МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ <u>Физическая кинетика</u>

Кафедра Общей и теоретической физики, физического факультета

Образовательная программа

03.03.02 Физика

Профили подготовки фундаментальная физика, медицинская физика

Уровень высшего образования <u>Бакалавриат</u>

Форма обучения *очная*

Статус дисциплины: обязательная часть

Махачкала 2021

Рабочая программа дисциплины «Физическая кинетика» составлена в 2021 году в соответствии с требованиями ФГОС ВО – бакалавриат по направлению подготовки <u>03.03.02 - «Физика»</u> от «<u>8</u>» <u>августа</u> 2020г. № <u>891</u>.

Разработчик: *кафедра общей и теоретической физики Алисултанов 3.3.*, *д.ф.-м.н.*

Рабочая программа дисциплины одобрена:

на заседании кафедры общей и теоретической физики от «3» марта 2021 г., протокол №6

Зав. кафедрой

Муртазаев А.К.

На заседании Методической комиссии Физического факультета от «30» июня 2021г., протокол №10.

Председатель

Мурмева Ж.Х.

Рабочая программа дисциплины согласована с учебно- методическим управлением «09» июля 2021г.

Ahr

Начальник УМУ

Гасангаджиева А.Г

Аннотация рабочей программы дисциплины

Дисциплина <u>«Физическая кинетика»</u> входит в обязательную часть образовательной программы бакалавриата по направлению 03.03.02 - «Физика».

Дисциплина реализуется на физическом факультете кафедрой общей и теоретической физики.

Содержание дисциплины охватывает круг вопросов, связанных с теорией процессов в статистически неравновесных системах. Рассматриваются кинетические свойства газов и твердых тел. Достаточное внимание уделено изучению плазменного состояния вещества.

Дисциплина нацелена на формирование следующих компетенций выпускника: ОПК-1, ПК-3, ПК-7, ПК-10.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: *лекции, практические занятия, самостоятельную работу.*

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме *контрольной работы и коллоквиума* и промежуточный контроль в форме *зачета*.

Объем дисциплины 2 зачетные единицы, в том числе в академических часах по видам учебных занятий

Семе	Учебные занятия							Форма	
стр		в том числе						промежуточн	
		Контактная работа обучающихся с преподавателем СРС, в						ой аттестации	
	Всего	Всего		-	том	(зачет,			
			Лекции	Лекции Лабораторн Практичес КСР консульта					дифференцир
				ые занятия	кие		ции	экзаме	ованный
					занятия			Н	зачет,
									экзамен
8	72	36	26	-	26	-	-	20	Экзамен

1. Цели освоения дисциплины

Физическая кинетика - это один из разделов теоретической физики, который является основным в общей системе современной подготовки физиков — профессионалов. Задачей дисциплины является создание фундаментальной базы знаний, на основе которой в дальнейшем можно развивать более углубленное и целеустремленное изучение разделов физики в рамках теоретической физики — специализированных дисциплин.

Первая - эта мировоззренческая и методологическая направленность курса. формировать у студентов единую, стройную, непротиворечивую физическую картину окружающего нас мира природы. Для этого необходимо обобщить экспериментальные данные и на их основе наблюдаемых явлений со строгим произвести построение моделей обоснованием приближений и рамок, в которых эти модели действуют. Во вторых, в рамках единого подхода классической физики необходимо рассматривать все основные явления и процессы происходящие в природе, установить связь между ними, вывести основные законы и получить их выражения в виде математических уравнений, в третьих, необходимо научить студентов самостоятельно применять полученные теоретические знания для решения конкретных задач с последующим анализом и оценкой полученных результатов.

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина входит в обязательную часть образовательной программы бакалавриата по направлению 03.03.02 - «Физика». Является основолагающей вместе с такими дисциплинами как: статистическая физика, термодинамика, математический анализ, аналитическая геометрия, дифференциальное интегральное исчисление, уравнения математической физики, механика, магнетизм, оптика, электричество И теоретическая механика, высшая математика, квантовая механика.

Курс посвящен проблемам процессов в статистически неравновесных системах. Освоение дисциплины «Физическая кинетика» необходимо для специалистов в области изучения плазмы, а также при решении прикладных задач математической физики.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

обучения).	**	
Код компетенции из ФГОС ВО	Наименование компетенции из ФГОС ВО	Планируемые результаты обучения
ОПК-1	Способен применять базовые знания в области физикоматематических и (или) естественных наук в сфере своей профессиональной деятельности	Знает: - основные понятия, идеи, методы, подходы и алгоритмы решения теоретических и прикладных задач физики; - новые методологические подходы к решению задач в области профессиональной деятельности. Умеет: - реализовать и совершенствовать новые методы, идеи, подходы и алгоритмы решения теоретических и прикладных задач в области профессиональной деятельности. Владеет: - навыками реализовать и совершенствовать новые методы, идеи, подходы и алгоритмы решения теоретических и прикладных задач в области профессиональной деятельности.
ПК-3	Способен осваивать и использовать базовые научно-теоретические знания и практические умения по предмету в профессиональной деятельности	Знает: содержание, сущность, закономерности, принципы и особенности изучаемых явлений и процессов, базовые теории в предметной области; закономерности, определяющие место предмета в общей картине мира; программы и учебники по преподаваемому предмету; основы общетеоретических дисциплин в объеме, необходимом для решения педагогических, научно-методических и организационно-управленческих задач (педагогика, методика преподавания предмета.) Умеет: анализировать базовые предметные научно-теоретические представления о сущности, закономерностях, принципах и особенностях изучаемых явлений и процессов. Владеет: навыками понимания и системного анализа базовых научно-теоретических представлений для решения профессиональных задач

