МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Химический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Направления и тенденции развития неорганической химии

Кафедра неорганической химии и химической экологии

Образовательная программа 04.04.01. – Химия

Профиль подготовки Неорганическая химия и химия силикатных материалов

> Уровень высшего образования Магистратура

> > Форма обучения Очная

Статус дисциплины: входит в часть ОПОП, формируемую участниками образовательных отношений

Рабочая программа дисциплины «Направления и тенденции развития неорганической химии» составлена в 2021 году в соответствии с требованиями Φ ГОС ВО по направлению подготовки 04.04.01. - Химия от «13» июля 2017г. №655

Разработчик: кафедра неорганической химии и химической экологии, к.х.н., доц. Вердиев Н.Н.

Рабочая программа дисциплины одо на заседании кафедры неорганическот $(\frac{16}{26})$ » 0/ 2021 г., протокол	ой химии и химической экологии
Зав. кафедрой (подпись)	<u>Исаев А.Б.</u> (Ф.И.О)
на заседании Методической комисси от « <u>///</u> » <u>01</u> 2021 г., протокол	ии химического факультета п № <u></u>
Председатель <u>Halaels</u> — (подпись)	<u>Гасангаджиева У.Г.</u> (Ф.И.О)
Рабочая программа дисциплины сог управлением « 03 » 03	ласована с учебно-методическим 2021 г.
Начальник УМУ (подпись)	_ Гасангаджиева А.Г.

Аннотация рабочей программы дисциплины

Дисциплина «Направления и тенденции развития неорганической химии» входит в часть, формируемую участниками образовательных отношений, ОПОП магистратуры по направлению подготовки 04.04.01 Химия.

Дисциплина реализуется на химическом факультете кафедрой неорганической химии и химической экологии.

Содержание дисциплины охватывает круг вопросов, связанных с общими тенденциями и основными направлениями развития неорганической химии в XXI веке: материаловедения, компьютерной, спиновой, фемто- и нанохимии, синтеза фуллеренов и нанотрубок, химии одиночной молекулы.

Дисциплина нацелена на формирование следующих компетенций выпускника: профессиональных – ПК-1, ПК-3, ПК-5, ПК-6.

Преподавание дисциплины предусматривает проведение лекционных, лабораторных занятий и организацию самостоятельной работы студентов.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля: текущей успеваемости — в форме собеседования, устного опроса, тестирования, проведения контрольных работ и коллоквиумов, промежуточной аттестации — в форме зачета.

Объем дисциплины составляет $\underline{3}$ зачетных единицы, в том числе в $\underline{108}$ академических часах по видам учебных занятий:

		Форма							
		промежуточной							
dr.	Контактная работа обучающихся с преподавателем СРС, в								аттестации (зачет,
Семестр	0				дифференцированн				
S	D 9 Harry Haganeran Hagreywaa VCD roy					💆 🖁 Лекци Лаборатор Практичес КСР консульта	числе	ый зачет, экзамен)	
	B	BCE	И						
				занятия	занятия			Н	
2	108	38	16	22				70	зачет

1. Цели и задачи освоения дисциплины

Целью дисциплины является рассмотрение направлений и тенденций развития современной неорганической химии и материаловедения.

Основными задачами решаемыми в процессе изучения курса, являются углубление обучающимися представлений о неорганическом материаловедения, компьютерной, спиновой, фемто- и нанохимии, методах синтеза и исследования фуллеренов и нанотрубок, химии одиночной молекулы.

2. Место дисциплины в структуре ОПОП магистратуры

Дисциплина «Направления и тенденции развития неорганической химии» входит в часть, формируемую участниками образовательных отношений, ОПОП магистратуры по направлению подготовки 04.04.01 Химия.

Курс строится на базе знаний по химическим и физическим дисциплинам, а также высшей математике, объём которых определяется программами химического образования в высшей школе.

3. Компетенции обучающегося, формируемые в результате освоения

дисциплины (перечень планируемых результатов обучения).

