

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ КВАНТОВАЯ И ОПТИЧЕСКАЯ ЭЛЕКТРОНИКА

Кафедра «Инженерная физика»

Образовательная программа **11.03.04- Электроника и наноэлектроника**

Профили подготовки: **Микроэлектроника и твердотельная электроника**

Уровень высшего образования **Бакалавриат**

Форма обучения: Очная

Статус дисциплины: Вариативная

Махачкала 2021

Рабочая программа составлена в 2021 году в соответствии с требованиями ФГОС 3++ ВО по направлению подготовки **11.03.04** Электроника и наноэлектроника (уровень бакалавриата), утвержденными приказом Министерства образования и науки Российской Федерации от 19 сентября 2017 г. № 927 (Изменения в ФГОС ВО, внесенные приказом Министерства образования и науки Российской Федерации от «8» февраля 2021 г. №83).

Разработчик: кафедра инженерной физики, д.ф.м.н., проф. Садыков С.А.
Рабочая программа дисциплины одобрена: на заседании кафедры _ <i>Инженерная физика</i> _от « 29 » _06 2021 г., протокол № _10 Зав. кафедрой Садыков С.А.
на заседании Методической комиссии физического факультета от «30 » 06. 2021 г., протокол № 11 . Председатель
Рабочая программа дисциплины согласована с учебно-методическим управлением «_9_ » _07 2021 г

СОДЕРЖАНИЕ

Аннотация рабочей программы

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре ОПОП магистратуры
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины
- 4. Объем, структура и содержание дисциплины
- 5. Образовательные технологии
- 6. Учебно-методическое обеспечение самостоятельной работы студентов
- 7. Фонд оценочных средств для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины
- 7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы
- 7.2. Типовые контрольные задания
- 7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.
- 8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины
- 9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
- 10. Методические указания для обучающихся по освоению дисциплины
- 11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем
- 12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аннотация рабочей программы дисциплины

Дисциплина «**Квантовая и оптическая электроника**» входит в вариативную часть образовательной программы бакалавриата по направлению 11.03.04 Электроника и наноэлектроника. Дисциплина реализуется на физическом факультете кафедрой инженерной физики.

Содержание дисциплины включает физические основы квантовой и оптической электроники, включая взаимодействие электромагнитного излучения с веществом, оптические явления в твердых телах, принципы работы, особенности характеристики приборов квантовой электроники и оптоэлектроники.

Дисциплина нацелена на формирование следующих компетенций выпускника:

Дисциплина нацелена на формирование следующих *профессиональных* компетенций выпускника:

ПК-1.2. Способен проводить исследования по модернизации существующих и внедрению новых методов и оборудования для измерений параметров наноматериалов и наноструктур;

ПК-1.3. Способен проводить исследования по модернизации существующих и внедрению новых процессов и оборудования для модификации свойств наноматериалов и наноструктур.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия, лабораторные занятия, самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме: тестирование, индивидуальное собеседование, письменные контрольные задания и пр. и промежуточный контроль в форме экзамен.

Объем дисциплины 4зачетных единиц, в том числе в академических часах по видам учебных занятий:

Учебные занятия									Форма
в том числе:									промежуточной
Семестр		Кон	тактная	работа обуч	нающихся с	препо	давателем	CPC,	аттестации
Мес	0				из них			в том	(зачет,
Ce	всего) (10	Лекц	Лаборат	Практич	КСР	консульт	числе	дифференциров
	B	всег	ИИ	ии орные еские ации					анный зачет,
	занятия занятия						ен	экзамен	
7	144	52	26	26		36		56	зачет

1. Цели освоения дисциплины

Цель изучения дисциплины «Квантовая и оптическая электроника» - дать представление о фундаментальных физических процессах, лежащих в основе квантовой и оптической электроники, рассмотреть принцип действия, особенности конструкций, требования к активным материалам и элементам, возможности и технические характеристики приборов и устройств квантовой и оптической электроники.

Задачами дисциплины является подготовка будущих специалистов к грамотному использованию достижений данной области науки в своей практической деятельности.

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина «Квантовая и оптическая электроника» в структуре ОПОП входит в вариативную часть образовательной программы. Основные разделы программы курса: физические основы взаимодействия оптического излучения с квантовыми системами, усиление и генерация оптического излучения, основные типы когерентных и некогерентных источников оптического излучения, физические принципы и основные элементы для регистрации, модуляции, отклонения, трансформации, передачи и обработки оптического излучения.

Для освоения данной дисциплины требуются знания и умения, приобретенные обучающимися в результате освоения ряда предшествующих дисциплин (разделов дисциплин), таких как:

- Физика (физика колебаний и волн, термодинамика, электричество и магнетизм, оптика, атомная и ядерная физика).
- Материалы электронной техники (характеристики и основные электрические и оптические свойства элементарных полупроводников, полупроводниковых соединений и твердых растворов на их основе, основные процессы в диэлектриках и методы их описания, активные и пассивные диэлектрические материалы, и элементы на их основе).

Дисциплины, для которых освоение данной дисциплины необходимо как предшествующее:

- Физические основы электроники.
- Оптические и фотоэлектрические явления в полупроводниках.
- Материалы электронной техники.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Код и наименование профессиональной компетенции	Код и наименование индикатора достижения профессиональной компетенции выпускника	Результаты обучения Дисциплины учебного плана					
Тип задачи профессиональной деятельности — <i>научно-исследовательский</i>							

ПК-1

Способен совершенствов ать процессы измерения параметров и модификации свойств наноматериало в и наноструктур

ПК-1.2.