ПК-7	Способен планировать работу и выбирать адекватные методы решения научно-исследовательских задач в выбранной области физики смежных с физикой науках	Знает: теоретические и экспериментальные основы современных методов исследований изучаемых процессов и явлений. Умеет: самостоятельно ставить задачу и решать ее; использовать достижения современных информационно-коммуникационных технологий для выполнения экспериментальных и теоретических исследований; анализировать и интерпретировать результаты эксперимента на основе современных теоретических моделей; правильно организовать и планировать эксперимент; правильно применять различные теоретические модели для анализа результатов эксперимента. Владеет: основами современных методов экспериментальных исследований в данной области науки; основами теоретических разработок в своей области исследований
ПК-10	Владеет методами теоретической физики в применении к профессиональным задачам.	Знает: основные физические явления и основные принципы квантовой теории, границы их применения и применение принципов в важнейших практических приложениях; основные физические величины и константы теоретической физики, их определения, смысл, способы и единицы измерения; фундаментальные физические эксперименты в области исследования частиц и волн, и их роль в развитии науки. Умеет: объяснить основные наблюдаемые природные и техногенные явления, эффекты и точки зрения фундаментальных физических взаимодействий; указать какие законы описывают то или иное явление (эффект); интерпретировать смысл физических величин и понятий; использовать методы адекватного физического и математического моделирования и методы теоретического анализа к решению конкретных проблем. Владеет: навыками использования основных физических законов и принципов в практических приложениях; навыками применения основных методов теоретического анализа для решения естественнонаучных задач; анализом полученных экспериментальных результатов в исследовании процессов, происходящих в микромире, адекватное соответствие результатов той или иной теоретической модели

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет 2 зачетные единицы - 72 академических часа.

4.2. Структура дисциплины.

/п		Семестр	эместра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			ую ов и	ьная работа	Формы текущего контроля успеваемости (по неделям семестра)
Л⁰ п/п	Раздел дисциплины		Неделя семестра	Лекции	Практические занятия	Лабораторные занятия	Контроль самост. раб.	Самостоятельная работа	Форма промежуточной аттестации (по семестрам)
	Модуль 1. Основ	вные і	поло	жени	я и кин	етичес	кая тео	рия	газов.
1.	Теория случайных процессов и уравнение Смолуховского.			2	2	1	ı	2	опрос
2.	Общая структура кинетического уравнения для одночастичной функции распределения.			4	4	-	-	2	опрос
3.	Кинетическое уравнение Больцмана. Н - теорема.	8		2	2	1	1	2	опрос
4.	Приближенные решения кинетического уравнения.			2	2	-	-	4	опрос
5.	Динамический вывод кинетического уравнения.			2	2	-	-	2	опрос
Итого по модулю 1				12	12	-	-	12	коллоквиум
	Модуль 2. Диффузио	нное	приб	<u> </u> 5лиже	ние и б	есстол	кновит	ельн	ая плазма.
1.	Диффузионное приближение и уравнение Фоккезе - Планка.			2	2	ı	1	2	опрос
2.	Диффузия легкого газа в тяжелом и диффузия тяжелого в легком.			2	4	-	-	2	опрос
3.	Самосогласованное поле. Уравнение Власова.	8		4	2	-	-	2	опрос
4.	Диэлектрическая проницаемость бесстолкновительной плазмы.			4	2	-	-	2	опрос
5.	Столкновения в плазме.			2	4	-	-		опрос
	Итого по модулю 2			14	14	-	-	8	зачет
	ИТОГО				18	-	-	20	

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине.

Модуль 1. Основные положения и кинетическая теория газов.

Теория случайных процессов. Броуновское движение. Уравнение Смолуковского. Общая структура кинетического уравнения для одночастичной функции распределения. Принцип детального равновесия. Кинетическое уравнение и H — теорема Больцмана. Приближенное решение кинетического уравнения. Цепочка уравнений Боголюбова. Динамический ввод кинетического уравнения.

Модуль 2. Условия равновесия систем и фазовые переходы.

Диффузионное приближение и уравнение Фоккера - Планка. Диффузия легкого газа в тяжелом. Диффузия тяжелого газа в легком. Приближение самосогласованного поля уравнение Власова. Плазменные колебания и затухания Ландау. Диэлектрическая проницаемость бесстолкновительной плазмы. Столкновения в плазме, интегралы столкновений. Локальное распределение Максвелла. Уравнение кинетического баланса.

4.3.2. Содержание лабораторно-практических занятий по дисциплине.

