МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Биологический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МЕТАГЕНОМИКА

Кафедра биохимии и биофизики биологического факультета

Образовательная программа 06.03.01 Биология

Профиль подготовки Биохимия

Уровень высшего образования Бакалавриат

Форма обучения Очная

Статус дисциплины: факультативная

Рабочая программа дисциплины «Метагеномика» составлена в 2021 году в соответствии с требованиями ФГОС ВО по направлению подготовки 06.03.01 Биология (уровень бакалавриата) от 7 августа 2020 года № 920.

Разработчик(и): кафедра биохимии и биофизики, Бекшоков Керим Султан-бекович, к.б.н., доцент

Рабочая программа дисциплины одобрена:	
на заседании кафедры биохимии и биофизики от « <u></u> // » <u>шош</u> 20 <u>Д</u> г., протокол	л №
AO MATANO	
Зав. кафедрой Жалилов Р.А.	
(подпись)	
	٠
на заседании Методической комиссии биологического факультета от « <u>\lambda</u> »	
<u>имм</u> 20 <u>М</u> г., протокол № <u>И</u> .	
Председатель Рамазанова П.Б.	
(подпись)	
Рабочая программа дисциплины согласована с учебно-методическим управл	ie-
нием « <u>09</u> » <u>шала</u> 20 <u>11</u> г.	
50	
Начальник УМУ Гасангаджиева А.Г.	
(Incorruct)	

1

Аннотация рабочей программы дисциплины

Дисциплина «Метагеномика» входит в модуль факультативных дисциплин (ФТД01) образовательной программы бакалавриата по направлению 06.03.01 Биология (профиль «Биохимия»). Дисциплина реализуется на биологическом факультете кафедрой биохимии и биофизики. Содержание дисциплины охватывает круг вопросов подготовки метагеномных проб и особенностей их анализа; математических подходов, лежащих в основе созданных специально для этого типа данных программных продуктов; вопросы секвенирования и сборки метагеномов, их аннотации и применения, а также связанные со здоровьем человека, охраной окружающей среды, хранением и переработкой продуктов питания, разработкой альтернативных источников энергии.

Дисциплина нацелена на формирование следующих компетенций выпускника: общепрофессиональных — ОПК-3. Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия, самостоятельная работа. Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме контрольных работ, коллоквиумов и промежуточный контроль в форме зачета.

Объем дисциплины 1 зачетная единица, в том числе 36 ч. в академических часах по видам учебных занятий

Очная форма обучения

				<i>J</i>					
			Форма промежу-						
			точной аттеста-						
тр		Ко	онтактная	гработа обуч	чающихся с	препода	авателем	CPC,	ции (зачет, диф-
Семестр	0				ференцированный				
Ce	cer	всего	Лек-	Лабора-	Практи-	КСР	консуль-	числе	зачет, экзамен
	BC	все	ции	торные	ческие		тации	экза-	
				занятия	занятия			мен	
6	36	24	12		12			12	зачет

1. Цели задачи изучения освоения дисциплины.

Основной целью курса является: ознакомление с задачами, которые ставит необходимость исследования сложных микробных сообществ перед медиками, биологами, программистами и математиками; методами их решения; программными продуктами и аналитическими платформами, созданными для работы с метагеномными данными; математическими алгоритмами, лежащими в основе этих программ; выработка экспериментальных навыков работы с метагеномными данными, умение правильно планировать эксперимент, оценивать сложность задачи и требуемых для ее решения ресурсов (лабораторных и компьютерных), оценивать качество произведенных данных с точки зрения поставленной задачи; приобретение навыков правильно выбирать, а при необходимости и создавать, программные продукты для решения поставленной задачи

2. Место дисциплины в структуре ОПОП бакалавриата.

Дисциплина «Метагеномика» входит в модуль факультативных дисциплин образовательной программы бакалавриата по направлению 06.03.01 Биология (ФТД.01).

