление (list-sum '(2 5 3)). Несколько терминальных ветвей. Несколько рекурсивных ветвей. Общая форма

Поиск на Lisp. Функционалы. Свойства символов.

Алгоритм поиска на Лиспе. (Функциональный подход к задаче о фермере, волке, козе и капусте). Функционалы. Отображающий функционал MAPCAR. MAPCAR для нескольких списков. Лямбда выражения. Свойства символов. Чтение свойства. Присвоение свойства. Замена свойства. Удаление свойства. SYMBOL-PLIST

Модуль 3.

Внутреннее представление списков. Применяющие функционалы.

Внутреннее представление списков. Структура памяти. Представление списков через списочную ячейку. Представление списков через точечные пары. Списочная ячейка и базовые функции. Переменные и списки. EQ и EQUAL. Сборка мусора. Обработка списков без разрушения. Аррепd. Разрушающие функции. NCONC. RPLACA, RPLACD. Использование разрушающих функций. Применяющие функционалы. APPLY. Сочетание apply, nconc, mapcar – mapcan. Функционал FUNCALL

Массивы. Макроссы. Определение массива. Доступ к ячейке массива. Запись данных в массив. Обработка массивов. Длина массива. Обратная блокировка. Макросы. Разработка макро. Пример программы на лисп. Дифференцирование выражений. Модульный подход. Интерфейс программы. Загрузка программы

Чтение и запись информации в файл. Задание параметров при определении функций. Необязательные параметры & optional. Переменное количество аргументов & rest. Ключевые параметры. Входные и выходные потоки. Определение выходных и входных потоков. Чтение символов из файла

5. Образовательные технологии

Учебная работа подразделяется на следующие виды: занятия в аудитории и самостоятельную работу студентов.

Наименование	Содержание деятельности	Формируемые компетенции
Занятия в аудитории	Усвоение учебного материала, устные доклады, участие в	ОПК-5, ОПК-6, ПК-1.
	дискуссиях, самостоятельное выполнение заданий,	

	выступление с докладом	
Самостоятельная работа	Повторение учебного материала с целью закрепления;	ОПК-5, ОПК-6, ПК-1.
	освоение учебного материала, предназначенного для	
	самостоятельного изучения; ознакомление с литературой по	
	данному курсу; выполнение заданий; подготовка к	
	семинарам, коллоквиуму, к сдаче экзамена	
	Подготовка доклада: подбор и анализ материала, оформление	ОПК-5, ОПК-6, ПК-1.
	презентации доклада	

В аудитории проводятся лекции и лабораторные занятия. Лекционные занятия освещают концептуальные и теоретические вопросы. На них обучаемым предлагается базовый материал курса. Лекционные занятия проводятся с применением мультимедийных средств. Лабораторные занятия проводятся с целью закрепления лекционного материала с помощью показа и разбора конкретных примеров, обсуждения проблемных вопросов, а также освоения конкретных языков и систем, а также получения навыков решения задач с использованием изученных систем.

Самостоятельная работа выполняется студентами по предлагаемым темам, в том числе выбранным для самостоятельного изучения. Некоторые из них докладываются на семинарах с последующим обсуждением студентами. Коллоквиумы проводятся с целью закрепления лекционного материала и контроля знаний обучающихся. Консультации по курсу учебным планом не регламентируются. Они проводятся в форме ответов на вопросы студентов и обсуждений.

6. Учебно-методическое обеспечение самостоятельной работы студентов

Методические материалы для обеспечения СРС готовятся преподавателем и могут размещаться на персональном сайте преподавателя, либо на платформе электронного обучения. Кроме того, на основе рабочей программы дисциплины может составляться план-график, где преподаватель устанавливает рекомендуемые сроки предоставления на проверку результатов самостоятельной работы студента: контрольных работ, отчетов по лабораторным практикумам, индивидуальных домашних заданий, рефератов, курсовых работ и др., советует использование основных и дополнительных источников литературы.

http://eor.dgu.ru/Default/NProfileUMK/?code=13.03.02&profileId=43

№	Раздел дисциплины	Вид работы	Объем в	Объем в
			часах	часах
			Очная форма	заочная
			обучения	форма
				обучения
1	Модели и средства представления	проработка учебного материала	14	16
	знаний	подготовка к занятиям		
2	Архитектура и технология разработки экспертных систем.	проработка учебного материала	24	24
		подготовка к занятиям		
3	Нечеткая логика	проработка учебного материала	14	1
		подготовка к занятиям		
4	Искусственные нейронные сети	проработка учебного материала	22	22