Nº		Задачи			
л/п	Наименование темы	Аудиторные	Внеаудиторные		
11/11	Hanwenobanne rembi	занятия	занятия		
1	Теория случайных процессов.	[4] 16.3, 16.5	[5], 11.2		
2	Уравнение Фоккера-Планка.	[5] 11.4, 11.5	[5] 11.6		
3	Характер движения броуновской	[5] 11.18, 11.1	[5] 11.18, 11.20		
	частицы.	[5] 11.10, 11.1	[5] 11.10, 11.20		
4	Кинетическое уравнение Больцмана.	[5] 12.1, 12.2	[5]12.3, 12.4		
5	Общая структура кинетического	[3] чл. v пораг 2	[3] чл. v задача 27		
	уравнения.		[5] 131. У Зада 1а 27		
6	Кинетическое уравнение Больцмана.	[5] 12.5, 12.6	[5]12.7		
7	Кинетическое уравнение Власова.	[5] 12.9, 12.10	[5]12.11, 12.12		
8	Кинетическое уравнение Власова.	[5] 12.13, 12.14	[4] 16.9		

5. Образовательные технологии

В течение семестра студенты посещают лекции, решают задачи, указанные преподавателем, к каждому семинару. В семестре проводятся контрольные работы (на семинарах). Зачет выставляется после решения всех задач контрольных работ, выполнения домашних и самостоятельных работ.

При проведении занятий используются компьютерные классы, оснащенные современной компьютерной техникой. При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа проекционным оборудованием и интерактивной доской.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

Для подготовки к занятиям также подготовлен электронный курс лекций, который в скором времени разместят на сайте ДГУ. Данный электронный курс лекция будет способствовать подготовке к сдаче зачета.

В рамках учебного процесса предусмотрено приглашение для чтения лекций ведущих ученых из центральных вузов и академических институтов России.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов:

- проработка учебного материала (по конспектам лекций учебной и научной литературе) и подготовка докладов на семинарах и практических занятиях;
 - написание рефератов;
 - работа с тестами и вопросами для самопроверки;
 - решение некоторых задач с применением компьютера.

Разделы и темы для самостоятельного изучения	Виды и содержание самостоятельной работы			
Основные представления физической кинетики. Случайные процессы.	Случайные процессы и их характеристика. Вычисление вероятностей ω и P . Броуновское движение как пример случайных процессов. Функция распределения и принцип детального равновесия. Уметь вывести уравнение Смолуховского. Рассмотреть характер броуновской частицы и вывести уравнение для функции распределения $\rho(t_0, x_0, \langle z, x \rangle)$ в одномерном случае.			
Структура кинетического уравнения для одночастичной функции	Рассмотреть вопросы, связанные с выводом кинетического уравнения для одночастичной функции распределения. Умение использовать данные уравнения для решения конкретных задач.			

Кинетическое уравнение Больцмана.	Используя уравнение Лиувилля, получить кинетическое уравнение Больцмана и обосновать то, что в правой части уравнения должен быть, так называемый, интеграл столкновений. Получить выражение для интеграла столкновений и знать какой физический смысл имеет он. Рассмотреть возможности применения уравнения Больцмана. Основные положения вывода кинетического уравнения Больцмана. Представления об интеграле столкновений. Понять смысл Н – теоремы. Отметить, что уравнение (кинетическое) Больцмана, даже при простых предположениях о характере взаимодействия между частицами, не может быть решено точно аналитически. Рассмотреть идею одного из приближенных методов решения кинетического уравнения Чапмена (1916г.).					
Диффузионное приближение.	Рассмотреть вопросы диффузии легкого газа в твердом и наоборот. Анализировать уравнение Фоккера — Планка. Уметь вывести уравнение Фоккера-Планка из уравнения Смолуховского для трехмерного случая.					
Самосогласованное поле и уравнение Власова.	Понять смысл самосогласованного поля и почему нужно им пользоваться. Что означает самосогласованное поле. Уметь записывать уравнение Власова для электронов и ионов. Получить уравнение Власова. Рассмотреть проблему собственных частот в линеаризованном уравнении Власова. Построение S -частичной функции распределения. Обоснование того, что зная S -частичную функцию распределения (где S = 1,2,3) мы можем получить и N -частичную. Для системы одинаковых частиц важность наличия такой цепочки уравнений.					
Затухания в бесстолкновительной плазме.	Знать о том, что и в бесстолкновительной плазме могут быть затухания. Уметь получать выражение для диэлектрической проницаемости плазмы.					

	Интеграл столкновения Ландау. Флуктуации в
Столкновения в	плазме. Рассмотреть диэлектрическую
плазме.	проницаемость плазмы и показать возникновение диссипации энергии уже бесстолкновительной
	плазме. Затухание Ландау в магнитном поле.

Результаты самостоятельной работы учитываются при аттестации бакалавра (зачет). При этом проводятся: тестирование, опрос на практических занятиях, заслушиваются доклады, проверка контрольных работ и т.д.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Типовые контрольные задания.