Для изучения дисциплины студенты должны обладать базовыми знаниями фундаментальных разделов дисциплин: «Химия», «Физика», «Математические методы в биологии», «Микробиология и вирусология».

Освоение данной дисциплины необходимо для последующего изучения таких дисциплин, как «Биофизика», «Теория эволюции», «Экология и рациональное природопользование».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля).

БОПК-3 Способен применять знание основ эволющонной теории, использовать современные представления о структур- осидк объектов и методы молекулярной биологии, генетики и биологии развития для использования механизмов онтогенеза и филогенеза в профессиональной деятельности методы молекулярной биологии развития для использования механизмов онтогенеза и филогенеза в профессиональной деятельности методы молекулярной биологии, развития для использованием тенобходимое для обработки экспериментальных результатов и оформления этих результатов в виде отчетов, статей и т. п.; методы и приемы научно-исследовательской работы с использованиих компьютерных технологию, конкретные методы и приемы научно-исследовательской обработки биологических экспериментальных результатов в виде отчетов, статей и т. п.; методы и приемы научно-исследовательской работы с использованием современных компьютерных технологий, необходимые для освоения дисциплин профессионального щикла; современных компьютерных технологий, необходимые для освоения дисциплин профессионального щикла; современных компьютерных технологий, необходимые для освоения дисциплин профессионального прикла; соновыые теории, концепции и принцины в избранной области деятельности; основы проектирования и методы контроля биотехнологических процессов. Умеет решать различные задачи (учебные или возникающие в	Код и наименование компетенции из ОПОП	Код и наименование индикатора дости- жения общепрофессиональной компе-тенции	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенций)	Процедура освоения
тельской работы) с ис- пользованием базовых	применять знание основ эволюционной теории, использовать современные представления о структур-но-функциональной организации генетической программы живых объектов и методы молекулярной биологии, генетики и биологии развития для исследования механизмов онтогенеза и филогенеза в профессиональной дея-	Б-ОПК-3.1. способность применять принципы структурной и функциональной организации биологических объектов и владением знанием механизмов гомеостатической регуляции; владением основными физиологическими методами анализа и оценки состояния	Знает основные принципы анализа и теоретические основы базовых методов метагеномного анализа; современные методы метагеномного анализа с использованием геномных прочтений; программное обеспечение, необходимое для обработки экспериментальных результатов и оформления этих результатов в виде отчетов, статей и т. п.; методологию, конкретные методы и приемы научно-исследовательской работы с использованием современных компьютерных технологий, необходимые для освоения дисциплин профессионального цикла; современные методы статистической обработки биологических экспериментальных данных; основные теории, концепции и принципы в избранной области деятельности; основы проектирования и методы контроля биотехнологических процессов. Умеет решать различные задачи (учебные или возникающие в процессе исследовательской работы) с ис-	(письмен- ный) опрос, тестовый опрос, до-

способность делать выводы ИЗ имеющихся данных (теоретических, экспериментальных), позволяющие прийти к решению проблемы учебного или практического плана; проводить анализ прочтений с помошью бесплатных программных ресурсов; применять на практике базовые теоретические знания современной биологии, методологии современных биологических исследований; новейших достижений в области биологических исследований; использовать теоретические знания и экспериментальные навыки для самостоятельного планирования и проведения эксперимента, анализа и оформления полученных результатов; формулировать проблему и предлагать пути ее решения с использованием биотехнологических методов и подходов

Владеет навыками решения типовых задач дисциплине; способность формулировать выводы из полуобучающимся ченных экспериментальных данных; навык самостоятельного анализа имеющейся информации; навык корректного интерпретирования экспериментального материала; современными компьютерными технологиями при сборе, хранении, обработке, передаче анализе И биологической информации; приемами и методами для выполнения и решения новых идей; навыками составления творческих проектов;

навыком самостоятель-
ного осуществления
проектирования био-
технологических про-
цессов и поиска методов
решения практических
задач, применения раз-
личных методов позна-
ния.