Код и наименование	Код и наименование	Планируемые результаты	Процедура
компетенции из ФГОС	индикатора достижения	обучения	освоения
BO	компетенций	·	
ПК-1. Способен	ПК-1.1. Составляет общий	Знает: стратегию проведения	Устный
определять стратегию	план исследования и	реакций неорганической химии	опрос,
проведения реакции и	детальные планы отдельных	Умеет: составлять общий план	письменный
ее результат (состав	стадий	проведения реакций включая	опрос
продуктов и их		отдельные стадии реакций	
структуру,		Владеет: навыками проведения	
возможность		реакций в неорганической химии	
оптимизации процесса	ПК-1.2. Выбирает	Знает: экспериментальные	Устный
и т.п.) на основе	экспериментальные и	методы проведения реакций	опрос,
теоретических знаний в	расчетно-теоретические	Умеет: проводить расчетно-	письменный
области	методы решения поставленной	теоретические исследования	опрос
неорганической химии	задачи исходя из имеющихся	Владеет: навыками оптимизации	
	материальных и временных	имеющихся материальных и	
	ресурсов	временных ресурсов	
ПК-3 Способен	ПК-3.1. Систематизирует	Знает: фундаментальные понятия	Устный
использовать	информацию, полученную в	неорганической химии и	опрос,
фундаментальные	ходе НИР и НИОКР,	материаловедения	письменный
понятия неорганической	анализирует ее и сопоставляет	Умеет: изучать механизмы	опрос
химии и основные	с литературными данными	реакций органических соединений	
теоретические подходы		в ходе НИР и НИОКР	
к изучению механизмов		Владеет: методами	
реакций при решении		систематизации информации и	
задач профессиональной		сопоставления с литературными	
деятельности		данными	
	ПК-3.2. Определяет	Знает: теоретические основы	Устный
	возможные направления	протекания неорганических	опрос,
	развития работ и перспективы	реакций	письменный
	практического применения	Умеет: выбирать направления	опрос
	полученных результатов	развития работ и перспективы	
		практического применения	
		Владеет: методикой поиска	
		теоретических данных	

ПК-5 Способен	ПК-5.1. Интерпретирует	Знает: методы интерпретации	Устный
интерпретировать	результаты неорганического	эксперимента для решения	опрос,
результаты	синтеза с использованием	практических задач органической	письменный
эксперимента и	результатов физико-	ХИМИИ	опрос
теоретических	химического анализа	Умеет: интерпретировать	1
расчетов, применяя их	полученных веществ	результаты синтеза по физико-	
при решении		химическим данным анализа	
практических задач в		Владеет: методами	
области		интерпретации результатов для	
неорганической химии		решения практических задач	
	ПК-5.2. Использует знание	Знает: теоретические основы	Устный
	теоретических основ физико-	физико-химических методов	опрос,
	химических методов анализа	анализа	письменный
	при выборе способов изучения	Умеет: выбирать методы	опрос
	строения и структуры	изучения строения и структуры	
	органических веществ	органических веществ	
		Владеет: методами физико-	
		химического анализа	
ПК-6. Способен	ПК-6.1. Проводит поиск	Знает: патентное право	Устный
проводить патентно-	специализированной	Умеет: оформлять патенты в	опрос,
информационные	информации в патентно-	области органической химии	письменный
исследования в	информационных базах	Владеет: навыками поиска	опрос
выбранной области	данных	научной информации в базах	
химии и/или смежных		данных патентов	
наук	ПК-6.2. Анализирует и	Знает: методы обобщения	Устный
	обобщает результаты	патентной информации	опрос,
	патентного поиска по тематике	Умеет: анализировать	письменный
	проекта в выбранной области	результаты патентного поиска	опрос
	химии (химической	Владеет: методами поиска и	
	технологии)	анализа патентной информации	

4. Объем, структура и содержание дисциплины 4.1. Объем дисциплины составляет 3 зачетных единицы, 108 академических часов.