		подготовка к занятиям		
5	Эволюционные алгоритмы	проработка учебного материала	14	14
	Генетические алгоритмы.	подготовка к занятиям		
6	Языки искусственного интеллекта	проработка учебного материала	20	20
		подготовка к занятиям		
			72	114

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Типовые контрольные задания

Темы рефератов, докладов, сообщений

- 1. Опишите систему обработки информации у человека.
- 2. Укажите признаки, отличающие знания от данных.
- 3. Дайте определение формализованных и неформализованных знаний.
- 4. Охарактеризуйте коммуникативные методы приобретения знаний.
- 5. Опишите текстологические методы приобретения знаний.
- 6. В чем заключаются особенности интеллектуальных систем.
- 7. Укажите свойства интеллектуальных систем.
- 8. Охарактеризуйте виды интеллектуальных систем.
- 9. Какие вы знаете модели представления знаний?
- 10.Для чего предназначена экспертная система PROSPECTOR?
- 11.Охарактеризуйте экспертную систему MYCIN.
- 12.Опишите архитектуру экспертных систем.
- 13. Как формируется база знаний?
- 14.Определите задачи машины вывода.
- 15. Сформулируйте требования при разработке экспертных систем.
- 16.Охарактеризуйте этапы технологии создания экспертных систем.
- 17. Что представляет собой логическая модель представления знаний?
- 18.Из чего состоит продукционная система?
- 19. Приведите примеры продукционных систем.
- 20.Охарактеризуйте понятие фреймовой системы.
- 21. Каким образом осуществляется представление знаний в семантической сети?
- 22. Приведите модель доски объявлений.
- 23. Дайте определение модели описания знания в виде сценария.
- 24.Охарактеризуйте роли эксперта, инженера знаний и пользователя.
- 25.Охарактеризуйте логическое программирование.
- 26.Опишите языки искусственного интеллекта.
- 27. Опишите механизм вывода на основе модели логического программирования.
- 28. Каковы функции управляющего компонента экспертной системы?
- 29.Опишите схему взаимодействия пользователя с экспертной системой.
- 30. Охарактеризуйте задачи подсистемы анализа и синтеза сообщений.
- 31.Опишите общую структуру диалога.
- 32. Каковы цели использования объяснений в экспертных системах?
- 33.Определите понятие нечеткой логики.
- 34.Охарактеризуйте функцию принадлежности.
- 35.Опишите понятие дефазификации нечеткого множества.

- 36.Каким образом коэффициент уверенности выражается через меры доверия и недоверия?
- 37. Приведите соотношение между мерами доверия, полученными при независимом учете первого и второго свидетельства и объединенной мерой доверия, полученной при учете двух свидетельств.
- 38.Охарактеризуйте нечеткие правила вывода в экспертных системах.
- 39.Опишите структуру генетического алгоритма.
- 40.Охарактеризуйте целочисленное и вещественное кодирование в ГА.
- 41.Опишите канонический генетический алгоритм.
- 42.Охарактеризуйте операторы кроссовера и мутации.
- 43.Опишите биологические нейронные сети.
- 44.Охарактеризуйте понятие формального нейрона.
- 45.Опишите существующие модели искусственных нейронных сетей.
- 46.Приведите примеры активационных функций.
- 47.Опишите процесс обучения нейронной сети.
- 48.Основные особенности языка Лисп.
- 49. Понятия языка Лисп.
- 50. Атомы и списки.
- 51. Внутреннее представление списка.
- 52. Написание программы на Лиспе.
- 53. Определение функций.
- 54. Рекурсия и итерация.
- 55. Функции интерпретации выражения.
- 56. Макросредства.
- 57. Функции ввода-вывода.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.2. Типовые контрольные задания.

