

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ТЕХНОЛОГИИ ПРОЦЕССОВ МИКРО- И НАНОЭЛЕКТРОНИКИ

Кафедра инженерной физики

Образовательная программа **11.04.04- Электроника и наноэлектроника**

Программа магистратуры **Материалы и технологии электроники и наноэлектроники**

> Уровень высшего образования **Магистратура**

> > Форма обучения:

Очно-заочная

Статус дисциплины: Базовая

Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС3++ ВО по направлению подготовки 11.04.04- Электроника и наноэлектроника, программа магистратуры: Материалы и технологии электроники и наноэлектроники — Приказ Минобрнауки России от 05.04.2017 №301.

Разработчик (и): кафедра инженерной физики, Шабанов Ш.Ш., к.т.н., доцент

Рабочая программа дисциплины одобрена:

на заседании кафедры инженерной физики от «30» августа 2020г., протокол № 1

Зав. кафедрой ____ Садыков С.А.

на заседании Методической комиссии физического факультета от « 24» сентября 2020г., протокол № 1.

Председатель _____ Мурлиева Ж.Х.

Рабочая программа дисциплины согласована с учебно-методическим управлением

Нач. УМУ Гасангаджиева А.Г.

СОДЕРЖАНИЕ

Аннотация рабочей программы

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре ОПОП магистратуры
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины
- 4. Объем, структура и содержание дисциплины
- 5. Образовательные технологии
- 6. Учебно-методическое обеспечение самостоятельной работы студентов
- 7. Фонд оценочных средств для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины
- 7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы
- 7.2. Типовые контрольные задания
- 7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.
- 8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины
- 9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
- 10. Методические указания для обучающихся по освоению дисциплины
- 11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем
- 12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аннотация рабочей программы дисциплины

Дисциплина **Физико-химические основы технологии процессов микро- и наноэлектроники** входит в базовую часть образовательной программы магистратуры по направлению (специальности) **11.04.04** – **Электроника и наноэлектроника.**

Дисциплина реализуется на физическом факультете кафедрой инженерной физики. Содержание дисциплины охватывает круг вопросов, связанных с формированием и углублением знаний о физической химии материалов и технологических процессов в тех ее важнейших аспектах, которые непосредственно касаются технологии производства полупроводниковых структур, применяемых в приборах и устройствах твердотельной микроэлектроники и наноэлектроники;

Дисциплина нацелена на формирование следующих компетенций выпускника: *общепрофессиональных*: ОПК-1; ОПК-2;ОПК-3.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия, самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме: индивидуальное собеседование, тестирование, письменные контрольные задания и промежуточный контроль в форме зачета.

Объем дисциплины 2 зачетных единиц, в том числе в академических часах по видам учебных занятий

			Форма						
			промежуточной						
Семестр		Кон	CPC,	аттестации					
мес	0			из них					(зачет,
Ce	всего	всего	Лекц	Лаборат	Практич	КСР	консульт	числе	дифференциров
	B	все	ИИ	орные	еские		ации	экзам	анный зачет,
				занятия	занятия			ен	экзамен
9	72	10	2	-	8	2		60	зачёт

1. Цели освоения дисциплины

Целью освоения дисциплины «Физико-химические основы технологии процессов микро- и наноэлектроники» является формирование у студентов основных компетенций в области фундаментальных физико-химических законов и методов, являющихся теоретической базой современной микро- и нанотехнологии. Формирование навыков проведения термодинамических и кинетических расчетов, необходимых для технологического оформления процессов.

Задачами дисциплины является формирование и углубление знаний о физической химии материалов и технологических процессов, которые используются при производстве материалов и проведении технологических процессов для создания устройств электроники и наноэлектроники; формирование знаний практического использования физико-химических основ технологии производства устройств электроники и наноэлектроники.

В результате изучения курса магистры должны:

- 1. Знать и понимать основные понятия и представления современной микро- и наноэлектроники; физическую сущность процессов и явлений, протекающих в системах микро- и наноэлектроники; принципы функционирования основных приборов микро- и наноэлектроники.
- 2. Уметь правильно использовать закономерности для реализации потенциальных возможностей материалов и структур при проектировании и создании систем микро- и наноэлектроники
- 3. Владеть навыками самостоятельной работы с литературой; методическими и аппаратными средствами реализации систем микро- и наноэлектроники.