4.2. Структура дисциплины

№ п/п	Разделы и темы дисциплины		p	ды уче(вкл самосто работу с удоемко	іючая эятельн тудент	іую 0в и	ная работа	Формы текущего контроля успеваемости (по неделям семестра) Форма
		Семестр	Лекции	Практические занятия	Лабораторн ые занятия	Контроль самост. раб.	Самостоятельная работа	промежуточной аттестации (по семестрам)
	Модуль 1. Компьютерное мо	одели]	рова	ние. На	ностру	ктуры.		
1	Компьютерное моделирование молекул и химических реакций.	2	2		4		10	Опрос
2	Синтез и исследование наноструктур.	2	2		4		14	Опрос
	Итого по модулю 1:		4		8		24	Коллоквиум
	Модуль 2. Фулерены, нанотрубки. Спиновая химия							
1	Синтез и исследование фуллеренов и нанотрубок	2	4		4		12	Контрольная работа

2	Спиновая химия	2	2		4		10	Опрос
	Итого по модулю 2:		6		8		22	Коллоквиум
	Модуль 3. Фемтохимия. Химия одиночной молекулы							
1	Фемтохимия	2	2		4		10	Контрольная работа
2	Химия одиночной	2	4		2		14	Опрос
	молекулы	2	4		2		14	Onpoc
	Итого по модулю 3:		6		6		24	Коллоквиум
	ИТОГО:		16		22		70	зачет

4.3. Содержание дисциплины, структурированное по темам, разделам и модулям.

4.3.1. Содержание лекционных занятий по дисциплине.

Модуль 1. Компьютерное моделирование. Наноструктуры.

- 1. Компьютерное моделирование молекул и химических реакций. Современные направления компьютерной химии: визуализация строения и свойств систем; прогнозирование физико-химических свойств; количественное описание взаимосвязи строение-структура-активность для широкого спектра веществ различного назначения; создание новых компьютерных программ поиска и отбора новых материалов.
- **2.** Синтез и исследование наноструктур. Основные направления исследований в нанохимии: разработка методов сборки крупных молекул из атомов и способов направленной сборки с образованием фрактальных, каркасных, трубчатых и столбчатых наноструктур, разработка теории физико-химической эволюции наносистем.

Модуль 2. Фулерены, нанотрубки. Спиновая химия.

- 3. Синтез и исследование фуллеренов и нанотрубок. Фуллерены и нанотрубки классы наноструктур. Критерии новые наноматериалов: критический размер функциональные свойства. И Размерный Корреляционный Классификация эффект. радиус. наноматериалов.
- **4.** Спиновая химия. Спин в магнитном поле. Двуспиновая система и ее спиновые состояния. Спиновые явления: магнитно-полевой эффект, магнитный изотопный эффект, магнитная поляризация ядер и электронов. Магнитные эффекты индуцированные переменными магнитными полями. Спиновый катализ.

Модуль 3. Фемтохимия. Химия одиночной молекулы.

- **5. Фемтохимия.** Введение. Особенности фемтосекундных импульсов. Основные задачи фемтохимии. Экспериментальные методы фемтохимии. Кинетика сверхбыстрых химических реакций. Динамика внутримолекулярных процессов и переходного состояния. Перспективы фемтохимии.
- **6. Химия одиночной молекулы.** Одиночные молекулы как объект исследования. Люминесценция отдельных молекул. Тестирование молекулярных сайтов. Молекулярная динамика. Электронная спектроскопия одиночных молекул. Функционирование одиночных молекул.

4.3.2. Темы лабораторных занятий (лабораторный практикум) Модуль 1. Компьютерное моделирование. Наноструктуры.

- **1. Компьютерное моделирование молекул и химических реакций.** Изучение электронного строения и установление структуры молекул (по выбору преподавателя) на основе компьютерных расчетов, используя подходы квантовой химии.
- **2.** Синтез и исследование наноструктур. Создание и регулирование пространственной организации наноструктур. Нанокатализаторы для химической промышленности; нанолекарства для терапии, хирургии и стоматологии; методы внутриопухолевой нанокристаллизации; химические сенсоры с ультрадисперсной активной фазой.

Модуль 2. Фулерены, нанотрубки. Спиновая химия.