- **4. Объем, структура и содержание дисциплины.** 4.1. Объем дисциплины составляет 1 зачетную единицу, 36 академических часов.
- 4.2. Структура дисциплины.

Очная форма обучения

		ı	Очн		рма о			1	T
№ п/п	Разделы и темы дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоя- тельную работу сту- дентов и трудоемкость (в часах)				Самостоятельная работа	Формы текущего контроля успеваемости (по неделям семестра)
				Лекции	Практиче- ские занятия	Лабора- торные за-	Контроль самост. раб.	Самостоятел	Форма промежу- точной аттеста- ции (по семест- рам)
	Модуль 1. Основны	е прин	ципь	ипо	нятия	метаге	номик	И	
1	Тема 1. Введение в метагеномику.	6		2	2			2	Защита презентаций, устный и письменный опросы
2	Тема 2. Организация генома прокариот.	6		2	2			2	Защита презента- ций, устный и письменный опросы
3	Тема 3. Организация генома простейших эукариот	6		2	2			2	Защита презентаций, устный и письменный опросы
4	Тема 4. Молеку- лярно-генетические методы анализа микробиома.	6		2	2			2	Защита презентаций, устный и письменный опросы
5	Тема 5. Технологии биосенсоров и маркерных генов	6		2	2			2	Защита презента- ций, устный и письменный опросы
6	Тема б. Управление данными: создание баз данных; способы обработки и анализа данных, биоинформатика и статистика.	6		2	2			2	Защита презентаций, устный и письменный опросы
	Итого по модулю 1:			12	12			12	
	ИТОГО:	36		12	12			12	зачет

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине Модуль 1. Основные принципы и понятия метагеномики Тема 1. Введение в метагеномику

История развития метагеномики. Метагеномика: ее прошлое, настоящее и будущее. Перспективы метагеномики, теоретические достижения. Основные методы и подходы метагеномики.

Тема 2. Организация генома прокариот.

Строение нуклеиновых кислот. Носители генетической информации. Особенности выделения нуклеиновых кислот из прокариот. Организация генома прокариот. Рекомбинация и транспозиция как базовые составляющие динамичности генома. Выделение тотальной ДНК из образцов прокариот. Обзор экспериментальных подходов. Обзор современных платформ высокопроизводительного секвенирования и их особенностей.

Тема 3. Организация генома простейших эукариот.

Организация генома эукариот. Интроны и экзоны. Механизмы экспрессии генов. Особенности выделения нуклеиновых кислот из эукариот. Использование референсных геномов. Картирование прочтений. Безреференсные подходы — сборка фрагментов *de novo*. Алгоритмы сборки.

Тема 4. Молекулярно-генетические методы анализа микробиома.

Прямой молекулярный анализ биоты. Молекулярно - генетический анализ - как основной подход в метагеномики. Определение состава ДНК. Гибридизация как высокочувствительный метод выявления специфических последовательностей нуклеотидов. Прямой молекулярный анализ биоты. Выделение нуклеиновых кислот. Выбор между ДНК и РНК. Клонирование как метод анализа нуклеиновых кислот. ПЦР - анализ. Таргетное секвенирование. Подходы к оценке сообщества по представленности бактериальных родов и видов.

Тема 5. Технологии биосенсоров и маркерных генов

Основные бимомаркёры и бисенсоры. Оценка разнообразия с помощью анализа k-меров. Биннинг. Алгоритмы биннинга. Контролируемый и неконтролируемый биннинг. Кластеризация.

Аннотация генов. Алгоритмы аннотации. Функциональный метагеномный анализ. Сравнительный анализ.

Статистический анализ данных метагеномного картирования. Многомерная статистика и специфические метрики для экспериментов сравнения влияния факторов на бактериальные сообщества.

Тема 6. Управление данными: создание баз данных; способы обработки и анализа данных, биоинформатика и статистика.