2. Место дисциплины в структуре ОПОП магистратуры

Дисциплина «Физико-химические основы технологии процессов микро- и наноэлектроники» в структуре ОПОП ВО находится в цикле профессиональных дисциплин (базовая часть). Для освоения дисциплины требуются знания и умения, приобретенные обучающимися в результате освоения ряда предшествующих дисциплин (разделов дисциплин), таких как:

- Физическая химия материалов и процессов электронной техники
- Материаловедение
- Физика конденсированного состояния
- Физические основы электроники

и знания в области математики.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Код компетенции из	Наименование	Планируемые результаты обучения
ΦΓΟС ΒΟ	компетенции из ФГОС	
	ВО	
ОПК-1.	ОПК-1.1.	Знает:
ОПК-1. Способен	ОПК-1.1. Выявляет и	Знает: - физико-математический аппарат,

современную научную картину мира, выявлять естественнонаучную сущность проблем, определять пути их решения и оценивать эффективность сделанного выбора

возникающие в ходе профессиональной деятельности, основываясь на современной научной картине мира

профессиональной деятельности
- тенденции и перспективы развития
электроники и наноэлектроники, а
также смежных областей науки и
техники

Умеет:

- выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, анализировать и обрабатывать соответствующую научно-техническую литературу с учетом зарубежного опыта

Владеет:

 навыками находить и критически анализировать информацию, выявлять естественнонаучную сущность проблем

ОПК-1

ОПК-1.2.

Реализует и совершенствует новые методы, идеи, подходы и алгоритмы решения теоретических и прикладных задач в области профессиональной деятельности

Знает:

- основные понятия, идеи, методы, подходы и алгоритмы решения теоретических и прикладных задач в области электроники и наноэлектроники - новые методологические подходы к решению задач в области профессиональной деятельности

Умеет:

- реализовать и совершенствовать новые методы, идеи, подходы и алгоритмы решения теоретических и прикладных задач в области профессиональной деятельности

Владеет:

- навыками реализовать и совершенствовать новые методы, идеи, подходы и алгоритмы решения теоретических и прикладных задач в области профессиональной деятельности

•

ОПК-1

ОПК-1.3.

Проводит качественный и количественный анализ выбранного методов решения выявленной проблемы, при необходимости вносит необходимые коррективы

Знает:

- основы качественного и количественного анализа методов решения выявленной проблемы Умеет:

- выбирать метод решения выявленной проблемы, проводить его качественный и количественный анализ, при необходимости вносить необходимые коррективы для достижения

ОПК-2 Способен применять современные методы исследования, представлять и аргументировано защищать результаты выполненной работы	ОПК-2.1. Выбирает или самостоятельно формулирует тему исследования, составляет программу исследования	Владеет: - навыками проводить качественный и количественный анализ методов решения выявленной проблемы, оценивать эффективность выбранного метода Знает: - актуальные проблемы, основные задачи, направления, тенденции и перспективы развития современной электроники и наноэлектроники, а также смежных областей науки и техники - принципы планирования экспериментальных исследований для решения поставленной задачи Умеет: - самостоятельно ставить конкретные задачи научных исследований - рассматривать возможные варианты реализации экспериментальных исследований и недостатки Владеет: - навыками формулировать конкретные темы исследования, планировать эксперименты по заданной методике для эффективного решения поставленной задачи •
ОПК-2	ОПК-2.2. Самостоятельно выбирает методы исследования, разрабатывает и проводит исследования	Знает: - современные инновационные методики исследований, в том числе с использованием проблемно-ориентированных прикладных программных средств Умеет: - предлагать новые методы научных исследований и разработок, новые методологические подходы к решению поставленных задач - самостоятельно выбирать методы исследования, разрабатывать и проводить исследования Владеет: -навыками самостоятельно выбирать методы исследования, разрабатывать и проводить исследования
ОПК-2	ОПК-2 .3. Анализирует,	Знает: - основные приемы обработки и

интерпретирует, оценивает, представляет и защищает результаты выполненного исследования с обоснованными выводами и рекомендациями представления результатов выполненного исследования - передовой отечественный и зарубежный научный опыт и достижения по теме исследования Умеет:

- использовать основные приемы обработки, анализа и представления экспериментальных данных
- формулировать и аргументировать выводы и рекомендации по выполненной работе

Владеет:

- навыками обработки, анализа и интерпретации полученных данных с использованием современных информационных технологий - формулировать и аргументировать выводы и рекомендации по исследовательской работе

ОПК-3.