Способен проводить исследования по модернизации существующих и внедрению новых методов и оборудования для измерений параметров наноматериалов и наноструктур

Знает:

- состояние и перспективы научно-технической разработки технологических процессов производства материалов и изделий квантовой и оптической электроники, современные тенденции в развитии квантовой и оптической электроники;
- физические принципы функционирования и основные характеристики квантовых усилителей и генераторов, а также других элементов и устройств оптической и квантовой электроники;
- углубленные знания о структуре, физикохимических свойствах, конструкции и назначении наноматериалов и наноструктур;
- принципы использования физических эффектов в газах, твердом теле, полупроводниках в приборах и устройствах квантовой и оптической электроники, используемых в технологических установках для производства изделий микро- и наноэлектроники;
- назначение, устройство и принцип действия оборудования для измерения параметров наноматериалов и наноструктур;
- основные методы измерений параметров наноматериалов и наноструктур;
- технический английский язык в области наноматериалов и нанотехнологий;

Умеет:

- -оценивать технические и экономические риски при выборе методов и оборудования измерения параметров наноматериалов и наноструктур;
- работать на измерительном оборудовании в соответствии с инструкциями по эксплуатации и технической документацией;
- аргументированно выбирать и реализовывать на практике эффективную методику экспериментального исследования параметров и характеристик наноматериалов и наноструктур с использованием приборов и устройств квантовой и оптической электроники;

Владеет:

- навыками анализировать современное состояние методов и оборудования измерений параметров наноматериалов и наноструктур;
- навыками оценивать риски внедрения новых методов и оборудования измерений параметров наноматериалов и наноструктур;
- навыками внедрить и контролировать качества новых методов измерения параметров наноматериалов и наноструктур с использованием современных приборов вакуумной и плазменной электроники.

ПК-1.3.

Способен проводить исследования по модернизации существующих и внедрению новых процессов и оборудования для модификации свойств наноматериалов и наноструктур

Знает:

- назначение, устройство и принцип действия приборов квантовой и оптической электроники для модификации свойств наноматериалов и наноструктур;
- основные методы модификации свойств наноматериалов и наноструктур;
- правила оформления технологической документации;
- технический английский язык в области наноматериалов и нанотехнологий;

Умеет:

- -оценивать технические и экономические риски при выборе методов и оборудования для модификации свойств наноматериалов и наноструктур;
- проводить исследования по модернизации существующих и внедрению новых процессов и приборов вакуумной и плазменной электроники для модификации свойств наноматериалов и наноструктур;
- использовать базовые элементы квантовой и оптической электроники и применять основные методы анализа квантовых и оптоэлектронных устройств для модификации свойств наноматериалов и наноструктур.

Владеет:

- навыками анализировать современное состояние методов и оборудования квантовой и оптической электроники для модификации свойств наноматериалов и наноструктур;
- методами экспериментальных исследований параметров и характеристик наноматериалов и наноструктур с применением приборов и устройств квантовой и оптической электроники; -оценивать риски внедрения новых методов и оборудования для модификации свойств наноструктур;
- -разрабатывать технические задания на проведение работ по модернизации оборудования и обеспечение новых модификации свойств наноматериалов и наноструктур;
- навыками внедрить и контролировать качества новых методов для модификации свойств наноматериалов и наноструктур.

- **4. Объем, структура и содержание дисциплины.** 4.1. Объем дисциплины составляет 4 зачетных единиц,144академических часа.
- 4.2. Структура дисциплины.

№ п/п	Разделы и темы дисциплины	Семестр	Семестр Неделя семестра		Виды учебной работы, включая самостоятельную работу студентов трудоемкость (в			Самостоятельная работа	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной
		Cer	Неделя	Лекции	Практические занятия	Лабораторн ые занятия	Контроль самост. раб.	Самостояте	аттестации (по семестрам)
1	Модуль 1. Физические основы	6		4		4	6	10	Поманица запаниа
1	взаимодействия оптического излучения с квантовыми системами	0		4		4	0	10	Домашнее задание (ДЗ) Собеседование (С) Рейтинговая система (РС)
2	Усиление и генерация оптического излучения	6		4		6	6	8	(Д3), (С), (РС)
	Итого по модулю 1: 48			8		10	12	18	
_	Модуль 2	_							(77) (8) (7.8)
3	Основные типы когерентных источников оптического излучения	6		8		6	8	12	(Д3), (С), (РС)
4	Основные типы некогерентных источников оптического излучения	6		2		6	4	8	(Д3), (С), (РС)
1	Итого по модулю 2: 52			10		12	12	18	
	Модуль 3.	1							
	Полупроводниковые фотоприемники	6		2		4	4	6	(Д3), (С), (РС)
	Основные элементы для регистрации, модуляции, отклонения, трансформации,	6		4				6	(Д3), (С), (РС)

	оптического излучения						
2	Методы передачи и обработки оптического излучения	6	2		4	6	(Д3), (С), (РС)
	Итого по модулю 3: 44		8	8	12	16	
	ИТОГО:		26	26	36	56	

4.3. Содержание дисциплины, структурированное по темам (разделам).