7.1.1. <u>Перечень примерных контрольных вопросов и заданий для самостоятельной работы.</u>

- 1. Что изучает предмет «физическая кинетика».
- 2. Каков характер броуновского движения?
- 3. Вид уравнения движения броуновской частицы.
- 4. Как записывается решение уравнения движения броуновской частицы?
- 5. Получить выражение для дисперсии смещения броуновской частицы.
- 6. Получить уравнение Смолуховского.
- 7. Что означает «диффузионное приближение».
- 8. Является ли уравнение Фоккера Планка кинетическим уравнением и какой у него вид?
- 9. Что означает вероятности ω и \vec{P} для случайных процессов?
- 10. Как надо понимать случайный Марковский стационарный процесс.
- 11. Что такое корреляционная функция?
- 12. Для чего нужны кинетические уравнения?
- 13. Как можно определить эволюцию микроскопического состояния?
- 14. Какой вид имеет кинетическое уравнение с релаксационным членом вместо интеграла столкновения?
- 15. Что из себя представляет релаксационный член и зачем он нужен в кинетической теории?
- 16. Для чего введены частичные функции распределения?
- 17. Какова связь между одлночастичной и двучастичной функциями распределения в теории Боголюбова?

- 18. Каков вид цепочки уравнений Боголюбова для неравновесных функций распределения?
- 19. В чем заключается смысл: «самосогласованное поле».
- 20. Получить уравнение Власова для одной из компонент плазмы.
- 21. Что значит линеаризовать уравнение Власова?
- 22. В чем заключается проблема собственных частот в плазме?
- 23. Что такое бесстолкновительная плазма и почему там возникает затухание Ландау?
- 24. В чем заключается принцип детального равновесия?
- 25. Какой вид имеет интеграл столкновения?
- 26. Какие основные соображения приводят к уравнению Больцмана?
- 27. Получить кинетическое уравнение Больцмана.
- 28. Линеаризованное уравнение Больцмана и его вид.
- 29. Какие допущения нужно сделать при рассмотрении кинетике легкого газа в среде из тяжелых частиц?
- 30. Какие явления переноса можно рассмотреть в электронном газе?
- 31. Какова Лоренцова форма интеграла столкновений?
- 32. В чем выражается *H* теорема Больцмана?
- 33. Для чего введено кинетическое уравнение Паули и какое оно имеет вид?
- 34. К каким задачам можно применить кинетическое уравнение Больцмана.
- 35. Можно ли точно решить кинетическое уравнение Больцмана и если нет, почему?
- 36. Каким образом решается приближенное уравнение Больцмана?

7.1.2. Перечень вопросов к зачету.

- 1. Предмет физической кинетики и его роль в системе общеобразовательных профессиональных дисциплин.
- 2. Характер движения броуновской частицы
- 3. Определение дисперсии смещения.
- 4. матрица плотности.
- 5. Классическое и квантовое уравнения Лиувилля.
- 6. Уравнения Смолуховского.
- 7. Диффузионное приближение и уравнение Фокерра Планка
- 8. Определение вероятностей ω и р для случайных процессов.
- 9. Стационарный Марковский случайный процесс
- 10. Уравнения Боголюбова для неравновесной функции распределения.
- 11. Иерархия масштабов времени и принцип сокращенного описания в теории Боголюбова.
- 12. Управляющие уравнения.

- 13. Линеаризованное уравнение Власова.
- 14. Общая структура кинетического уравнения.
- 15. Кинетическое уравнение с релаксационным членом вместо интеграла столкновений.
- 16. Принцип детального равновесия.
- 17. Интеграл столкновений и его выражение.
- 18. Кинетическое уравнение Больцмана.
- 19. Н- теорема Больцмана.
- 20. Лоренцева форма интеграла столкновений.
- 21. Кинетическое уравнение для легкой компоненты в тяжелом.
- 22. Плазменное состояние вещества. Уравнение Власова.
- 23. Понятие о самосогласованном поле.
- 24. Диэлектрическая проницаемость плазмы.
- 25. Плазменные колебания и затухание Ландау.
- 26. Кинетическое уравнение для слабо неоднородной системы.
- 27. Кинетическое уравнение Паули.
- 28. Приближенные решение кинетического уравнения.

7.1.3. <u>Примерные контрольные тесты для текущего и итогового контроля подготовленности студентов по курсу.</u>

1. Уравнение движения броуновской частицы имеет вид:

$$P' + \Gamma P = F(t); P(0) = P_0$$

найти решение этого уравнения

1)
$$P = P_0 e^{-\Gamma t}$$
, 2) $P = P_0 \int_0^t e^{-\Gamma(t-t_1)}$, 3) $P = P_0 e^{-\Gamma t} \int_0^t e^{-\Gamma(t-t_1)} dt$,

4)
$$P = P_0 e^{-\Gamma t} \int_0^t e^{-\Gamma(t-t_1)} F(t_1) dt_1$$
, 5) $P = P_0 e^{-\Gamma t} F(t_1)$.