Биоинформатические методы в метагеномики. Освоение основных биоинформатических моделей. Филогенетические деревья. Методы построения, об-

работки и сравнения деревьев.

Эволюционное расстояние. Модели нуклеотидных и аминокислотных замен. Проверка эволюционных гипотез. Гомология последовательностей. Ортологи и паралоги. Филогенетический анализ на основе подходов без выравниваний. Анализ частот встречаемости k-меров.

4.3.2. Содержание практических и/или семинарских занятий по дисциплине

Модуль 1. Основные принципы и понятия синергетики Практическое занятие №1

Получение некультивируемых образцов.

Практическое занятие № 2

Выделение тотальной ДНК из образцов.

Практическое занятие № 3

Выделение грибов и бактерий различными микробиологическими методами из образцов почв. Физиологические группы микроорганизмов. Микробное сообщество как целостность. Роль микроорганизмов в почве. Реакция микробных сообществ на изменения окружающей среды.

Практическое занятие № 4

ПЦР – анализ.

Практическое занятие № 5

Освоение основных биоинформатических моделей.

Практическое занятие № 6

Построение, обработка и сравнение филогенетических деревьев.

5. Образовательные технологии

В соответствии с требованиями ФГОС ВО по направлению подготовки реализация компетентностного подхода дисциплина предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий (разбор конкретных ситуаций, лекция-беседа, лекция-дискуссия, лекция-консультация, проблемная лекция, лекция-визуализация) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Удельный вес занятий, проводимых в интерактивных формах в целом в учебном процессе по данной дисциплине составляют не менее 12 часов аудиторных занятий.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студента над глубоким освоением фактического материала организуется в процессе подготовки к занятиям, по текущему, промежуточному и итоговому контролю знаний. Пропущенные лекции отрабатываются в форме составления реферата по пропущенной теме.

Задания по самостоятельной работе разнообразны:

- оформление рабочей тетради с соответствующими методическими указаниями к работе, результатами работы и выводами по сделанной работе;
- обработка учебного материала по учебникам и лекциям, текущему, промежуточному и итоговому контролю знаний по модульно-рейтинговой системе:
- поиск и обзор публикаций и электронных источников информации при подготовке к занятиям, написании рефератов;
- работа с тестами и контрольными вопросами при самоподготовке;
- обработка и анализ статистических и фактических материалов, составление выводов на основе проведенного анализа.

Результаты самостоятельной работы контролируются преподавателем и учитываются при аттестации студента (зачет). При этом проводятся тестирование, экспресс-опрос на семинарских и лабораторных занятиях, заслушивание докладов, проверка письменных контрольных работ.

6.1. Примерный перечень вопросов для самостоятельной работы студентов

Разделы и темы для само-	Источники	Виды и содержание са-
стоятельного изучения		мостоятельной работы
Модуль 1.	Принципы и методы	Самостоятельное про-
Тема 1. Введение в мета-	биохимии и молекуляр-	чтение, просмотр, кон-
геномику.	ной биологии / ред.: К.	спектирование учебной
	Уилсон, Дж. Уолкер;	литературы, прослуши-
	пер. с англ. Т. П. Мосо-	вание лекций, записей
	ловой, Е. Ю. Бозе-	на электронных носи-
	лек-Решетняк; под ред.	телях, заучивание, пе-
	А. В. Левашова, В. И.	ресказ, запоминание.
	Тишкова М. : БИНОМ.	Интернет-ресурсы, по-
	Лаб. знаний, [2012]	вторение учебного ма-
	848 c.	териала и др.
Тема 2. Типы и структура	Принципы и методы	
нуклеиновых кислот. Ис-	биохимии и молекуляр-	
пользование нуклеиновых	ной биологии / ред.: К.	
кислот для анализа мета-	Уилсон, Дж. Уолкер;	
генома	пер. с англ. Т. П. Мосо-	
	ловой, Е. Ю. Бозе-	
	лек-Решетняк; под ред.	
	А. В. Левашова, В. И.	
	Тишкова М. : БИНОМ.	
	Лаб. знаний, [2012]	
	848 c.	
Тема 3. Микроорганизмы	Нетрусов А.И.,	Самостоятельное про-
как важные компоненты	Бонч-Осмоловская Е.А.,	чтение, просмотр, кон-