Модуль 1.

Тема 1. Физические основы взаимодействия оптического излучения с квантовыми системами

Особенности оптической электроники. Стандартная терминология, основные понятия и определения. Способы описания электромагнитного излучения. Световые лучи. Принцип Ферма. Элементы квантовой теории излучения. Фотон и его основные свойства. Фотонные коллективы.

Энергетические состояния атомов и молекул. Квантовые числа. Символика энергетических состояний атомов. Молекулярные уровни. Вращательные и колебательные уровни. Квантовые переходы. Вероятность перехода.

Спонтанное и индуцированное излучение. Коэффициенты Эйнштейна. Уширение спектральных линий.

Тема 2. Усиление и генерация оптического излучения

Принцип работы квантовых усилителей и генераторов. Инверсия населенностей. Возбуждение активного вещества - накачка. Методы накачки.

Кинетические уравнения. Двух-, трех-, и четырехуровневые схемы работы. Пороговая мощность источника накачки.

Оптические резонаторы. Добротность резонатора. Потери в оптических резонаторах. Собственные типы колебаний - моды. Требования к резонаторам оптического диапазона. Типы резонаторов. Селекция аксиальных и неаксиальных типов колебаний.

Условие самовозбуждения лазеров. Пороговая энергия накачки по генерации. Насыщения усиления. Одномодовая и многомодовая генерация. Гигантские импульсы.

Модуль 2.

Тема 3. Основные типы когерентных источников оптического излучения

Твердотельные и жидкостные лазеры. Рубиновый лазер. Лазеры на кристаллах и стеклах, активированных неодимом. Лазеры на органических красителях.

Полупроводниковые лазеры. Требования к активным материалам. Лазеры с электронной и оптической накачкой. Инжекционные лазеры на гетеропереходах. Лазеры на двойных гетероструктурах. Лазеры с раздельным оптическим и электронным ограничением. Лазеры с использованием квантово-размерных эффектов.

Газовые лазеры. Особенности устройства газоразрядных лазеров. Лазеры на самоограниченных переходах. Атомарные газовые лазеры. Гелий-неоновый лазер. Лазер на парах меди. Ионные газовые лазеры. Гелий-кадмиевый лазер. Молекулярный лазер. Газоразрядные CO_2 -лазеры. Газодинамические лазеры. Эксимерные лазеры. Химические и фотохимические лазеры.

Тема 4. Основные типы некогерентных источников оптического излучения.

Люминесценция полупроводников. Механизмы излучательной рекомбинации.

Принцип действия излучающих диодов. Основные материалы излучающих диодов. Гетеросветодиоды. Электролюминесцентные экраны.

Модуль 3.

Тема 5.Полупроводниковые фотоприемники.

Полупроводниковые фотоприемники. Фоторезисторы. Фотодиоды. Многоэлементные фотоприемники. Приемники оптических изображений. Приборы с зарядовой связью в качестве фотоприемников. Фотоэлектрические преобразователи солнечного излучения.

Тема 6. Основные элементы для регистрации, модуляции, отклонения, трансформации, оптического излучения.

Особенности приборов управления оптическим излучением. Модуляторы лазерного излучения. Методы сканирования света. Дефлекторы. Приборы нелинейной оптики. Преобразователи частоты. Генераторы гармоник. Параметрические генераторы света. Управляемые оптические системы.

Тема 3. Методы передачи и обработки оптического излучения

Характеристика и особенность оптической связи. Оптроны. Передача оптических сигналов по световодам. Волоконно-оптические линии связи.

Элементы интегральной оптики. Тонкопленочные волноводы.

Принципы голографии. Свойства голограмм. Оптические методы обработки информации. Оптические вычислительные машины и комплексы.

4.3.1.Содержание лекционных занятий

Модули	Содержание темы
Модуль 1	Пекция 1. Особенности оптической электроники. Способы описания электромагнитного излучения. Элементы квантовой теории излучения. Энергетические состояния атомов и молекул. Молекулярные уровни. Вращательные и колебательные уровни. Лекция 2. Квантовые переходы. Вероятность перехода. Спонтанное и индуцированное излучение. Коэффициенты Эйнштейна. Уширение спектральных линий. Лекция 3. Инверсия населенностей. Возбуждение активного вещества - накачка. Методы накачки. Кинетические уравнения. Двух-, трех-, и четырехуровневые схемы работы. Лекция 4. Оптические резонаторы. Добротность резонатора. Типы резонаторов. Селекция аксиальных и неаксиальных типов колебаний. Условие самовозбуждения лазеров. Пороговая энергия накачки по генерации. Насыщения усиления.
Модуль 2	<u>Лекция 5.</u> Твердотельные лазеры. Рубиновый лазер. Лазеры на кристаллах и стеклах, активированных неодимом. Лазеры на органических красителях.