Список семестровых заданий («лабораторных работ») по Лиспу

Списочные структуры. Реализовать функции LENGTH1, REVERSE1, APPEND1, LIST1, определенные следующим образом:

```
Функция LENGTH1 возвращает длину списка:

> (LENGTH1 '(A B C))
функция LIST1 объединяет два аргумента в список:

> (LIST1 'A 'B)
(A B)
функция APPEND1 объединяет два списка:

> (APPEND1 '(A B) '(C D))
(A B C D)
функция REVERSE1 «переворачивает» список:

> (REVERSE1 '(A B C))
(C B A)
```

Предикаты сравнения. Объяснить разницу между предикатами сравнения EQ, EQL, =, EQUAL, EQUALP. Привести примеры S-выражений A и B таких, что

```
    i. истинно (EQ A B);
    ii. истинно (EQL A B), но ложно (EQ A B);
    iii. истинно (= A B), но ложно (EQL A B);
```

```
iv. истинно (EQUAL A B), но ложно (EQL A B);
```

- v. истинно (EQUALP A B), но ложно (EQUAL A B);
- vi. ложно (EQUALP A B).
- 2. **Ассоциативный список.** Реализовать функцию ASSOC1, которая определяет, есть ли в данном списке точечных пар пара с первым элементом, равным данному атому, и возвращающую второй элемент этой пары, если такая пара есть, и NIL, если такой пары нет.

Пример:

```
> (ASSOC1 '((A . 1) (B . 2) (C . 3)) 'B)
2
> (ASSOC1 '((A . 1) (B . 2) (C . 3)) 'D)
NIL
```

3. **Сортировка.** Дан список из нескольких чисел. Реализовать функцию сортировки этого списка по возрастанию любым способом.

```
Пример:
```

```
> (SORT '(1 5 2 4 3))
(1 2 3 4 5)
```

4. **Слияние.** Реализовать функцию, «сливающую» два списка чисел, отсортированных по возрастанию, в один список, отсортированный по возрастанию. Пример:

```
> (MERGE '(1 3 5) '(2 4))
(1 2 3 4 5)
```

- 5. **Суперпозиция САР и CDR.** Реализовать функцию MAKE-CAR-CDR, которая принимает три аргумента:
 - о S произвольное S-выражение
 - X произвольный атом
 - о Q произвольный атом

и возвращает S-выражение из атомов CAR, CDR и Q, такое, что если бы значением атома Q было S, то результатом вычисления этого выражения был бы атом X. Проще говоря, функция должна показывать, как при помощи суперпозиции вызовов CAR и CDR «выделить» X из выражения S, обозначенного как Q. Пример:

```
> (MAKE-CAR-CDR '(A X B) 'X 'Q)
(CAR (CDR Q))
```

6. **Перестановки.** Вывести все возможные перестановки элементов данного списка в произвольном порядке. В приведенном ниже примере перестановки выведены на экран, а NIL — результат функции. Ваша функция может работать иначе. Пример:

```
> (PERMUT '(1 2 3))
(1 2 3)
(1 3 2)
(2 1 3)
(2 3 1)
(3 1 2)
(3 2 1)
NIL
```

Примерный список заданий для контрольной работы: Вариант 1.

- 1. Пусть верны посылки: 1) Каждый атлет силен; 2) Каждый, кто силен и умен, добьется успеха в своей карьере; 3) Петр атлет; 4) Петр умен. Используя метод резолюции, докажите, что Петр добьется успеха в своей карьере.
- 2. Универсальное множество имеет вид $U=1+2+3+4+\ldots+9$ Даны два его нечетких подмножества A=0,2|1+0,5| 3+0,4|8 B=0,4|1+0,4| 6+0,7|8 Найти (1) дополнение B, (2) пересечение A и B.

Вариант 2.

1. Пусть верны посылки: 1) Девочки – это дети («ребенки») женского пола; 2) Все девочки любят играть в куклы; 3) Маша – ребенок; 4) Маша – женского пола. Используя метод резолюции, докажите, что Маша любит играть в куклы. 2. Определить лингвистическую переменную «Температура» для прохладительного напитка. Привести все ее лингвистические значения (не менее трех), дать для каждого значения его функцию принадлежности или ее график.

Вариант 3.