2. Дисперсия смещения $(x - \overline{x})^2$ броуновской частицы определяется выражением:

1)
$$\int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2} \frac{1 - e^{-\Gamma t_{1}}}{\Gamma} \frac{1 - e^{-\Gamma t_{2}}}{\Gamma} \frac{1}{m^{2}} \varphi(t_{1} - t_{2}), \qquad 2) \int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2} \frac{1 - e^{-\Gamma t_{1}}}{\Gamma},$$

3)
$$\int_{0}^{t} dt_{2} \int_{0}^{t} dt_{1} \frac{1 - e^{\Gamma t_{1}}}{\Gamma} \frac{1}{m^{2}} \varphi(t_{1} - t_{2}),$$
 4)
$$\int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \frac{1 - e^{-\Gamma t}}{\Gamma^{2}} \frac{1}{m^{2}} \varphi(t_{1} - t_{2}),$$

5)
$$\int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2} \frac{1 - e^{-1t_{1}}}{\Gamma^{2}} \varphi(t_{2} - t_{1}) \frac{1}{m^{2}}.$$

3. Уравнение Смолуховского имеет вид:

1)
$$\rho(t_0, x_0/t, x) = \int \rho(t_0, x_0/t, x') dx' \rho(t, x'/t + \Delta t, x) dx$$

2)
$$\rho(t_0, x_0/t + \Delta t, x) = \int \rho(t_0, x_0/t, x') dx' \rho(t, x'/t + \Delta t, x) dx$$

3)
$$\rho(t_0, x_0/t + \Delta t, x) = \int \rho(t_0, x_0/t, x) dx' \rho(t, x'/t, x) dx$$

4)
$$\rho(t,x) = \int \rho(t_0, x/t_0, x') dx'$$

5)
$$\rho(t,x/t+\Delta t,x') = \int \rho(t_0,x_0/t,x)\rho(t,x'/t+\Delta t,x)dx'dx$$

4. Физическая кинетика-это:

- 1) макроскопическая теория процессов, происходящих в неравновесных средах.
- 2) микроскопическая теория процессов, происходящих в неравновесных средах.
 - 3) микроскопическая теория процессов, происходящих в равновесных средах.
 - 4) теория, рассматривающая динамику свойств системы
 - 5) теория, которая рассматривает молекулярное строение вещества.
- 5. Классическое уравнение Лиувилля имеет вид:

1)
$$\frac{\partial \rho}{\partial t} = 0$$
,

2)
$$\frac{\partial \rho}{\partial t} + \{H, \rho(t)\} = 0$$

1)
$$\frac{\partial \rho}{\partial t} = 0$$
, 2) $\frac{\partial \rho}{\partial t} + \{H, \rho(t)\} = 0$, 3) $\frac{d\rho}{dt} + \{H, \rho(t)\} = 0$,

4)
$$\frac{d\rho}{dt} - \{\rho(t), H\} = 0$$

4)
$$\frac{d\rho}{dt} - \{\rho(t), H\} = 0$$
, 5) $\frac{\partial \rho}{\partial t} - \{H, \rho(t)\} = 0$.

6. Квантовое уравнение Лиувилля записывается в виде:

1)

- 7. Матрица плотности определяет:
 - 1) состояние системы, 2) описывает состояние смещанной системы,
- 3) состояние чистого ансамбля, 4) квантово-механическое описание системы, основанное на полном наборе данных о ней,
- 5) квантово-механическое описание системы, основанное на неполном наборе данных о системе,
- 8. Гамильтониан системы с парным взаимодействием между частицами имеет вид:

1)
$$H = \sum_{i} \frac{p}{n}$$

9. Кинетическое уравнение для одночастичной функции распределения $F(t, \vec{r}, \vec{P})$ есть

1)
$$\frac{\partial F}{\partial t} + \frac{\vec{P}}{m} \frac{\partial F}{\partial \vec{r}} = 0$$
, 2) $\frac{\partial F}{\partial t} + \frac{\partial U}{\partial \vec{r}} \frac{\partial F}{\partial \vec{P}} = (\frac{\partial F}{\partial t})_{cm}$, 3) $\frac{\partial F}{\partial t} + \frac{\vec{P}}{m} \frac{\partial F}{\partial \vec{r}} + \frac{\partial U}{\partial \vec{r}} \frac{\partial F}{\partial \vec{P}} = (\frac{\partial F}{\partial t})_{cm}$,

4)
$$\frac{\partial F}{\partial t} + \frac{\vec{P}}{m} \frac{\partial F}{\partial \vec{r}} - \frac{\partial U}{\partial \vec{r}} \frac{\partial F}{\partial \vec{P}} = (\frac{\partial F}{\partial t})_{cm}, 5) \frac{\partial F}{\partial t} + \frac{\vec{P}}{m} \frac{\partial F}{\partial \vec{r}} - \frac{\partial U}{\partial \vec{r}} \frac{\partial F}{\partial \vec{P}} = 0.$$

10. Кинетическое уравнение с релаксационными членом вместо интеграла столкновения имеет вид:

1)
$$\frac{\partial F}{\partial t} + \frac{\vec{P}}{m} \Delta F = \frac{F - F_0}{\tau}$$
, 2) $\frac{\partial F}{\partial t} + \frac{\vec{P}}{m} \Delta F - \frac{\partial U}{\partial \vec{r}} \frac{\partial F}{\partial \vec{P}} = \frac{F - F_0}{\tau}$,

3)
$$\frac{\partial F}{\partial t} + \frac{\vec{P}}{m} \Delta F = -\frac{F - F_0}{\tau}$$
, 4) $\frac{\partial F}{\partial t} + \frac{\vec{P}}{m} \Delta F - \frac{\partial U}{\partial \vec{r}} \frac{\partial F}{\partial \vec{P}} = -\frac{F - F_0}{\tau}$,

5)
$$\frac{\partial F}{\partial t} = \frac{\vec{P}}{m} \frac{\partial F}{\partial \vec{r}} + \frac{\partial U}{\partial \vec{r}} \frac{\partial F}{\partial \vec{P}} + \frac{F - F_0}{\tau}$$
.