	Пания (
	<u>Лекция 6.</u> Газовые лазеры. Особенности устройства газоразрядных лазеров.							
	Атомарные газовые лазеры. Гелий-неоновый лазер. Молекулярный							
	лазер. Газоразрядные CO_2 -лазеры. Газодинамические лазеры.							
	Лекция 7.							
	Жидкостные лазеры. Эксимерные лазеры. Химические и							
	фотохимические лазеры.							
	Лекция 8.							
	Полупроводниковые лазеры. Инжекционные лазеры на							
	гетеропереходах. Лазеры на двойных гетероструктурах. Лазеры с							
	раздельным оптическим и электронным ограничением. Лазеры с							
	использованием квантово-размерных эффектов.							
	Лекция 9.							
	Люминесценция полупроводников. Механизмы излучательной							
	рекомбинации. Принцип действия излучающих диодов. Основные							
	материалы излучающих диодов. Гетеросветодиоды.							
	Электролюминесцентные экраны.							
Модуль 3	<u>Лекция 10.</u>							
	Полупроводниковые фотоприемники. Фоторезисторы. Фотодиоды.							
	Многоэлементные фотоприемники. Приемники оптических							
	изображений. Фотоэлектрические преобразователи солнечного							
	излучения. <i>Лекция 11</i>							
	Особенности приборов управления оптическим излучением. Модуляторы лазерного излучения. Методы сканирования света.							
	Дефлекторы.							
	Лекция 12							
	Приборы нелинейной оптики. Преобразователи частоты. Генераторы							
	гармоник. Параметрические генераторы света. Управляемые							
	оптические системы.							
	<i>Лекция 13.</i>							
	Оптроны. Передача оптических сигналов по световодам.							
	Волоконно-оптические линии связи Элементы интегральной оптики.							
	Оптические методы обработки информации. Оптические							
	вычислительные машины и комплексы.							

4.3.2. Содержание разделов самостоятельной работы

No	Содержание темы	Кол.часо
		В
1.	Взаимодействие электромагнитного излучения с атомами и	10
	молекулами. Энергетические состояния атомов и молекул. Квантовые числа. Символика энергетических состояний атомов. Молекулярные	
	уровни. Вращательные и колебательные уровни. Квантовые переходы. Вероятность перехода. Спонтанное и индуцированное	
	излучение. Коэффициенты Эйнштейна. Уширение спектральных линий.	

	Уширение спектральных линий. Механизмы уширения.	
	Однородное и неоднородное уширение. Рассеяние света. Оптические	
	характеристики вещества. Комплексный показатель преломления.	
	Показатель поглощения. Соотношения Крамерса-Кронинга.	0
2.	Усиление и генерация электромагнитного излучения.	8
	Двух-, трех-, и четырехуровневые схемы работы.	
	Резонаторы. Условие устойчивости. Неустойчивые резонаторы. Методы модуляции добротности. Синхронизация мод и	
	Методы модуляции дооротности. Синхронизация мод и сверхкороткие лазерные импульсы.	
3.	Лазеры.	12
J.	Общая характеристика и особенности твердотельных лазеров.	12
	Активные материалы. Требования к матрицам. Требования к	
	активаторам. Рубиновый лазер. Лазеры на кристаллах и стеклах,	
	активированных неодимом. Твердотельные перестраиваемые лазеры.	
	Особенности квантовых приборов радиодиапазона.	
	Полупроводниковые лазеры. Лазеры на двойных гетероструктурах.	
	Лазеры с раздельным оптическим и электронным ограничением.	
	Лазеры с использованием квантово-размерных эффектов.	
	Полосковые гетеролазеры. Гетеролазеры с распределенной обратной	
	связью. Перестраиваемые полупроводниковые ИК-лазеры.	
4.	Линейная кристаллооптика. Нелинейная оптика.	8
	Тензор диэлектрической проницаемости. Прохождение света	
	через границу раздела двух сред. Особенности распространения света	
	в тонких слоях.	
	Генерация гармоник. Условие фазового синхронизма.	
	Параметрическое преобразование и параметрическая генерация света.	
	Модуляторы лазерного излучения. Электрооптические	
	модуляторы. Абсорбционные модуляторы. Акустооптические	
	модуляторы света. Пассивные затворы. Методы сканирования света.	
	Дефлекторы.	
5.	Оптические явления в однородных полупроводниках и	6
	гетероструктурах	
	Свойства гетеропереходов. Эффект односторонней инжекции.	
	Эффект сверхинжекции. Эффект широкозонного окна. Волноводный	
	эффект. Фотоэлектрические эффекты в р-п гетеропереходах и в	
6.	варизонных структурах. Полупроводниковые фотоприемники и приборы управления	4
0.	оптическим излучением.	7
	Фотодиоды. Р-і-п фотодиоды и лавинные фотодиоды.	
	Фотодиоды. 1-1-п фотодиоды и лавиппые фотодиоды. Фотоэлектрические преобразователи солнечного излучения.	
	Totostekiph tookiic iipooopusobutesiii oosiile iiioto nssiy teiinix.	
7.	Оптические методы передачи и обработки информации.	4
	Элементы интегральной оптики. Тонкопленочные волноводы. Связь	
	между волноводами. Оптическая бистабильность. Направленные	
	ответвители. Тонкопленочные модуляторы, фильтры, переключатели,	
	детекторы.	
_		

4.3.3. Лабораторный практикум

Наименование лабораторных работ	Кол.час
	OB.

Измерение спектральных характеристик светодиодов в видимой области спектра.	4
Полупроводниковый лазер	4
Полупроводниковые фотоприемники.	4
Оптроны	4
Твердотельные лазеры.	6
Определение интегральной чувствительности фотоэлемента	4

5. Образовательные технологии

Основными видами образовательных технологий с применением, как правило, компьютерных и технических средств, учебного и научного оборудования являются:

- Информационные технологии.
- Проблемное обучение.
- Индивидуальное обучение.
- Междисциплинарное обучение.
- Опережающая самостоятельная работа.