Способен приобретать и использовать новую информацию в своей предметной области, предлагать новые идеи и подходы к решению инженерных задач.

ОПК-3.1.

Демонстрирует умения получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте

Знает:

- современные принципы поиска, хранения, обработки, анализа и представления информации из различных источников и баз данных в требуемом формате с использованием информационных, компьютерных и сетевых технологий

Умеет:

- получать и использовать новые знания в области профессиональной деятельности, в том числе в междисциплинарном контексте, с использованием информационно-коммуникационных технологий

Владеет:

• - навыками использовать современные информационные технологии для приобретения новых знаний в области профессиональной деятельности, в том числе в междисциплинарном контексте

ОПК-3

ОПК-3.2.

Предлагает новые идеи и подходы к решению инженерных задач с использованием современных информационных технологий

Знает:

- типовые процедуры применения проблемно-ориентированных прикладных программных средств в сфере профессиональной деятельности

Умеет:

- генерировать новые идеи и подходы к решению инженерных задач с

использованием современных информационных технологий		-
---	--	---

4. Объем, структура и содержание дисциплины. 4.1. Объем дисциплины составляет **2** зачетных единиц, **72** академических часов.

4.2. Структура дисциплины.

№ п/п	Разделы и темы дисциплины	Семестр	Неделя семестра	c pa	Трактические вки стоом со стоом кон стоом кон стоом кон стоом кон стоом	ючая ятельну гуденто	ую ов и	Самостоятельная работа	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)
	M 4 #			ſ	38		, , ,		
	Модуль 1. Физик								ния вещества на
1	Топионица учиства		рхн	ость 1	гвёрдо	и фазы	1-подло 6	3 0	(Д3), (С), (КСР)
1	Термодинамические основы технологических процессов	1		1			О	30	(дз), (С), (КСР)
2	Теоретические основы процессов нанесения вещества на поверхность твёрдой фазы. Физико-химические основы эпитаксиальной технологии и тонкоплёночной технологии				2		6	26	(ЛР), (ДЗ), (С), (КСР)
3.	Поверхностные явления и межфазные взаимодействия				2				
4	Кинетические и диффузионные процессы				2		6	24	(ЛР), (ДЗ), (С), (КСР)
	Итого по модулю 1:			1	6		18	80	

Модуль 2. Физико-химические основы процессов удаления вещества с поверхности твёрдой фазы-подложки

5	Процессы	1		6	28	(ДЗ), (С), (КСР)
	механического					
	удаления вещества					
6	Физико-химические		2	6	30	(ЛР), (ДЗ), (С),
	основы процессов					(KCP)
	химического					
	удаления вещества с					
	поверхности					
	твёрдой фазы-					
	подложки					
6	Физико-химические		2	6	24	(ЛР), (ДЗ), (С),
	основы процессов					(KCP)
	вакуум-					
	термического					
	удаления вещества с					
	поверхности					
	твёрдой фазы.					
	Итого по модулю 2:	1	4	1	8 80	
	ИТОГО: 216	2	10	3	6 160	

4.3. Содержание дисциплины, структурированное по темам (разделам).

Модуль 1. Физико-химические и термодинамические основы технологических процессов в микро- и наноэлектронике

Тема 1. Термодинамические основы технологических процессов

Статистическое определение энтропии. Свойства энтропии. Статический смысл температуры. Закон сохранения энтропии в открытых системах. Типы термодинамических процессов. Тепловой эффект изохорных и изобарных процессов. Тепловой эффект и энтропия необратимых процессов. Условия самопроизвольности изотермических процессов в открытых системах. Основные термодинамические функции и соотношения между ними. Химический потенциал И парциальные мольные величины. Термодинамические функции идеального газа. Понятие о стандартном состоянии веществ и таблицах стандартных термодинамических величин. Модели и термодинамические свойства растворов. Термодинамика образования жидких и твёрдых растворов. Условия фазового и химического равновесия. Правило фаз Гиббса.