11. Цепочка уравнений Боголюбова записывается в виде:

1)
$$\frac{\partial \rho_s}{\partial t} + \widehat{L}_s \rho_s = \int dx_{s+1} \theta_{j,s} \rho_{s+1}$$
, 2) $\frac{\partial \rho_s}{\partial t} + i\widehat{L}_s \rho_s = \int dx_1 ... dx_s \theta_{j,s} \rho_{s+1}$,

3)
$$\frac{\partial \rho_s}{\partial t} + i\hat{L}_s \rho_s = \int \sum_{j=1}^N \theta_{j,s+1} F_{s+1} dx_{s+1}$$
, 4) $\frac{\partial \rho_s}{\partial t} = \int \sum_{j=1}^s \theta_{j,s+1} F_{s+1} dx_{s+1}$,

5)
$$\frac{\partial \rho_s}{\partial t} + i\hat{L}_s \rho_s = \int \sum_{i=1}^s \theta_{j,s+1} F_{s+1} dx_{s+1}$$
.

12. Показать, что если $\frac{\partial F_1}{\partial t} + \frac{\vec{P_1}}{m} \frac{\partial F_1}{\partial \vec{r_1}} = n \int dx_2 \theta_{12} F_2(x_1, x_2, t)$, то $\frac{\partial F_2}{\partial t}$ равняется:

1)
$$(\frac{\vec{P}_1}{m}\frac{\partial}{\partial r_1} - \frac{\vec{P}_2}{m}\frac{\partial}{\partial r_2} - \theta_{12})F_2 + n\int dx_3(\theta_{12} + \theta_{13})F_3(x_1, x_2, x_3; t).$$

2)
$$-(\frac{\vec{P}_1}{m}\frac{\partial}{\partial r_1} - \frac{\vec{P}_2}{m}\frac{\partial}{\partial r_2})F_2 + n\int dx_3(\theta_{13} + \theta_{23})F_3,$$

3)
$$-(\frac{\vec{P}_1}{m}\frac{\partial}{\partial r_1} - \frac{\vec{P}_2}{m}\frac{\partial}{\partial \vec{r}_2})F_2 - n\int dx_3(\theta_{13} + \theta_{23})F_3,$$

4)
$$-(\frac{\vec{P}_1}{m}\frac{\partial}{\partial \vec{r}_1} - \frac{\vec{P}_2}{m}\frac{\partial}{\partial \vec{r}_2})F_2 + \theta_{12}F_2 - n\int dx_3(\theta_{13} + \theta_{23})F_3$$

5)
$$(\frac{\vec{P}_1}{m}\frac{\partial}{\partial \vec{r}_1} + \frac{\vec{P}_2}{m}\frac{\partial}{\partial \vec{r}_2} + \theta_{12})F_2 + n\int dx_3(\theta_{13} + \theta_{23})F_3.$$

13. Кинетическое уравнение Власова записывается в виде:

1)
$$\frac{\partial \rho}{\partial t} = \frac{\partial}{\partial P_{\alpha}} \left\{ \widetilde{A}_{\alpha} \rho + \frac{\partial}{\partial P_{\beta}} (\beta_{\alpha\beta} \rho) \right\}, 2) \frac{\partial \rho}{\partial t} = \frac{\partial}{\partial P_{\beta}} \left\{ \widetilde{A}_{\beta} \rho + \frac{\partial}{\partial P_{\alpha}} (\beta_{\alpha\beta} \rho) \right\},$$

3)
$$\frac{\partial \rho}{\partial t} = A\rho$$
, 4) $\frac{\partial \rho}{\partial t} = \frac{\partial}{\partial P_{\alpha}} (\tilde{A}_{\alpha}\rho)$, 5) $\frac{\partial}{\partial t} = \frac{\partial}{\partial P_{\alpha}} (\frac{\partial}{\partial P_{\beta}} (\beta_{\alpha\beta}\rho))$.