- 1. Пусть верны посылки: 1) Все коты гоняются за мышами; 2) Том кот; 3) Джерри мышь; Используя метод резолюции, докажите, что Том гоняется за Джерри.
- 2. Придумать нечеткое отношение «близко к» для двух точек на плоскости. Вариант 4.
- 1. Пусть верны посылки: 1) Все серые существа с тонким хвостом мыши; 2) Все мыши любят сыр; 3) Джерри существо серого цвета; 4) Джерри имеет тонкий хвост. Используя метод резолюции, докажите, что Джерри любит сыр.
- 2. Универсальное множество имеет вид U=a+b+c+d+e+f+g+h Даны два его нечетких подмножества $A=0.2|a+0.7|\ b+0.4|h\ B=0.3|a+0.4|\ c+0.5|d+0.6|h\ Найти:$ (1) дополнение A, (2) объединение A и B. Вариант 5.
- 1. Пусть верны посылки: 1) Все собаки гоняют котов; 2) Шарик собака; 3) Васька кот. Используя метод резолюции, докажите, что Шарик гоняется за Васькой.
- 2. Определить лингвистическую переменную «Возраст собаки». Привести все ее лингвистические значения (не менее пяти). На выбор для двух значений дать функцию принадлежности или ее график.

Вариант 6.

- 1. С помощью метода резолюции докажите, что из посылки «Все люди земляне», следует «Проблемы людей есть проблемы землян».
- 2. Определить лингвистическую переменную «Температура воздуха». Привести все ее лингвистические значения (не менее пяти), дать для двух значений (на выбор) значений их функцию принадлежности или ее график. Вариант 7.
- 1. Пусть верны посылки: 1) Все молодые и красивые существа девушки; 2) Все девушки любят цветы; 3) Таня красивое существо; 4) Таня молодая. Используя метод резолюции, докажите, что Таня любит цветы.
- 2. Универсальное множество имеет вид $U=1+2+3+4+\ldots+9$ Даны два его нечетких подмножества A=0,1|1+0,3| 3+0,4|8 B=0,3|1+0,4| 5+0,7|8 Найти (1) дополнение A, (2) пересечение A и B.

Вариант 8.

1. Пусть верны посылки: 1) Каждый студент умен; 2) Каждый, кто здоров и умен, добьется именной стипендии; 3) Вася — здоров; 4) Вася — студент. Используя метод резолюции, докажите, что Вася добьется именной стипендии. 2. Универсальное множество имеет вид $U=1+2+3+4+\ldots+9$ Даны два его нечетких подмножества A=0.1|1+0.3| 3 + 0.4|8 B = 0.3|1+0.4| 5 + 0.7|8 Найти (1) дополнение B, (2) произведение A и B.

Вариант 9.

- 1. Пусть верны посылки: 1) Мальчики это дети («ребен-ки») мужского пола; 2) Все мальчики любят играть в войну; 3) Ваня ребенок; 4) Ваня мужского пола. Используя метод резолюции, докажите, что Ваня любит играть в войну.
- 2. Придумать нечеткое отношение «ровесники» для двух людей, возраст которых нам известен.

Вариант 10.

- 1. Пусть верны посылки: 1) Источник нашей мудрости Опыт; 2) Источник опыта Наша глупость. Используя метод резолюции, докажите, что Источник мудрости Наша глупость (т.е. имея глупость, можно получить мудрость).
- 2. Универсальное множество имеет вид U=a+b+c+d+e+f+g+h Даны два его нечетких подмножества $A=0,2|a+0,7|\ b+0,4|h\ B=0,3|a+0,4|\ c+0,5|d+0,6|h$. Найти (1) дополнение A, (2) пересечение A и B.

Примерный список заданий для практических занятий:

- Задание 1. Знакомство с такими средствами представления знаний, как семантические сети и системы продукций на примере создания учебной интеллектуальной системы "Родственники". Для создания этой системы необходимо:
- 1. Определить класс «Человек», для которого должны быть заданы такие атрибуты, как «Имя» и «Пол», а также основные родственные отношения: «супруги», «родители», «дети».
- 2. Задать семантическую сеть, состоящую из 10-15 человек.
- 3. Разработать систему продукций, каждая из которых для двух указанных людей вычисляет, находятся ли они в определенном родственном отношении. Разработать продукции для отношений «бабушка-дедушка», «брат-сестра», «тетя-дядя», «тесть-теща», «шурин-золовка» и др