Для достижения определенных компетенций используются следующие формы организации учебного процесса: лекция (информационная, проблемная, лекциялекция-консультация визуализация, И др.), практическое занятие, семинар, самостоятельная работа, консультация. Допускаются комбинированные формы проведения занятий, такие как лекционно-практические занятия.

Преподаватель самостоятельно выбирают наиболее подходящие методы и формы проведения занятий из числа рекомендованных и согласуют выбор с кафедрой.

Реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий и организации внеаудиторной работы (компьютерных симуляций, деловых и ролевых игр, разбора конкретных ситуаций, психологических и иных тренингов) с целью формирования и развития профессиональных навыков обучающихся. Интерактивное обучение — метод, в котором реализуется постоянный мониторинг освоения образовательной программы, целенаправленный текущий контроль и взаимодействие (интерактивность) преподавателя и студента в течение всего процесса обучения.

Самостоятельная работа организована в соответствие с технологией проблемного обучения и предполагает следующие формы активности:

- самостоятельная проработка учебно-проблемных задач, выполняемая с привлечением основной и дополнительной литературы;
- поиск научно-технической информации в открытых источниках с целью анализа и выявления ключевых особенностей.

Основные аспекты применяемой технологии проблемного обучения:

- постановка проблемных задач отвечает целям освоения дисциплины «Квантовая и оптическая электроника» и формирует необходимые компетенции;
- решаемые проблемные задачи стимулируют познавательную деятельность и научно-исследовательскую активность студентов.

По лекционному материалу подготовлено учебное пособие, конспекты лекций в электронной форме и на бумажном носителе, большая часть теоретического материала излагается с применением слайдов (презентаций) в программе **PowerPoint**, а также с использованием интерактивных досок.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов имеет целью подготовку к семинарским и практическим занятиям по отдельным разделам дисциплины, а также к выполнению лабораторных работ по предмету. Разделы дисциплины для самостоятельной работы приведены в п. 4.3.2.

В течение семестра студенты самостоятельно готовятся по отдельным разделам дисциплины, представляют рефераты и презентации, обсуждают выбранные темы на практических занятиях.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

Код компетенции из ФГОС ВО	Наименование компетенции из ФГОС ВО	Планируемые результаты обучения	Процедура освоения
ПК-1	ПК-1.2.	Знает:	Устный опрос.
Способен	Способен	- состояние и перспективы	Письменный
совершенствова	проводить	научно-технической разработки	onpoc
ть процессы	исследования	технологических процессов	(тестирование)
измерения	по	производства материалов и	Проверка
параметров и	модернизации	изделий квантовой и оптической	рефератов.
модификации	существующих	электроники, современные	Выступление на
свойств	и внедрению	тенденции в развитии квантовой	семинарах.
наноматериалов	новых методов	и оптической электроники;	Промежуточны
и наноструктур	и оборудования	- физические принципы	й контроль по
	для измерений	функционирования и основные	модулю
	параметров	характеристики квантовых	
	наноматериало	усилителей и генераторов, а	
	ВИ	также других элементов и	
	наноструктур	устройств оптической и	
		квантовой электроники;	
		- углубленные знания о структуре,	
		физико-химических свойствах,	
		конструкции и назначении	
		наноматериалов и наноструктур;	
		- принципы использования	
		физических эффектов в газах,	
		твердом теле, полупроводниках в	
		приборах и устройствах	
		квантовой и оптической	
		электроники, используемых в	
		технологических установках для	

производства изделий микро- и наноэлектроники;

- назначение, устройство и принцип действия оборудования для измерения параметров наноматериалов и наноструктур;
 основные методы измерений параметров наноматериалов и
- наноструктур;
 технический английский язык в области наноматериалов и нанотехнологий;

Умеет:

- -оценивать технические и экономические риски при выборе методов и оборудования измерения параметров наноматериалов и наноструктур;
- работать на измерительном оборудовании в соответствии с инструкциями по эксплуатации и технической документацией;
- аргументированно выбирать и реализовывать на практике эффективную методику экспериментального исследования параметров и характеристик наноматериалов и наноструктур с использованием приборов и устройств квантовой и оптической электроники;

Владеет:

- навыками анализировать современное состояние методов и оборудования измерений параметров наноматериалов и наноструктур;
- навыками оценивать риски внедрения новых методов и оборудования измерений параметров наноматериалов и наноструктур;
- навыками внедрить и контролировать качества новых методов измерения параметров наноматериалов и наноструктур с использованием современных приборов вакуумной и плазменной электроники.

ПК-1.3. Способен

Знает:

- назначение, устройство и

Устный опрос. Письменный проводить исследования по модернизации существующих и внедрению новых процессов и оборудования для модификации свойств наноматериало в и наноструктур

принцип действия приборов квантовой и оптической электроники для модификации свойств наноматериалов и наноструктур;

- основные методы модификации свойств наноматериалов и наноструктур;
- правила оформления технологической документации; - технический английский язык в

области наноматериалов и нанотехнологий;

Умеет:

-оценивать технические и экономические риски при выборе методов и оборудования для модификации свойств наноматериалов и наноструктур; проводить исследования по модернизации существующих и внедрению новых процессов и приборов вакуумной и плазменной электроники для модификации свойств наноматериалов и наноструктур;

- использовать базовые элементы квантовой и оптической электроники и применять основные методы анализа квантовых и оптоэлектронных устройств для модификации свойств наноматериалов и наноструктур.