14. Для одноатомного газа $d\Gamma$ может быть представлено как:

1)
$$2\pi d^3 PMdM$$
, 2) $2\pi dP M^2 dMd\theta_M$, 3) $2\pi d^3 PM dMd\theta_M$, 4) $4\pi d^3 PM dMd\theta_M$,

- 5) $2\pi^2 d^3 PM \ dM d\theta_{\scriptscriptstyle M}$, где $d\theta_{\scriptscriptstyle M}$ -элемент телесных углов для направления вектора \vec{M} .
- 15. Принцип детального равновесия показывает, что:
 - 1) $\int \omega(\Gamma', \Gamma_1', \Gamma, \Gamma_1) d\Gamma' d\Gamma_1' = \int \omega(\Gamma, \Gamma_1, \Gamma', \Gamma_1') d\Gamma d\Gamma_1$
 - 2) $\int \omega(\Gamma, \Gamma_1, \Gamma', \Gamma_1') d\Gamma' d\Gamma_1' = \int \omega(\Gamma', \Gamma_1', \Gamma, \Gamma_1) d\Gamma d\Gamma_1'$
 - 3) $\int \omega(\Gamma', \Gamma_1', \Gamma, \Gamma_1) d\Gamma' d\Gamma_1' = \int \omega(\Gamma, \Gamma_1, \Gamma', \Gamma_1') d\Gamma' d\Gamma_1'$
 - 4) $\int \omega(\Gamma, \Gamma'; \Gamma_1, \Gamma_1') d\Gamma d\Gamma_1 = \int \omega(\Gamma, \Gamma_1; \Gamma', \Gamma_1') d\Gamma' d\Gamma_1'$
 - 5) $\int \omega(\Gamma, \Gamma'; \Gamma_1, \Gamma_1') d\Gamma' d\Gamma_1' = \int \omega(\Gamma', \Gamma_1'; \Gamma, \Gamma_1) d\Gamma' d\Gamma_1'.$
- 16. Интеграл столкновений $S + \rho$ имеет вид:
 - 1) $\int \omega'(\rho'\rho'_1 \rho\rho_1)d\Gamma_1 d\Gamma' d\Gamma'_1$, 2) $\int \omega'(\rho\rho'_1 \rho'\rho'_1)d\Gamma_1 d\Gamma' d\Gamma'_1$,
 - 3) $\int \omega'(\rho'\rho'_1 \rho\rho_1) d\Gamma \ d\Gamma' d\Gamma'_1 d\Gamma'_1, \quad 4) \int \omega'(\rho\rho_1 \rho'\rho'_1) d\Gamma \ d\Gamma_1 d\Gamma' d\Gamma'_1,$
 - 5) $\int \omega'(\rho'\rho_1' + \rho\rho_1)d\Gamma_1d\Gamma'd\Gamma_1'.$
- 17. Написать кинетическое уравнение Больцмана.
 - 1) $\frac{\partial \rho}{\partial t} + \vec{\beta} \nabla \rho = \int \omega'(\rho' \rho'_1 \rho \rho_1) d\Gamma_1 d\Gamma' d\Gamma'_1$,
 - 2) $\frac{\partial \rho}{\partial t} + \vec{\beta} \nabla \rho = \int \omega'(\rho \rho_1 \rho' \rho_1') d\Gamma_1 d\Gamma' d\Gamma_1'$,
 - 3) $\frac{\partial \rho}{\partial t} + \vec{\beta} \frac{\partial \rho}{\partial \vec{r}} = \int \omega'(\rho \rho_1 + \rho' \rho_1') d\Gamma' d\Gamma_1 d\Gamma_1'$,
 - 4) $\frac{\partial \rho}{\partial t} + \vec{\beta} \nabla \rho = \int \omega'(\rho' \rho_1' + \rho \rho_1) d\Gamma' d\Gamma d\Gamma_1'$,
 - 5) $\frac{\partial \rho}{\partial t} + \vec{\beta} \nabla \rho = \int \omega' (\rho' \rho_1' + \rho \rho_1) d\Gamma d\Gamma' d\Gamma_1'$.
- 18. *H* теорема Больцмана гласит о том, что энтропия системы с течением времени
 - 1) не изменяется
 - изменяется
 - 3) изменяется монотонно
 - 4) увеличивается
- 5) увеличивается, но достигает своего максимального значения в неравновесном состоянии.
- 19. Самосогласованное поле это:
 - 1) поле, которое действует на систему частиц,
- 2) поле, которое определяется взаимодействием частицы с остальными частицами системы.
- 3) усредненное поле, определяемое определенным образом взаимодействия частиц между собой,
 - 4) поле, действующее на систему частиц со стороны выбранной частицы.

- 5) поле, которое меньше, чем поле взаимодействия между частицами системы.
- 20. Уравнение Власова для электронов в плазме можно написать в виде

1)
$$\frac{\partial \rho}{\partial t} + \vec{\beta} \frac{\partial \rho}{\partial \vec{r}} = e(\vec{E} + \frac{1}{c} [\vec{\beta}\vec{B}]),$$

2)
$$\frac{\partial \rho}{\partial t} + \vec{\beta} \frac{\partial \rho}{\partial \vec{r}} = e(E + \frac{1}{c} [\vec{\beta}\vec{B}]) \frac{\partial \rho}{\partial \vec{P}}$$
,

3)
$$\frac{\partial \rho}{\partial t} - e(\vec{E} + \frac{1}{c} \left[\vec{\beta} \vec{B} \right] \frac{\partial \rho}{\partial \vec{P}} = 0$$
,

4)
$$\frac{\partial \rho}{\partial t} + \vec{\mathcal{G}} \frac{\partial \rho}{\partial \vec{r}} + e(E + \frac{1}{c} [\vec{\mathcal{G}}\vec{B}]) \frac{\partial \rho}{\partial \vec{P}} = 0$$
.