Перечень контрольных вопросов, выносимых на экзамен

- 1. История возникновения и современные направления исследований в области ИИ. Машинный интеллект и робототехника.
- 2. Моделирование биологических систем. Эвристическое программирование и моделирование.
- 3. Данные, информация, знания, их характеристика и особенности. Логическая модель представления знаний. Сетевая модель представления знаний.
- 4. Фреймовая модель представления знаний. Продукционная модель представления знаний.
 - 5. Общая характеристика ЭС. Структура и режимы использования ЭС.
- 6. Классификация инструментальных средств в ЭС. Организация знаний в ЭС. 7. Виды ЭС. Типы задач, решаемые в ЭС.
- 8. Общие сведения о структуре языка логического программирования. Алгоритм выполнения программ на Прологе.
- 9. Рекурсия. Предикат отсечения и управление логическим выводом в программах. Обработка списков. Решение логических задач на Прологе.
- 10.Введение в функциональное программирование. Основы языка Лисп: Символы и списки; понятие функции; определение функции; вычисления в Лиспе; ввод и вывод; рекурсия.
 - 11. Понятие о нейронной сети. Модель нейрона.
- 12.Персептрон. Структура нейронных сетей. Модели представления и обработки информации в нейронной сети.
 - 13. Алгоритмы обучение нейронной сети. Оптимальные модели нейронных сетей.
- 14. Понятие лингвистической переменной. Нечеткие множества. Примеры решения задач с использование нечетких переменных.

- 15. Введение в функциональное программирование. Классификация языков программирования. Общее представление о ФП и его применении. Математические основы функционального программирования лямбда-исчисление Черча. История создания и развития Лиспа. Базис Лиспа. Особенности Лиспа.
- 16. Элементарный Лисп. Базовые средства символьной обработки данных. Структуры данных: атомы и списки. Списочные ячейки. Понятие точечной пары и Sвыражения. Соответствие между списочной и точечной нотациями. Базовые функции работы со списками.
- 17. Основные понятия: программа, функция, выражение. Определение функций. Композиция функций. Рекурсивные функции: определение и исполнение. Введение в теорию рекурсивных функций. Простая рекурсия. Рекурсивные функции работы со списками.
- 18. Формы рекурсии. Классификация форм рекурсии. Параллельное ветвление рекурсии. Взаимная рекурсия. Программирование вложенных циклов. Рекурсия более высокого порядка.

7.2. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетениий.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 70 % и промежуточного контроля - __30___%.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях __ баллов,
- выполнение лабораторных заданий 50 баллов,
- выполнение домашних (аудиторных) контрольных работ _10__ баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос 10 баллов,
- письменная контрольная работа 10 баллов,
- тестирование 10 баллов.

Критерии оценки работы студентов:

- точность ответа на поставленный вопрос;
- логичность и последовательность изложения;
- полнота и глубина рассматриваемого вопроса, проблемы;
- способность к работе с литературными источниками, Интернет-ресурсами; способность самостоятельно анализировать и обобщать информационный материал;
 - умение формулировать цели и задачи работы;
 - умение структурно оформлять материал.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература

1. Советов, Борис Яковлевич.

Представление знаний в информационных системах : учеб. для студентов вузов. - 2-е изд., стер. - М. : Академия, 2012. - 141,[2] с. - (Высшее профессиональное образование. Информатика и вычислительная техника). - ISBN 978-5-7685-9281-2 : 302-50.

2. Рутковская, Данута. Нейронные сети, генетические алгоритмы и нечёткие системы : пер. с пол. /

- М.Пилиньский, Л.Рутковский. М.: Горячая линия-Телеком, 2006. 383 с. ISBN 5-93517-103-1: 287-43.
- 3. Адаменко, Анатолий Н. Логическое программирование и Visual Prolog. СПб. : БХВ- Петербург, 2003. 990 с. ISBN 5-94157-156-9 : 120-00.
- 4. Э. Хювенен, И. Сеппянен Мир Лиспа. М.: Мир, 1980, 2 тома.