- **3.** Синтез и исследование фуллеренов и нанотрубок. Фуллереновые полимеры, пленки, кристаллы (фуллериты), допированные кристаллы (фуллериды). Многооболочечные фуллерены. Гибридные наноматериалы.
- **4.** Спиновая химия. ЭПР и ЯМР спектроскопия как методы наблюдения за спиновым состоянием частиц.

Модуль 3. Фемтохимия. Химия одиночной молекулы.

- **5. Фемтохимия.** Экспериментальные методы фемтохимии. Динамика внутримоле-кулярных процессов и переходного состояния при химических превращениях. Управление внутримолекулярной динамикой и элементарным химическим актом.
- 6. Химия одиночной молекулы. Сканирующая туннельная спектроскопия. Визуализация молекул ИΧ движений. Туннельная И спектроскопия. Химия одиночной молекулы. Одиночная высокоспиновая молекула как наномагнит. Спектроскопия комбинационного рассеяния одиночных молекул. Электропроводность одиночных молекул. Механика и одиночных молекул. Наномеханика механохимия макромомолекул. Наномеханика на поверхности. Оптический пинцет и биомеханика.

5. Образовательные технологии

B требованиями ΦΓΟС BO соответствии реализация c компетентностного подхода предусматривает широкое использование при неорганической проведении занятий ПО химии инновационных (объяснительно-иллюстративное обучение, предметно-ориентированное обучение, профессионально-ориентированное обучение, проектная обучения, организация самостоятельного методология обучения, интерактивные методы обучения) и традиционных (лекция-визуализация, компьютерные симуляции, лабораторная лекция-презентация, работа, самостоятельная работа) технологий обучения. Удельный вес занятий, проводимых в интерактивных формах составляет менее 30 % не аудиторных занятий. Предполагается встреча с ведущими учеными республики.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов имеет основную цель – обеспечить качество подготовки выпускаемых специалистов в соответствии с требованиями ФГОС ВО.

Формы и виды самостоятельной работы студентов по дисциплине устанавливаются следующие:

- проработка дополнительных тем, не вошедших в лекционный материал, но обязательных согласно учебной программе дисциплины;
- проработка пройденных лекционных материалов по конспекту лекций, учебникам и пособиям на основании вопросов, подготовленных преподавателем;
- подготовка к лабораторным занятиям;
- подготовка к промежуточному и рубежному контролю;
- подготовка научных докладов и творческих работ.

Контроль результатов самостоятельной работы осуществляется преподавателем в течение всего семестра в виде:

- устного опроса (фронтального и индивидуального);
- тестирования;
- проведения письменной (контрольной) работы;
- проведения коллоквиума;
- написания и обсуждения творческого задания на определенную тему.

No	Вид самостоятельной	Вид контроля	Учебно-методическое
	работы	-	обеспечение
1	Теоретическая подготовка. Проработка учебного материала.	Устный опрос, тестирование	Лекции, рекомендованная литература, интернет ресурсы. См. разделы 4.3, 7. данного документа
2	Подготовка к отчетам по лабораторным работам	Проверка выполнения расчетов, оформления работы в лабораторном журнале и проработки вопросов к текущей теме по рекомендованной литературе	См. разделы 4.3.2, 7. данного документа
3	Решение задач	Проверка задач, заданных на дом, Решение у доски.	См. разделы 4.3, 7. данного документа
4	Подготовка к коллоквиуму	Промежуточная аттестация в форме письменной работы	См. разделы 4.3; 7. данного документа
5	Подготовка к зачету	Устный опрос	См. разделы 4.3. 7. данного документа

- 1. Текущий контроль: подготовка к отчетам по лабораторным работам.
- 2. Текущий контроль: решение экспериментальных и расчетных задач.
- 3. Промежуточная аттестация в форме контрольной работы.

Текущий контроль успеваемости осуществляется непрерывно, протяжении всего курса. Прежде всего, это устный опрос по ходу лабораторных занятий, выполняемый оперативной ДЛЯ активизации внимания студентов и оценки их уровня восприятия. Результаты устного опроса учитываются при выборе индивидуальных задач для решения. Каждую неделю осуществляется проверка выполнения расчетов, оформления работы в лабораторном журнале.