биосферы, их разнообразие и функции.	Горленко В.М. [и др.] Экология микроорганизмов; под общ. ред А.И. Нетрусова — 2-е изд., М.: Издательство Юрайт, 2013. — 268 с.	спектирование учебной литературы, прослушивание лекций, записей на электронных носителях, заучивание, пересказ, запоминание. Интернет-ресурсы, по-
Тема 4. Молекуляр- но-генетические методы анализа метагенома: пря- мой молекулярный анализ биоты;технологии биосен- соров и маркерных генов и др.	Принципы и методы биохимии и молекулярной биологии / ред.: К. Уилсон, Дж. Уолкер; пер. с англ. Т. П. Мосоловой, Е. Ю. Бозелек-Решетняк; под ред. А. В. Левашова, В. И. Тишкова М.: БИНОМ. Лаб. знаний, [2012] 848 с.	вторение учебного материала и др.
Тема 5. Управление данными: создание баз данных; способы обработки и анализа данных, биоинформатика и статистика.	Бородовский М. Задачи и решения по анализу биологических последовательностей / Бородовский М., Екишева С.— Электрон. текстовые данные.— Москва, Ижевск: Регулярная и хаотическая динамика, 2008.— 440 с.	Самостоятельное прочтение, просмотр, конспектирование учебной литературы, прослушивание лекций, записей на электронных носителях, заучивание, пересказ, запоминание. Интернет-ресурсы, повторение учебного материала и др.
Тема б. Построение, обра- ботка и сравнение филоге- нетических деревьев	Бородовский М. Задачи и решения по анализу биологических последовательностей / Бородовский М., Екишева С.— Электрон. текстовые данные.— Москва, Ижевск: Регулярная и хаотическая динамика, 2008.— 440 с.	

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Типовые контрольные задания

7.1.1. Примерная тематика рефератов.

- 1. Основные методы метагеномики.
- 2. Метагеномика: ее прошлое, настоящее и будущее.
- 3. Носители генетической информации.

- 4. ДНК микробные ассоциаты из разных горизонтов почв.
- 5. Выделение нуклеиновых кислот.
- 6. Особенности молекулярно-генетического анализа микробиоты.
- 7. Определение нуклеотидной последовательности.
- 8. Скрининг библиотеки генов
- 9. Системы блоттинга.

7.1.2. Примерные тестовые задания для проведения текущего контроля и промежуточной аттестации

- 1. Как называется раздел молекулярной биологии, занимающийся изучением и расшифровкой генетической информации?
- 1)Геномика
- 2)Биоинформатика
- 3)Метагеномика
- 4)Протеомика
- 2. Как называется раздел молекулярной биологии, изучающий геном "сверхорганизма", состоящего не только из Homo sapiens как такового, но и из его бесчисленных обитателей?
- 1)Геномика
- 2)Биоинформатика
- 3) Метагеномика
- 4)Протеомика
- 3. Как называется раздел молекулярной биологии, изучающий белки, в частности, экспрессию белков в различных типах клеток в определенный период времени?
- 1)Геномика
- 2)Биоинформатика
- 3) Метагеномика
- 4)Протеомика
- 4. Как называется использование компьютерных, математических, статистических методов, программ и алгоритмов для решения биологических задач?
- 1)Геномика
- 2)Биоинформатика
- 3) Метагеномика
- 4)Протеомика
- 5.К какому методу секвенирования относится метод Сэнгера?