Тема 2. Теоретические основы процессов нанесения вещества на поверхность твёрдой фазы. Физико-химические основы эпитаксиальной и тонкоплёночной технологии

Существующие представления о механизмах зародышеобразования и роста новой фазы. Феноменологические гипотезы ориентированного нарастания (эпитаксии). Прогнозирование вероятности и характера протекания процессов эпитаксии с использованием критериев физико-химического взаимодействия веществ. Механизмы роста на поверхности. Золь-гель-процесс. Химическое осаждение из газовой фазы. Метод Ленгмюра-Блоджетт. Молекулярно-лучевая эпитаксия. Автоэпитаксия кремния. Автоэпитаксия кремния из паро-газовой смеси. Получение автоэпитаксиальных слоёв кремния пиролизом силана. Эпитаксия полупроводниковых соединений группы A^3B^5 . Примеры процессов гетеро- и хемоэпитаксии из газовой фазы. Жидкофазная эпитаксия. Методы получения эпитаксиальных слоёв из твёрдой фазы. Получение тонких плёнок методами физической конденсации из газообразной фазы. Нанесение тонких плёнок

методом вакуум-термического испарения и конденсации. Катодное и ионно-плазменное нанесение. Нанесение металлических плёнок. Системы металлизации кремниевых ИС. Получение окисных плёнок кремния. Термическое окисление кремния. Методы осаждения окисных плёнок кремния. Химические и электрохимические методы нанесения металлические и диэлектрических плёнок из растворов.

Тема 3. Поверхностные явления и межфазные взаимодействия

Термодинамика поверхностных явлений. Поверхностное давление. Формула Гиббса-Томсона. Физическая и химическая адсорбция на поверхности твёрдых тел. Кинетика процесса физической адсорбции. Уравнение изотермы Ленгмюра. Роль адсорбции, растворения и диффузии в газопоглощении материалов.

Тема 4. Кинетические и диффузионные процессы

Термоактивные процессы. Закон Аррениуса. Механизм кинетики химических реакций. Механизмы диффузии атомов в твёрдом теле. Законы Фика. Начальные и граничные условия в задачах диффузии. Диффузионные задачи на удаление вещества из твёрдого тела. Принципы вакуумного обезгаживания материалов. Роль диффузии в газопроницаемости вакуумных оболочек. Диффузионные задачи на введение вещества в твёрдое тело. Принципы диффузионного легирования полупроводников. Диффузионная и химическая кинетика гетерогенных процессов.

Модуль 2. Физико-химические основы процессов удаления вещества с поверхности твёрдой фазы-подложки

Тема 5. Процессы механического удаления вещества

Механизмы разрушения монокристаллов при абразивной обработке поверхности полупроводников. Механизмы возникновения трещин. Влияние сред на процессы разрушения. Технологические особенности процесса резания полупроводниковых материалов. Технологические особенности и механизмы разрушения полупроводниковых материалов в процессах шлифования и полирования. Химико-механическое полирование. Кристаллографическая абразивная обработка монокристаллов кремния. разделение полупроводниковых пластин на заготовки.

Тема 6. Физико-химические основы процессов химического удаления вещества с поверхности твёрдой фазы-подложки.

Пути попадания примесей на подложку и физико-химические основы процессов очистки поверхности. Удаление загрязнений с поверхности подложки. Процессы химического удаления кремния и германия с поверхности твёрдой фазы (травление). Локальное и локально-анизотропное травление полупроводников. Полирующее травление кремния в паро-газовых смесях.

Тема 7. Физико-химические основы процессов вакуум-термического удаления вещества с поверхности твёрдой фазы.

Вакуумно-термическое испарение. Ионно-плазменное травление. Плазмохимическое травление.

4.3.1. Содержание лекционных занятий

модул	Содержание темы
Ь	
1.	<u>Лекция 1.</u> Термодинамические основы технологических процессов
	Статистическое определение энтропии. Свойства энтропии. Статический
	смысл температуры. Закон сохранения энтропии в открытых системах. Типы

термодинамических процессов. Тепловой эффект изохорных и изобарных процессов. Тепловой эффект и энтропия необратимых процессов. Условия
самопроизвольности изотермических процессов в открытых системах.
Основные термодинамические функции и соотношения между ними.
Химический потенциал и парциальные мольные величины.
Термодинамические функции идеального газа. Понятие о стандартном
состоянии веществ и таблицах стандартных термодинамических величин.
Модели и термодинамические свойства растворов. Термодинамика
образования жидких и твёрдых растворов. Условия фазового и химического
равновесия. Правило фаз Гиббса.