Промежуточный контроль проводится в форме контрольной работы, в которой содержатся теоретические вопросы и задачи.

Итоговый контроль проводится в виде зачета

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Типовые контрольные задания.

Примерные контрольные задания для проведения текущего контроля.

Модуль 1. Компьютерное моделирование. Наноструктуры.

- 1. Компьютерное моделирование молекул и химических реакций.
- 2. Современные направления компьютерной химии: визуализация строения и свойств систем; прогнозирование физико-химических свойств.
- 3. Количественное описание взаимосвязи строение-структура-активность для широкого спектра веществ различного назначения.
- 4. Создание новых компьютерных программ поиска и отбора новых материалов.
- 5. Синтез и исследование наноструктур.
- 6. Основные направления исследований в нанохимии:
- 7. Разработка методов сборки крупных молекул из атомов и способов направленной сборки с образованием фрактальных, каркасных, трубчатых и столбчатых наноструктур.
- 8. Разработка теории физико-химической эволюции наносистем.

Модуль 2. Фулерены, нанотрубки. Спиновая химия.

- 1. Фуллерены и нанотрубки новые классы наноструктур.
- 2. Критерии определения наноматериалов: критический размер и функциональные свойства.
- 3. Размерный эффект. Корреляционный радиус.
- 4. Классификация наноматериалов.
- 5. Спиновая химия.
- 6. Спин в магнитном поле. Двуспиновая система и ее спиновые состояния.
- 7. Спиновые явления: магнитно-полевой эффект, магнитный изотопный эффект, магнитная поляризация ядер и электронов.
- 8. Магнитные эффекты индуцированные переменными магнитными полями.
- 9. Спиновый катализ.

Модуль 3. Фемтохимия. Химия одиночной молекулы.

- 1. Введение. Особенности фемтосекундных импульсов.
- 2. Основные задачи фемтохимии.
- 3. Экспериментальные методы фемтохимии.
- 4. Кинетика сверхбыстрых химических реакций.
- 5. Динамика внутримолекулярных процессов и переходного состояния.
- 6. Перспективы фемтохимии.
- 7. Химия одиночной молекулы
- 8. Одиночные молекулы как объект исследования.
- 9. Люминесценция отдельных молекул. Тестирование молекулярных сайтов.

- 10. Молекулярная динамика.
- 11. Электронная спектроскопия одиночных молекул.
- 12. Функционирование одиночных молекул.

Контрольные вопросы для промежуточной аттестации (сдачи экзамена)

- 1. Современные направления компьютерной химии (визуализация строения свойств физико-химических систем, прогнозирование свойств, строение-структура-активность, количественное описание взаимосвязи поиска и отбора компьютерных программ создание новых материалов).
- 2. Основные направления исследований в нанохимии (разработка методов сборки крупных молекул из атомов, способов направленной сборки с образованием фрактальных, каркасных, трубчатых и столбчатых наноструктур (привести примеры).
- 3. Теории физико-химической эволюции наносистем.
- 4. Создание и регулирование пространственной организации наноструктур.
- 5. Критерии определения наноматериалов: критический размер и функциональные свойства.
- 6. Размерный эффект. Корреляционный радиус.
- 7. Классификация наноматериалов.
- 8. Нанокатализаторы для химической промышленности;
- 9. Нанолекарства для терапии, хирургии и стоматологии; методы внутриопухолевой нанокристаллизации;
- 10. Химические сенсоры с ультрадисперсной активной фазой.
- 11. Фуллерены и нанотрубки новые классы наноструктур.
- 12. Фуллереновые полимеры, пленки, кристаллы (фуллериты), допированные кристаллы (фуллериды). Многооболочечные фуллерены. Гибридные наноматериалы.
- 13. Спиновые явления: магнитно-полевой эффект, магнитный изотопный эффект, магнитная поляризация ядер и электронов.
- 14. Магнитные эффекты индуцированные переменными магнитными полями. Спиновый катализ.
- 15. ЭПР и ЯМР спектроскопия как методы наблюдения за спиновым состоянием частиц.
- 16. Особенности фемтосекундных импульсов.
- 17. Основные задачи фемтохимии.
- 18. Экспериментальные методы фемтохимии. Кинетика сверхбыстрых химических реакций. Динамика внутримолекулярных процессов и переходного состояния.
- 19. Экспериментальные методы фемтохимии. Динамика внутримолекулярных процессов и переходного состояния при химических превращениях.
- 20. Управление внутримолекулярной динамикой и элементарным химическим актом. Перспективы фемтохимии.
- 21. Одиночные молекулы как объект исследования. Люминесценция отдельных молекул.
- 22. Электронная спектроскопия одиночных молекул. Молекулярная