Владеет:

- навыками анализировать современное состояние методов и оборудования квантовой и оптической электроники для модификации свойств наноматериалов и наноструктур; - методами экспериментальных исследований параметров и характеристик наноматериалов и наноструктур с применением приборов и устройств квантовой и оптической электроники; -оценивать риски внедрения новых методов и оборудования для модификации свойств наноструктур; -разрабатывать технические

опрос (тестирование). Проверка рефератов. Выступление на семинарах. Промежуточны й контроль по модулю

	задания на проведение работ по модернизации оборудования и обеспечение новых модификации свойств наноматериалов и наноструктур; - навыками внедрить и контролировать качества новых методов для модификации свойств наноматериалов и наноструктур.
--	--

7.2. Типовые контрольные задания

Примерные темы для докладов студентов на семинарских занятиях

- 1. Инжекционные лазеры на квантоворазмерных гетероструктурах.
- 2. Оптоэлектронные системы .
- 3. Фотовольтаические эффекты в полупроводниках.
- 4. Управление пространственными характеристиками лазерного излучения.
- 5. Нелинейно-оптические эффекты.

Контрольные вопросы.

- 1. Каков диапазон спектра оптического излучения.
- 2. Какой свет называют плоскополяризованным.
- 3. Что такое статистический вес уровня.
- 4. Что такое населенность уровня.
- 5. Какие переходы принято называть оптическими.
- 6. Как вы понимаете спонтанный квантовый переход.
- 7. Как вы понимаете вынужденный квантовый переход.
- 8. Что такое вероятность спонтанного испускания и как ее выразить.
- 9. Что такое вероятность вынужденного испускания и как ее выразить.
- 10. Почему вынужденное излучение является когерентным.
- 11. Что такое разрешенные и запрещенные квантовые переходы.
- 12. Что такое населенность энергетического уровня.
- 13. Что такое время жизни энергетического уровня.
- 14. Какова связь между коэффициентами Эйнштейна для вынужденного поглощения и вынужденного испускания.
- 15. Выразите закон затухания мощности спонтанного излучения.
- 16. Какие параметры характеризуют оптические свойства вещества.
- 17. Что выражает закон Бугера-Ламберта.
- 18. Что такое спектр оптического поглощения вещества.
- 19. Какое состояние вещества называют инверсией населенности.
- 20. Какой процесс называют оптической накачкой.
- 21. Что собой представляет активная квантовая среда.
- 22. Перечислите наиболее распространенные методы накачки.
- 23. Как вы представляете отрицательную температуру в квантовой системе.
- 24. Почему в двухуровневой схеме в стационарных условиях нельзя достичь инверсной населенности, использую оптическую накачку.

- 25. Какой метод накачки позволяет в двухуровневой схеме достичь инверсной населенности.
- 26. Двух-, трёх- и четырёхуровневая схемы лазеров: возможности реализации, достоинства и недостатки.
- 27. Что такое пороговая плотность накачки по инверсии.
- 28. Какие системы наиболее выгодны для создания инверсной населенности в трехуровневых системах.
- 29. Опишите процессы инверсии населенности и генерации в трехуровневой схеме работы квантового усилителя.
- 30. Опишите процессы инверсии населенности и генерации в четырехуровневой схеме работы квантового усилителя.
- 31. Как можно усилитель излучения превратить в генератор.
- 32. Какие три обязательных структурных элемента содержит блок-схема любого лазера.
- 33. По каким признакам проводится в основном классификация существующих лазеров.
- 34. Как осуществляется положительная обратная связь в лазере.
- 35. Что такое мода лазера.
- 36. Какую функцию выполняет лазерный резонатор. ОптическиЙ резонатор. Какой резонатор называют устойчивым, неустойчивым, открытым.
- 37. Что такое когерентность, направленность, монохроматичностьлазерного излучения.
- 38. Почему происходит уширение спектральных линий поглощения (излучения) вещества в сильных полях.
- 39. Типичное время жизни для разрешённого электродипольного перехода в видимом диапазоне ~10 нс. Оценить естественную ширину линии рентгеновского лазера, излучающего в диапазоне 10 нм.
- 40. Доплеровская ширина линии 500 МГц. Оценка времени жизни уровня 10^{-8} с. Предложить метод измерения ширины лоренцевского контура.
- 41. Перечислите основные виды потерь энергии в оптических резонаторах.
- 42. Что такое добротность лазерного резонатора.
- 43. Твердотельный лазер.
- 44. Ионный лазер.
- 45. Молекулярный лазер.
- 46. Химический лазер.
- 47. Газовый лазер.
- 48. Полупроводниковый лазер.
- 49. Лазер на свободных электронах.
- 50. Инжекционный лазер.
- 51. Какие лазеры на парах металла вы знаете.
- 52. Что такое гетеролазер и как он устроен.
- 53. Какие типы жидкостных лазеров вы знаете.
- 54. Что такое волновод. Как происходит канализация электромагнитной волны в плоском волноводе.
- 55. Что такое волоконный световод. Как получить волоконный световод. Свойства волоконного световода.