Дополнительная литература

- 1. Искусственный интеллект : Справочник: В 3 кн. Кн. 3 : Программные и аппаратные средства / Под ред. В.Н.Захарова, В.Ф.Хорошевского. М. : Радио и связь, 1990. 362,[1] с. : ил. ; 21 см. 2-00.
- 2. Искусственный интеллект : Справочник: В 3 кн. Кн. 2 : Модели и методы / Под ред. Э.В.Попова. М. : Радио и связь, 1990. 304 с. : ил. ; 22 см. 1-80.
- 3. Доорс, Джим и др. Пролог-язык программированного будущего / Пер. с англ. А.Н.Волкова. М.: Финансы и статистика, 1990. 141,[1] с.: ил. ISBN 5-279-00444-8: 1-10.
- 4. Нильсон, Нильс Дж. Искусственный интеллект. Методы поиска решений / пер. с англ. В.Л.Стефанюка; под ред. С.В.Фомина. М.: Мир, 1973. 270 с.; 21 см. 1-17.
- 5. Кандрашина, Елена Юрьевна. Представление знаний о времени и пространстве в интеллектуальных системах / под ред. Поспелова Д. А.[Кондрашина Е. Ю., Литвинцева Л. В., Поспелов Д. А.]. М. : Наука, 1989. 328 с. 2-70.
- 6. Советов, Борис Яковлевич. Представление знаний в информационных системах : учеб. для студентов вузов. М. : Академия, 2011. 141,[2] с. (Высшее профессиональное образование. Информатика и вычислительная техника). ISBN 978-5-7685-6886-2 : 287-27
- 7. Нейронные сети: история развития теории: Учеб. пособие для вузов по направлению подгот. бакалавров и магистров "Прикладные математика и физика" / Под общ. ред. А.И.Галушкина, Я.З.Цыпкина. М.: Журн. радиотехника, 2001. 839 с.: ил.; 21 см. (Нейрокомпьютеры и их применение. Кн. 5). Библиогр.: с. 826-835. ISBN 5-93108-0074: 160-00.
- 8. Нейронные сети. STATISTICA Neural Networks : Пер. с англ. / StatSoft Russia. М. : Горячая линия-Телеком: Грааль, 2000. 181,[1] с. : ил. ISBN 5-93517-015-9 : 0-0.
- 9. Осовский, Станислав. Нейронные сети для обработки информации / Пер. с пол. [и вступ. ст.] И.Д.Рудинского . - М. : Финансы и статистика, 2004. - 343 с. : ил. ; 24 см. - Библиогр.: с. 330-339. - Предм. указ.: с. 340-343. - ISBN 5-279-02567-4 : 192-94.
- 10. Барский, Аркадий Бенционович. Нейронные сети: распознавание, управление, принятие решений. М.: Финансы и статистика, 2004. 174,[1] с. (Прикладные информационные технологии). ISBN 5-279-02757-X: 80-41.
- 11. Хайкин, Саймон . Нейронные сети: полный курс : [пер. с англ.]. - 2-е изд., испр. - М. : Вильямс, 2006. - 1103 с. : ил. - ISBN 5-8459-0890-6 : 711-75.
- 12. Галушкин, Александр Иванович. Нейронные сети: основы теории: [монография]. - М.: Горячая линия-Телеком, 2010. - 496 с. - Библиогр.: с. 469-488. - ISBN 978-5-9912-0082-0: 418-00.

13. Искусственный интеллект: Справочник: В 3 кн. Кн. 1: Системы общения и экспертные системы / Под ред. Э.В.Попова. - М.: Радио и связь, 1990. - 460,[1] с.: ил.; 22 см. - Библиогр.: с. 418-458. - ISBN 5-256-00365-8: 2-40.

9. Электронные образовательные ресурсы:

- 1. eLIBRARY.RU[Электронный ресурс]: электронная библиотека / Науч. электрон. б-ка. Москва, 1999 . Режим доступа: http://elibrary.ru/defaultx.asp (дата обращения: 01.09.2018). Яз. рус., англ.
- 2. Moodle[Электронный ресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. Махачкала, г. Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/(датаобращения: 22.08.2018).
- 3. Электронный каталог НБ ДГУ[Электронный ресурс]: база данных содержит сведения о всех видах литературы, поступающих в фонд НБ ДГУ/Дагестанский гос. ун-т. Махачкала, 2010 Режим доступа: http://elib.dgu.ru, свободный (дата обращения: 21.09.2018).
- 4. Сайт кафедры http://iit.dgu.ru/ (дата обращения 15.09.2018)
- 5. Национальный Открытый Университет «ИНТУИТ» http://www.intuit.ru/(дата обращения 15.09.2018)
- 6. Интернет-энциклопедия «Википедия». https://ru.wikipedia.org/(дата обращения 15.09.2018)
- 7. http://www.oglibrary.ru/data/demo/3400/34000003.ru
- 8. http://www.intuit.ru/department/
- 9. http://www.philippovich.ru. Научно-образовательный кластер CLAIM Другие ресурсы Интернет
- 11. http://www.raai.org/ Российская ассоциация искусственного интеллекта
- 12. fuzzy.kstu.ru/rans.htm Российская ассоциация нечетких систем
- 13. http://www.niisi.ru/iont/ni Российская ассоциация нейроинформатики (РАСНИ)
- 14. www.larichev.com Сайт академика О.И.Ларичева
- 15. www.aaai.org Американская ассоциация искусственного интеллекта American Association for Artificial Intelligence (AAAI)
- 17. lii.newmail.ru Лаборатория искусственного интеллекта. В основном содержит материалы по нейронным сетям.
- 19. www.ai.obrazec.ru Сайт "Искусственный интеллект"
- 20. aifuture.chat.ru Искусственный интеллект ("Взгляд в будущее").
- 21. www.aicommunity.org Материалы об искусственном интеллекте
- 22. newasp.omskreg.ru/intellect/ Сборник электронных вариантов статей и книг, объединенных общей темой "Парадигма искусственного интеллекта"
- 24. artema.fopf.mipt.ru/ai/aihist.html Материалы по ИИ. В т.ч. об истории, языках и проч.
- 25. Основы программирования на языке Пролог информация. Автор: П.А. Шрайнер. Источник: www.intuit.ru/department/pl/plprolog/
 - 26. 2. http://www.niisi.ru/iont/ni Российская ассоциация нейроинформатики.
- 27. http://ransmv.narod.ru/ Российская ассоциация нечетких систем и мягких вычислений.
 - 28. http://www.makhfi.com/KCM_intro.htm Введение в моделирование знаний
 - 29. lisp.ru- русскоязычное сообщество

10.Методические указания по освоению дисциплины

Для успешного освоения обучающимися дисциплины им предлагается углубленное изучение тем, излагаемых на лекциях, с использованием дополнительной литературы, сети Интернет. Обучающимся настоятельно рекомендуется выбрать наиболее интересную для них тему из предложенного списка тем и подготовить по

ней доклад, с которым выступить на семинаре. Это позволит им лучше разобраться в выбранной теме, а также позволит заработать дополнительные баллы

С языком PROLOG можно познакомиться по книге Адаменко, Анатолий Н. Логическое программирование и Visual Prolog и методическому пособию. Более подробно о технике программирования на этом языке можно прочесть в книге «Братко И. Алгоритмы искусственного интеллекта на языке Prolog. –М.: Издательский дом «Вильямс», 2004». О языке OPS-5 достаточно хорошо написано в монографии «7. Построение экспертных систем. Под ред. Ф. Хейес-Рота, Д. Уотермана, Д. Лената. – М.: Мир, 1987».

С языком LISP можно познакомится по книге «Хювёнен Э., Сеппянен И. Мир Лиспа. Том.1: Введение в язык Лисп и функциональное программирование. Москва: Мир, 1990», а о его реализации и применении можно почитать в монографии «Искусственный интеллект. Справочник в трех книгах. Книга 3. Программные и аппаратные средства. Под ред. В.Н. Захарова и В.Ф. Хорошевского. М., «Радио и связь», 1990.».

В книге Джоши, Пратик. «Искусственный интеллект с примерами на Python» рассмотрены как общие концепции искусственною интеллекта так и более сложные темы, такие как предельно случайные леса, скрытые Марковские модели, генетические алгоритмы, сверхточные нейронные сети и др. Эта книга предназначена для программистов, которые пишут код на языке Python и хотели бы применять алгоритмы искусственного интеллекта для создания прикладных программ.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем..

Для успешного освоения дисциплины, обучающийся использует следующие программные средства:

пакеты ПО общего назначения:

Операционная система: Windows

Microsoft office.

Программные средства сжатия данных. . WinRAR. WinArj. WinZip.

специализированное

Prolog

Lisp

Python

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Реализация учебной дисциплины требует наличия типовой учебной аудитории с возможностью подключения технических средств. Учебная аудитория должна иметь следующее оборудование:

- Компьютер, медиа-проектор, экран.
- Программное обеспечение для демонстрации слайд-презентаций.

Лабораторные занятия по дисциплине проводятся в специально оборудованном информационном классе факультета ИиИТ. Помещение для работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду ДГУ.