динамика. Функционирование одиночных молекул.

- 23. Визуализация молекул и их движений. Сканирующая туннельная спектроскопия.
- 24. Химия, механика и механохимия одиночных молекул.
- 25. Наномеханика макромомолекул. Наномеханика на поверхности.
- 7.2. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

- посещение занятий 20 баллов,
- выполнение лабораторных заданий (допуск, выполнение, сдача работ) -60 баллов,
- выполнение домашних (аудиторных) контрольных работ 20 баллов.

Промежуточный контроль по дисциплине включает:

письменная контрольная работа - 100 баллов

Зачет сдают в устной или письменно-устной форме в виде ответов на задания; если понадобится, то задаются дополнительно контрольные вопросы.

Если хотя бы одна из компетенций не сформирована, то положительная оценка по дисциплине не может быть выставлена.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины:

- а) основная литература:
- 1. Фостер, Л. Нанотехнологии. Наука, инновации и возможности / Л. Фостер; пер. А.В. Хачоян. Москва: РИЦ "Техносфера", 2008. 337 с. (Мир материалов и технологий). ISBN 978-5-94836-161-1; То же [Электр. ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=135424
- 2. Суздалев, Игорь Петрович. Электрические и магнитные переходы в нанокластерах и наноструктурах: [монография] / Суздалев, Игорь Петрович. М.: URSS: [КРАСАНД, 2012]. 474 с.: ил. Библиогр.: с. 458-474. ISBN 978-5-396-00416-0: 875-00.
- 3. Рамбиди, Н.Г. Физические и химические основы нанотехнологий / Н.Г. Рамбиди, А.В. Березкин. Москва: Физматлит, 2009. 455 с. ISBN 978-5-9221-0988-8; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=76611
- 4. Бучаченко А.Л. Химия на рубеже веков: свершения и прогнозы // Успехи химии,1999. Том 68. С. 85-102
- б) дополнительная литература:
- 1. Верещагина, Я.А. Инновационные технологии: введение в нанотехнологии: учебное пособие / Я.А. Верещагина; Федеральное агенство по образованию, Государственное образовательное учреждение высшего профессионального образования "Казанский государственный технологический университет". Казань: КГТУ, 2009. 115 с.: ил., табл., схем. Библ. в кн. ISBN 978-5-7882-0778-0; То

URL: http://biblioclub.ru/index.php?page=book&id=270541

- 2. Кларк Т. Компьютерная химия. М.: Мир, 1990. 383 с
- 3. Наноструктурные материалы 2014: Беларусь Россия Украина (НАНО-2014): материалы IV Международной научной конференции. Минск, 7–10 окт. 2014 г.: научное издание / Национальная академия наук Беларуси, Научно-практический центр НАН Беларуси по материаловедению. Минск: Белорусская наука, 2014. 432 с.: ил. ISBN 978-985-08-1762-4; То же [Электр. ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=330567
- 4. Бучаченко А.Л. Новые горизонты химии: одиночные молекулы // Успехи химии, 2006. Т.75. №1. С.3-26.