1)Классический 2)Новый 3)Новейший
6.К какому методу секвенирования относится пиросеквенирование?
1)Классический 2)Новый 3)Новейший
7.К какому методу секвенирования относится секвенирование на молекулярных кластерах с использованием флоуресцентно меченных предшественников?
1)Классический 2)Новый 3)Новейший
8.К какому методу секвенирования относится циклическое лигазное секвенирование?
1)Классический 2)Новый 3)Новейший
9.К какому методу секвенирования относится полупроводниковое секвенирование?
1)Классический 2)Новый 3)Новейший
10.К какому методу секвенирования относится технология секвенирования одной молекулы?
1)Классический 2)Новый 3)Новейший
11.К какому методу секвенирования относится секвенирование единичных молекул в реальном времени?
1)Классический 2)Новый 3)Новейший
12.К какому методу секвенирования относится секвенирование через нанопоры?

1)Классический

2)Новый 3)Новейший
Тестовые задания открытого типа: Заполните пропуски в следующих предложениях:
1. Фермент, ответственный за синтез ДНК как при репликации, так и про репарации, называется
2. Фермент, который сшивает разрывы в ДНК во время синтеза ДНК или ее репарации, называется
3. Для ДНК полимеразы в отличие от РНК-полимеразы совершенно необходим свободный 3'-OH-конец, спаренный с расплетенной ДНК, чтобы присоединять к нему новые нуклеотиды.
4. Если ДНК-полимераза ошибочно присоединяет неправильный нуклеотид к $3'$ -концу, ее отдельный каталитически активный домен, обладающий ($3' \rightarrow 5'$) активностью, удалит неподходящее основание.
5. Для инициации синтеза ДНК на отстающей цепи нужны короткие праймеры, возникающие благодаря работе фермента, которая в качестве субстратов использует рибонуклеозидтрифосфаты.
6. Расплетание двойной спирали ДНК в зоне репликативной вилки катализируется, использующей для направленного движения по ДНК энергию гидролиза АТФ.
7. Каждая молекула ДНК упакована в, а вся генетическая информация, хранящаяся в хромосомах организма, составляет его
8. Для функционирования хромосом необходимы три элемента последовательности ДНК: по крайней мере одна для того, чтобы могло осуществляться копирование хромосом, одна для обеспечения последующего разделения двух копий при митозе и две для поддержания целостности хромосомы в период между делениями.
9. В спирали ДНК каждая область, где синтезируется функциональная молекула РНК, представляет собой
 7.2.3. Примерный перечень вопросов к зачету по всему курсу Контрольные вопросы к зачету 1. История метагеномики. 2. Перспективы метагеномики, теоретические достижения. 3. Методы метагеномики. 4. Строение нуклеиновых кислот.
 Организация генома прокариот. Организация генома простейших эукариот.

- 7. Репликация, транскрипция, трансляция.
- 8. Рекомбинация и транспозиция как базовые составляющие динамичности генома.
- 9. Разнообразие микроорганизмов.
- 10. Классификация микроорганизмов.
- 11. Физиологические группы микроорганизмов.
- 12. Микробное сообщество как целостность.
- 13. Роль микроорганизмов.
- 14. Реакция микробных сообществ на изменения окружающей среды.
- 15. Некультивируемые микроорганизмы.
- 16.Определение состава ДНК.
- 17. Гибридизация как высокочувствительный метод выявления специфических последовательностей нуклеотидов.
- 18. Прямой молекулярный анализ биоты.
- 19. Технологии биосенсоров и маркерных генов.
- 20.Выделение нуклеиновых кислот. Выбор между ДНК и РНК для исследований.
- 21. Клонирование как метод анализа нуклеиновых кислот.
- 22. Геномные библиотеки и библиотеки кДНК.
- 23.RFLР-анализ.
- 24. Секвенирование.
- 25. Зондирование мечеными изотопами как метод анализа нуклеиновых кислот.
- 26. Частичный анализ микробных сообществ.
- 27. Электрофорез нуклеиновых кислот.
- 28.ПЦР-фингерпринтинг.
- 29. Анализ сходства микробных сообществ.
- 30. Биоинформатика: создание информационных баз данных.