Пример тестовых заданий для промежуточного контроля

- 1. Оптический диапазон спектра излучения составляют электромагнитные колебания, длина волн которых лежит в пределах:
 - 1) 1 MM 1 HM
 - 2) 0,78 мкм -1 мм
 - 3) 0,38 мкм 0,78 мкм
 - 4) 1 нм 0,38 мкм
- 2. Отношение числа частиц в единице объема N_i на данном уровне энергии E_i к его статистическому весу g_i называется уровня энергии
 - 1) населенностью
 - 2) кратностью вырождения
 - 3) инверсией населенности
- 3. Оптический резонатор в лазере служит для:
 - 1) многократного пропускания излучения через активную среду
 - 2) формирования заданных пространственных, частотных и поляризационных характеристик излучения
 - 3) создания инверсной заселенности в активной среде
 - 4) обеспечения режима непрерывного генерирования
- 4. Одно из зеркал оптических резонаторов в лазерах делается полупрозрачным с пелью
 - 1) вывести излучение из объема резонатора
 - 2) уменьшить потери в резонаторе
 - 3) преобразовать частоту излучения
 - 4) модулировать лазерное излучение
- 5. Наименьшим порогом создания инверсной заселенностиобладает
 - 1. четырехуровневая система
 - 2. трехуровневая система
 - 3. двухуровневая система
 - 4. одноуровневая система
- 6. В твердотельных лазерах (рубин, иттрий-алюминиевый гранат) преимущественным видом накачки является:
 - 1) накачка с помощью газового разряда
 - 2) оптическая накачка
 - 3) химическая накачка
 - 4) газодинамическая накачка
- 7. В хирургии применяются лазеры с выходной мощностью P>20 Вт (лазерный скальпель). Какой вид лазера является наиболее подходящим для этих целей.
 - 1) полупроводниковый лазер (GaAs)
 - 2) химический лазер
 - 3) лазер на красителях
 - *4)* газовый лазер (CO2)
- 8. Одним из самых интересных свойств лазеров на красителях является:

- 1) Высокие значения мощности
- 2) Большое сечение поглощения
- 3) Перестройка частоты излучения
- 4) Управление амплитудой

9. Выбрать тип лазера, работающего в УФ и ИК области одновременно:

- 1) Твердотельный
- 2) Полупроводниковый
- 3) Газовый
- 4) Лазер на красителях.

10. В лазерах на органических красителях применяются излучательные переходы

- 1) между электронными, колебательными и врашательными состояниями
- 2) только между электронными состояниями
- 3) только между колебательными и вращательными состояниями
- 4) только между вращательными состояниями

11. Энергетические расстояния колебательными между электронными, И вращательными состояниями молекулы красителя имеют порядок

- (1) (1...3) эВ, (0,1...0,01) эВ и $(10^{-3}$... $10^{-4})$ эВ, соответственно
- 2) $(10^{-3} ... 10^{-4})$ эВ, (0,1...0,01) эВ и (1...3) эВ, соответственно
- 3) (1...3) эВ, $(10^{-3} ...10^{-4})$ эВ и (0,1...0,01) эВ, соответственно 4) (0,1...0,01) эВ, $(10^{-3} ...10^{-4})$ эВ и (1...3) эВ, соответственно

12. Уширение спектральных линий под влиянием электрических и магнитных полей связано с:

- 1) эффектами Зеемана и Штарка
- 2) эффектом Доплера
- 3) тепловыми колебаниями атомов решетки
- 4) конечностью времени жизни частицы на энергетическом уровне

13. При инверсии населенностей верхний уровень становится заселенным, чем нижний, и системе можно приписать температуру

- 1) более, отрицательную
- 2) менее, отрицательную
- 3) более, положительную
- 4) менее, положительную

14. Недостатком трехуровневых схем возбуждения лазеров является:

- 1) необходимость больших мощностей сигнала накачки
- 2) невозможность использования оптической накачки
- 3) широкая полоса линий поглощения
- 4) малая пороговая плотность накачки по инверсии

15. В выражении для вероятности перехода $dW_{21}^{uho} = B_{21} \rho(\omega) dt$ с уровня E_2 на уровень $E_1(E_2 > E_1)$ за время dt.

- 1) B_{21} коэффициент Эйнштейна для вынужденных переходов с испусканием
- 2) B_{21} коэффициент Эйнштейна для вынужденных переходов с поглощением
- 3) B_{21} коэффициент Эйнштейна для спонтанных переходов с испусканием

4) B_{21} - коэффициент Эйнштейна для спонтанных переходов с поглощением

7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля -50 % и промежуточного контроля -40 %.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях 25 баллов,
- выполнение лабораторных заданий -,
- выполнение домашних (аудиторных) контрольных работ 25 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос 5 баллов,
- письменная контрольная работа 15 баллов,
- тестирование 20 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