21. Найти стационарное распределение броуновской частицы в сосуде за время t, используя уравнение Фоккера- Планка $\frac{\partial}{\partial x}(-A\rho + D\frac{\partial \rho}{\partial x}) = 0$

1)
$$\rho(x) = conste^{\frac{-mgx}{\gamma D}}$$
, 2) $\rho = ce^{\frac{-KT}{\gamma 6\pi \eta a}}$, 3) $\rho(x) = conste^{\frac{mgx}{D}}$, 4) $\rho(x) = ce^{\frac{mgx}{\gamma D}}$,

5)
$$\rho(x) = ce^{\frac{mgx}{\gamma}}$$
.

7.2. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

Лекции

•	посещение занятий	 10 баллов,
•	активное участие на лекциях	15 баллов,
•	устный опрос, тестирование, коллоквиум	-60 баллов,
•	и др. (доклады, рефераты)	15 баллов.

Практические занятия

•	посещение занятий	10 баллов,
•	активное участие на практических занятиях	15 баллов,
•	выполнение домашних работ	15 баллов,
•	выполнение самостоятельных работ	-20 баллов,
•	выполнение контрольных работ	40 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос
 письменная контрольная работа
 тестирование
 баллов,
 10 баллов.
- 8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

а) основная литература:

- 1. Ландау Л.Д., Лифщиц Е. М., Питаевский Физическая кинетика / М.: Наука, 1978;
- 2. 2. Куни Ф.М. Статистическая физика и термодинамика / М.: Наука, 1981;
- 3. 3. Квасников И.А. Термодинамика и статистическая физика. Теория неравновесных систем / М.: изд. МГУ, 1987.

б) дополнительная литература:

- 1. Румер Ю.Б, Рывкин М.С. Термодинамика, статистическая физика и кинетика. Учебное пособие. М.: Наука, 1977;
- 2. Боголюбов Н.Н. Проблемы динамической теории в статистической физике / Избранные труды. Киев: Наука, 1970;
- 3. Де Гротт, Мазур П. Неравновесная термодинамика / М.: Мир, 1965;
- 4. Гречко Л.Г., Сугаков В.И., Томасевич Д.Ф., Федорченко А.М. Задачи по теоретической физике / Изд. «Высшая школа», 1984;
- 5. Базаров И.П., Геворкян Э.В., Николаев П.Н. Задачи по термодинамике и стат. физике / М.: изд. « Высшая школа», 1997.

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. Международная база данных Scopus http://www.scopus.com/home.url
- 2. Научные журналы и обзоры издательства Elsevier http://www.sciencedirect.com/
- 3. Ресурсы Российской электронной библиотеки www.elibrary.ru, включая научные обзоры журнала Успехи физических наук <u>www.ufn.ru</u>
- 4. Региональный ресурсный Центр образовательных ресурсов http://rrc.dgu.ru/
- 5. Электронные ресурсы Издательства «Лань» http://e.lanbook.com/
- 6. http://physweb.ru/db/section/e190500000
- 7. Электронная библиотека механико-математического факультета МГУ http://lib.mexmat.ru/
- 8. Научно-образовательный центр при МИАН http://www.mi.ras.ru/

9. Книги по электродинамике bin/yabb2/YaBB.pl?num=1170686788

10. Методические указания для обучающихся по освоению дисциплины.

Перечень учебно-методических материалов, предоставляемых студентам во время занятий:

- рабочие тетради студентов;
- наглядные пособия;
- словарь терминов;
- тезисы лекций,
- раздаточный материал по тематике лекций.

Оптимальным путем освоения дисциплины является посещение всех лекций и семинаров, выполнение предлагаемых заданий в виде задач, тестов и устных вопросов.

На лекциях рекомендуется деятельность студента в форме активного слушания, т.е. предполагается возможность задавать вопросы на уточнение понимания темы и рекомендуется конспектирование лекции. На семинарских занятиях деятельность студента заключается в активном обсуждении задач, решенных другими студентами, решении задач самостоятельно, выполнении контрольных заданий. В случае, если студентом пропущено лекионное или семинарское занятие, он может освоить пропущенную тему самостоятельно с опорой на план занятия, рекомендуемую литературу и консультативные рекомендации преподавателя.

В целом рекомендуется регулярно посещать занятия и выполнять текущие задания, что обеспечит достаточный уровень готовности к сдаче зачета.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

- Программное обеспечение для лекций: MS PowerPoint (MS PowerPoint Viewer), Adobe Acrobat Reader, средство просмотра изображений, табличный процессор.
- Программное обеспечение в компьютерный класс: MS PowerPoint (MS PowerPoint Viewer), Adobe Acrobat Reader, средство просмотра изображений, Интернет, E-mail.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Лекционные и практические занятия проводятся в аудиториях факультета.

Технические средства обучения, используемые в учебном процессе для освоения дисциплины:

- 1. компьютерное оборудование, которое используется в ходе изложения лекционного материала;
- 2. пакет плакатов и графиков, используемых в ходе текущей работы, а также для промежуточного и итогового контроля;
- 3. электронная библиотека курса и Интернет-ресурсы для самостоятельной работы.