7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля 60% и промежуточного контроля - 0%. Текущий контроль по дисциплине включает:

- устный опрос 30 баллов,
- тестовые задания 20 баллов
- выполнение лабораторных заданий 50 баллов,
- Промежуточный контроль по дисциплине включает:
- устный опрос 50 баллов,
- тестирование 50 баллов.
- 8. Учебно-методическое обеспечение дисциплины
- а) адрес сайта курса не сформирован
- б) Основная литература:
 - 1. Молекулярная биология, Спирин, Александр Сергеевич, 2011г.
 - 2. Молекулярная биология клетки, Фаллер, Джеральд М.;Шилдс, Деннис, 2012г.
 - 3. Принципы и методы биохимии и молекулярной биологии / ред.: К.

Уилсон, Дж. Уолкер; пер. с англ. Т. П. Мосоловой, Е. Ю. Бозелек-Решетняк; под ред. А. В. Левашова, В. И. Тишкова. - М.: БИНОМ. Лаб. знаний, [2012]. - 848 с.

б) дополнительная литература:

- 1. Почвоведение, Вальков, Владимир Федорович; Казеев, Камиль Шагидуллович; Колесников, Сергей Ильич, 2013г.
- 2. Роль почвы в формировании и сохранении биологического разнообразия, Добровольский, Глеб Всеволодович; Чернов, Иван Юрьевич; Бобров, А. А., 2011г.
- 3. Экологические основы природопользования: Учебное пособие / В.Ф. Протасов. М.: Альфа-М: ИНФРА-М, 2010. 304 с.: http://znanium.com/bookread.php?book=197844
- 4. Экология: Учебное пособие / Л.Н. Ердаков, О.Н. Чернышова. М.: НИЦ Инфра-М, 2013. 360 с. http://znanium.com/bookread.php?book=368481

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

Даггосуниверситет имеет доступ к комплектам библиотечного фонда основных отечественных и зарубежных академических и отраслевых журналов по профилю подготовки бакалавров по направлению 06.03.01 Биология:

- 1. 3EC IPRbooks: http://www.iprbookshop.ru/
- 2. Электронно-библиотечная система «Университетская библиотека онлайн» www.biblioclub.ru
- 3. **Moodle** [Электронный ресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. Махачкала, г. Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/
- 4. Доступ к электронной библиотеке на http://elibrary.ru на основании лицензионного соглашения между ФГБОУ ВО ДГУ и «ООО» «Научная Электронная библиотека»
- 5. Национальная электронная библиотека https://нэб.pd/.
- 6. Федеральный портал «Российское образование» http://www.edu.ru / (единое окно доступа к образовательным ресурсам).
- 7. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
- 8. Российский портал «Открытого образования» http://www.openet.edu.ru
- 9. Сайт образовательных ресурсов Даггосуниверситета http://edu.icc.dgu.ru 9. Информационные ресурсы научной библиотеки Даггосуниверситета http://elib.dgu.ru (доступ через платформу Научной электронной библиотеки elibrary.ru).
- 10. Федеральный центр образовательного законодательства http://www.lexed.ru

11. **Springer**. Доступ ДГУ предоставлен согласно договору № 582-13SP, подписанный Министерством образования и науки, предоставлен по контракту 2017-2018 г.г., подписанный ГПНТБ с организациями-победителями конкурса. http://link.springer.com Доступ предоставлен на неограниченный срок

10. Методические указания для обучающихся по освоению дисциплины.

Перечень учебно-методических изданий, рекомендуемых студентам, для подготовки к занятиям представлен в разделе 8. Учебно-методическое обеспечение дисциплины «Метагеномика».