- а) основная литература:
 - 1. Пихтин А.Н. Оптическая и квантовая электроника. Учеб.для вузов.- М.: Высшая школа, 2001.- 573 с. (7 экз.).
 - 2. Звелто О. Принципы лазеров. М.: Мир, 2008. 720 с. (11 экз.).
 - 3. Шангина, Л.И. Квантовая и оптическая электроника: учебное пособие / Л.И. Шангина. Томск: Томский государственный университет систем управления и радиоэлектроники, 2012. 303 с.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=208584 (09.10.2018).
- б) дополнительная литература:
 - 1. Карлов Н.В. Лекции по квантовой электронике.- М.: Наука, Гл. ред. физ.-мат. лит., 1983.- 319 с. (30 экз.).
 - 2. Садыков С.А. Квантовая и оптическая электроника: учеб. пособие .Дагест. гос. унт. Махачкала: Изд-во ДГУ, 2012. 120 с. (86 экз.).
 - 3. Квантовая и оптическаяэлектроника: практикум / Г.С. Евтушенко, Ф.А. Губарев. Томск: Изд-воТПУ, 2009. http://ime.tpu.ru/study/discypliny/Quantum_Electronics_practice_2009.pdf

Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

Интернет ресурсы:

- 1. 3ECIPRbooks:http://www.iprbookshop.ru/
- 2. Электронно-библиотечная сист*ема* «Университетская библиотека онлайн» www.biblioclub.ru.
- 3. Электронной библиотека на http://elibrary.ru.
- 4. Электронный каталог НБ ДГУ[Электронный ресурс]: база данных содержит сведения о всех видах лит, поступающих в фонд НБ ДГУ/Дагестанский гос. ун-т. Махачкала, 2010 Режим доступа: http://elib.dgu.ru.

- 5. Moodle[Электронный ресурс]: система виртуального обучением: [база данных] / Даг.гос. ун-т. Махачкала, г. Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/
- 6. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru.
- 7. Сайт образовательных ресурсов Даггосуниверситетаhttp://edu.icc.dgu.ru
- 8. http://www.phys.msu.ru/rus/library/resources-online/ электронные учебные пособия, изданные преподавателями физического факультета МГУ.
- 9. http://www.phys.spbu.ru/library/ электронные учебные пособия, изданные преподавателями физического факультета Санкт-Петербургского госуниверситета.
- 10. **Springer.** http://link.springer.com, http://materials.springer.com/
- 11. **Scopus:** https://www.scopus.com
- 12. WebofScience: webofknowledge.com
- 13. www.nanotech.ru

10. Методические указания для обучающихся по освоению дисциплины.

Студент в процессе обучения должен не только освоить учебную Студент в процессе обучения должен не только освоить учебную программу, но и приобрести навыки самостоятельной работы. Студент должен уметь планировать и выполнять свою работу. Удельный вес самостоятельной работы составляет по времени 30% от всего времени изучаемого цикла. Это отражено в учебных планах и графиках учебного процесса, с которым каждый студент может ознакомиться у преподавателя дисциплины.

Главное в период обучения своей специальности - это научиться методам самостоятельного умственного труда, сознательно развивать свои творческие способности и овладевать навыками творческой работы. Для этого необходимо строго соблюдать дисциплину учебы и поведения.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что-то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Вид учебных занятий	Организация деятельности студента
занятии	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно
	фиксировать основные положения, выводы, формулировки, обобщения;
	помечать важные мысли, выделять ключевые слова, термины. Проверка
	терминов, понятий с помощью энциклопедий, словарей, справочников
	с выписыванием толкований в тетрадь. Обозначить вопросы, термины,
	материал, который вызывает трудности, пометить и попытаться найти
	ответ в рекомендуемой литературе. Если самостоятельно не удается
	разобраться в материале, необходимо сформулировать вопрос и задать
	преподавателю на консультации, на практических работах.
Практические	Проработка рабочей программы, уделяя особое внимание целям и
занятия	задачам структуре и содержанию дисциплины. Конспектирование
	источников. Работа с конспектом лекций, подготовка ответов к
	контрольным вопросам, просмотр рекомендуемой литературы, работа с
	текстом. Решение расчетно-графических заданий, решение задач по
	алгоритму и др.

Реферат	Поиск литературы и составление библиографии, использование от 3 до
	5 научных работ, изложение мнения авторов и своего суждения по
	выбранному вопросу; изложение основных аспектов проблемы. Кроме
	того, приветствуется поиск информации по теме реферата в Интернете,
	но с обязательной ссылкой на источник, и подразумевается не простая
	компиляция материала, а самостоятельная, творческая, аналитическая
	работа, с выражением собственного мнения по рассматриваемой теме и
	грамотно сделанными выводами и заключением. Ознакомиться со
	структурой и оформлением реферата.
Подготовка к	При подготовке к зачету необходимо ориентироваться на конспекты
зачету	лекций, рекомендуемую литературу и др.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Чтение лекций с использованием мультимедийных презентаций. Использование анимированных интерактивных компьютерных демонстраций и практикумов-тренингов по ряду разделов дисциплины.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Материально — техническая база кафедры экспериментальной физики, которая осуществляет подготовку по направлению 11.04.04 «Электроника и наноэлектроника», позволяет готовить магистров, отвечающих требованиям ФГОС. На кафедре имеются 3 учебных и 5 научных лабораторий, оснащенных современной технологической, измерительной и диагностической аппаратурой; в том числе функционирует проблемная НИЛ «Твердотельная электроника». Функционируют специализированные учебные и научные лаборатории: Физика и технология керамических материалов для твердотельной электроники, Физика и технология тонкопленочных структур, Электрически активные диэлектрики в электронике, Физическая химия полупроводников и диэлектриков.

Лекционные занятия проводятся в аудитории, оснащенной мультимедиым проекционным оборудованием и интерактивной доской.