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

Электронные учебные ресурсы:

- 1. eLIBRARY.RU [Электронный ресурс]: электронная библиотека / Науч. электрон. б-ка. Москва, 1999. Режим доступа: http://elibrary.ru/defaultx.asp. Яз. рус., англ.
- 2. Электронный каталог НБ ДГУ [Электронный ресурс]: база данных содержит сведения о всех видах лит, поступающих в фонд НБ ДГУ/Дагестанский гос. ун-т. Махачкала, 2010 Режим доступа: http://elib.dgu.ru, свободный
- 3. Moodle [Электронный ресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. Махачкала, г. Доступ из сети ДГУ или после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/.
- 4. https://ibooks.ru/
- 5. www.book.ru/
- 6. Химические серверы ChemWeb, ChemExpress Online, ChemNet.com http://www.Himhelp.ru
- 7. Каталог образовательных интернет-ресурсов http://www.edu.ru/

10. Методические указания для обучающихся по освоению программы

Методические указания студентам должны раскрывать рекомендуемый режим и характер учебной работы по изучению теоретического курса (или его раздела/части), практических и/или семинарских занятий, лабораторных работ (практикумов), и практическому применению изученного материала, по выполнению заданий для самостоятельной работы, по использованию информационных технологий и т.д. Методические указания должны мотивировать студента к самостоятельной работе и не подменять учебную литературу.

Указывается перечень учебно-методических изданий, рекомендуемых студентам для подготовки к занятиям и выполнения самостоятельной работы, а также методические материалы на бумажных и/или электронных носителях, выпущенные кафедрой своими силами и предоставляемые студентам во время занятий:

- рабочие тетради студентов;
- наглядные пособия;
- глоссарий (словарь терминов по тематике дисциплины);
- тезисы лекций;

• раздаточный материал и др.

Самостоятельная работа студентов, предусмотренная учебным планом в объеме не менее 50-70% общего количества часов, должна соответствовать более глубокому усвоению изучаемого курса, формировать навыки исследовательской работы и ориентировать студентов на умение применять теоретические знания на практике.

Задания для самостоятельной работы составляются по разделам и темам, по которым не предусмотрены аудиторные занятия, либо требуется дополнительно проработать и проанализировать рассматриваемый преподавателем материал в объеме запланированных часов.

Задания по самостоятельной работе могут быть оформлены в виде таблицы с указанием конкретного вида самостоятельной работы:

- ❖ конспектирование первоисточников и другой учебной литературы;
- проработка учебного материала (по конспектам лекций учебной и научной литературе) и подготовка докладов на семинарах и практических занятиях, к участию в тематических дискуссиях и деловых играх;
- работа с нормативными документами и законодательной базой;
- поиск и обзор научных публикаций и электронных источников информации, подготовка заключения по обзору;
- ❖ выполнение контрольных работ, творческих (проектных) заданий, курсовых работ (проектов);
- ◆ решение задач, упражнений;
- ❖ написание рефератов (эссе);
- работа с тестами и вопросами для самопроверки;
- ❖ выполнение переводов на иностранные языки/с иностранных языков;
- моделирование и/или анализ конкретных проблемных ситуаций ситуации;
- обработка статистических данных, нормативных материалов;

Самостоятельная работа должна носить систематический характер, быть интересной и привлекательной для студента.

Результаты самостоятельной работы контролируются преподавателем и учитываются при аттестации студента (зачет, экзамен). При этом проводятся: тестирование, экспресс-опрос на семинарских и практических занятиях, заслушивание докладов, проверка письменных работ и т.д.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

При проведении занятий используются:

а) технические средства:

компьютерная (проектор, техника средства связи экран, И проводится компьютерное тестирование, демонстрация видеокамера), мультимедийных материалов, информационные справочные электронные версии учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренных учебной

рабочей программой.

б) программные системы:

операционные системы Microsoft Windows XP, Microsoft Vista; поисковые системы Yandex, Google, Rambler, Yahoo;

специализированное программное обеспечение СДО Moodle, SunRAV BookOffice Pro, SunRAV TestOfficePro;

программное обеспечение по химии. Пакет офисных приложений OfficeStd 2016 RUS OLP NL Acdmc, Контракт №219-ОА от 19.12.2016 г. с ООО «Фирма АС»..