Практические занятия. Проработка рабочей программы, уделяя особое внимание целям и задачам структуре и содержанию дисциплины. Конспектирование источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы, работа с текстом (указать тексти из источника и др.). Прослушивание аудио- и видеозаписей по заданной теме, решение расчетно-графических заданий, решение задач по алгоритму и др.

Лабораторная работа. Не предусмотрены учебным планом.

Коллоквиум. Работа с конспектом лекций, подготовка ответов к контрольным вопросам и др.

Реферат. Реферат - это обзор и анализ литературы на выбранную Вами тему. *Реферат это не списанные куски текста с первоисточника*. Для написания реферата необходимо найти литературу и составить библиографию, использовать от 3 до 5 научных работ, изложить мнения авторов и своего суждения по выбранному вопросу; изложить основных аспектов проблемы. Ознакомиться со структурой и оформлением реферата. Недопустимо брать рефераты из Интернета.

Тема реферата выбирается Вами в соответствии с Вашими интересами. Необходимо, чтобы в реферате были освещены как теоретические положения выбранной Вами темы, так и приведены и проанализированы конкретные примеры.

Реферат оформляется в виде машинописного текста на листах стандартного формата (A4).

Структура реферата включает следующие разделы:

- титульный лист;
- оглавление с указанием разделов и подразделов;
- введение, где необходимо указать актуальность проблемы, новизну исследования и практическую значимость работы;
- литературный обзор по разделам и подразделам с анализом рассматриваемой проблемы;
- заключение с выводами;
- список используемой литературы.

Желательное использование наглядного материала - таблицы, графики, рисунки и т.д. Все факты, соображения, таблицы, рисунки и т.д., приводимые из литературных источников студентами, должны быть сопровождены ссылками на источник информации. Недопустимо компоновать реферат из кусков дословно заимствованного текста различных литературных источников. Все цитаты должны быть представлены в кавычках с указанием в скобках источника,

отсутствие кавычек и ссылок означает плагиат и является нарушением авторских прав. Использованные материалы необходимо комментировать, анализировать и делать соответственные и желательно собственные выводы. Все выводы должны быть ясно и четко сформулированы и пронумерованы. Список литературы оформляется строго по правилам Государственного стандарта. Реферат должен быть подписан автором, который несет ответственность за проделанную работу.

Подготовка к экзамену. При подготовке к экзамену (зачету) необходимо ориентироваться на конспекты лекций, рекомендуемую литературу и др.

Перечень учебно-методических материалов, предоставляемых студентам во время занятий:

- рабочие тетради студентов;
- наглядные пособия;
- словарь терминов;
- тезисы лекций,
- раздаточный материал по тематике лекций.

Самостоятельная работа студентов:

- проработка учебного материала (по конспектам лекций учебной и научной литературе) и подготовка докладов на семинарах и практических занятиях;
- поиск и обзор научных публикаций и электронных источников по тематике дисциплины;
 - выполнение курсовых работ (проектов);
 - написание рефератов;
 - работа с тестами и вопросами для самопроверки.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

- Компьютерное и мультимедийное оборудование.
- Моделирующие игры: Amebas 1.5, Life 35 full, Spore.
- Электронная библиотека курса и интернет-ресурсы для самостоятельной работы.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

На лекционных и практических занятиях используются методические разработки, практикумы, наглядные пособия, тесты, компьютерные программы, а также компьютеры (для обучения и проведения тестового контроля), наборы слайдов и таблиц по темам, оборудование лабораторий кафедры, в том числе лаборатории молекулярной биологии, а также результаты научных исследований кафедры (монографии, учебные и методические пособия и т.д.).

Перечень необходимых технических средств обучения и способы их применения:

- компьютерное и мультимедийное оборудование, которое используется в ходе изложения лекционного материала;
- пакет прикладных обучающих и контролирующих программ, используемых в ходе текущей работы, а также для промежуточного и итогового контроля;
- электронная библиотека курса и Интернет-ресурсы для самостоятельной

работы.