Acrobat Professional 9 Academic Edition и Acrobat Professional 9 DVD Set Russian Windows ГК №26-OA от «07» декабря 2009 г

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

В соответствии с требованиями ФГОС ВО кафедра имеет специально оборудованную учебные аудитории для проведения лекционных и практических занятий, помещения для лабораторных работ на группу студентов из 12 человек и вспомогательное помещение для хранения химических реактивов и профилактического обслуживания учебного и учебно-научного оборудования.

Помещения для лекционных и практических занятий укомплектованы комплектами электропитания ЩЭ (220 В, 2 кВт, в комплекте с УЗО), специализированной мебелью и оргсредствами (доска аудиторная для написания мелом и фломастером, стойка-кафедра, стол лектора, стул-кресло, столы аудиторные двухместные (1 на каждых двух студентов), стул аудиторный (1 на каждого студента), а также техническими средствами обучения (экран настенный с электроприводом и дистанционным управлением, мультимедиа проектор с ноутбуком).

Лабораторные занятия проводятся в специально оборудованных лабораториях с применением необходимых средств обучения (лабораторного оборудования, образцов, нормативных и технических документов и т.п.). Помещения лабораторных практикумов укомплектованы специальной учебно-лабораторной мебелью (в том числе столами с химически стойкими **учебно-научным** лабораторным покрытиями), оборудованием, измерительными приборами и химической посудой, в полной мере обеспечивающими выполнение требований программы по неорганической химии. Материально-технические средства для проведения лабораторного практикума по дисциплине неорганическая химия включает в себя: специальное оборудование (комплект электропитания ЩЭ, водоснабжение), лабораторное оборудование (лабораторные весы типа ВЛЭ 250 и ВЛЭ 1100, кондуктометр, термометры, рН-метры, печи трубчатая и муфельная, сушильный шкаф, устройство для сушки посуды, дистиллятор, очки колбонагреватели, штативы лабораторные, защитные, штативы пробирок), Лабораторная посуда (Стаканы (100, 250 и 500 мл), колбы конические (100 мл), колбы круглодонные (250 мл) колбы плоскодонные (100, 250 и 500 мл), колбы Вюрца (250 и 100 мл), цилиндры мерные (100, 25 и 50 мл), воронки капельные, химические, воронки для хлора, воронки Мюнке, промывалки, U-образные трубки, реакционные трубки, фарфоровые чашки, тигли фарфоровые, холодильники прямой, обратный, воронки лабораторные, дефлегматоры), специальная мебель и оргсредства (доска аудиторная для написания мелом и фломастером, мультимедиа проектор (переносной) c ноутбуком, экран, стол преподавателя, стул-кресло преподавателя, столы лабораторные прямоугольного профиля с твердым химическим и термически стойким покрытием, табуреты, вытяжные шкафы лабораторные, мойка).

При проведении занятий используется vчебное лабораторное И Атомно-абсорбционный спектрометр, Contr AA-700, AnalytikJena, Германия; Спектрофотометр UV-3600 с интегрирующей сферой LISR-3100, UV-3600, Япония; Многоцелевой экспериментальный массспектрометрический комплекс ЭМК, Россия: Рентген-флуоресцентный спектрометр EDX-800 HS, Япония; ИК-Фурье спектрометр ИнфраЛЮМ ФТ-02, Россия; Спектрофлуориметр F-700, Япония; Спектрофотометр, SPECORD 210 PlusBU, AnalytikJena, Германия; Спектрометрический комплекс МДР-41 в комплекте с азотным проточным криостатом OptCryo198, Россия; Микроволновая система минерализации проб под давлением, TOPwaveIV, AnalytikJena, Германия; Система капиллярного электрофореза, Капель-105M, ЛЮМЕКС, Санкт-Петербург; Рентгеновский дифрактометр, EmpyreanSeries 2 Panalytical (Голландия); Дифференциальный сканирующий Фирма калориметр, **NETZSCH** STA 409 PC/PG, Германия; Лабораторная экстракционная система, SFE1000M1-2-FMC-50, Waters, США; Хроматомасс-спектрометр, 7820 Маэстро, США, Россия; Высокоэффективный жидкостной хроматограф, Agilent 1220 Infinity, США