2. <u>Лекция 2.</u> Процессы механического удаления вещества

Механизмы разрушения монокристаллов при абразивной обработке поверхности полупроводников. Механизмы возникновения трещин. Влияние сред на процессы разрушения. Технологические особенности процесса резания полупроводниковых материалов. Технологические особенности и механизмы разрушения полупроводниковых материалов в процессах шлифования и полирования. Химико-механическое полирование. Кристаллографическая абразивная обработка монокристаллов кремния. разделение полупроводниковых пластин на заготовки.

4.3.2. Темы семинарских и практических занятий

модул	4.5.2. Темы семинарских и практических занятии Содержание темы
модул	Содержание темы
D	
1.	<u>Тема 1.</u> Особенности структуры наноматериалов
	<u>Тема 2.</u> Основные разновидности углерода. Алмаз, графит и аморфный углерод. Карбин. Кластеры. Фуллерены. Углеродные нанотрубки.
	<u>Тема 3.</u> Электронные микроскопы. Сканирующая туннельная микроскопия. Сканирующая зондовая микроскопия. Оптические методы.
	<u>Тема 4.</u> Получение порошковых наночастиц. Основные методы получения консолидированных наноматериалов.
2.	<u>Тема 5.</u> Особенности свойств объёмных наноструктурных материалов. Физико-химические свойства.
3	Физико-химические своиства.
	<u>Тема 6.</u> Композиционные наноматериалы. Дисперсно-упорядоченные, волокнистые и слоистые композиционные материалы.
	<u>Тема 6.</u> Композиционная нанокерамика.

4.3.3. Темы самостоятельной работы

- 1. Диаграммы состояния двух и трёхкомпонентных систем.
- 2. Особенности термодинамики малых объектов. Фазовые равновесия.
- 3. Физические методы получения наноматериалов.
- 4. Исследование оптических свойств наноструктур и фотонных кристаллов. Получение двумерных структур методом анодного травления.

- 5. Наночастицы и нанокластеры.
- 6. Методы изучения наноструктур.
- 7. Объемные наноструктурированные наноматериалы.
- 8. Самосборка и самоорганизация.
- 9. Катализ в нанонауке и нанотехнологии. Наноразмерные катализаторы.
- 10. Поверхностные явления и катализ.

5. Образовательные технологии

Основными видами образовательных технологий с применением, как правило, компьютерных и технических средств, учебного и научного оборудования являются:

- Информационные технологии.
- Проблемное обучение.
- Индивидуальное обучение.
- Междисциплинарное обучение.
- Опережающая самостоятельная работа.

Для достижения определенных компетенций используются следующие формы организации учебного процесса: лекция (информационная, проблемная, лекциявизуализация, лекция-консультация и др.), практическое занятие, лабораторные занятия, семинарские занятия, самостоятельная работа, консультация. Допускаются комбинированные формы проведения занятий, такие как лекционно-практические занятия.

Преподаватель самостоятельно выбирают наиболее подходящие методы и формы проведения занятий из числа рекомендованных и согласуют выбор с кафедрой.

Реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий и организации внеаудиторной работы (компьютерных симуляций, деловых и ролевых игр, разбора конкретных ситуаций, психологических и иных тренингов) с целью формирования и развития профессиональных навыков обучающихся. Интерактивное обучение — метод, в котором реализуется постоянный мониторинг освоения образовательной программы, целенаправленный текущий контроль и взаимодействие (интерактивность) преподавателя и студента в течение всего процесса обучения.

Самостоятельная работа организована в соответствие с технологией проблемного обучения и предполагает следующие формы активности:

- самостоятельная проработка учебно-проблемных задач, выполняемая с привлечением основной и дополнительной литературы;
- поиск научно-технической информации в открытых источниках с целью анализа и выявления ключевых особенностей.

Основные аспекты применяемой технологии проблемного обучения:

- постановка проблемных задач отвечает целям освоения дисциплины «Физика конденсированного состояния» и формирует необходимые компетенции;
- решаемые проблемные задачи стимулируют познавательную деятельность и научно-исследовательскую активность студентов.

По лекционному материалу подготовлено учебное пособие, конспекты лекций в электронной форме и на бумажном носителе, большая часть теоретического материала излагается с применением слайдов (презентаций) в программе **Power Point**, а также с использованием интерактивных досок.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа магистров имеет целью подготовку к семинарским и практическим занятиям по отдельным разделам дисциплины, а также к выполнению лабораторных работ по предмету. Разделы дисциплины для самостоятельной работы приведены в п.п. 4.3.3. и 4.3.4.

В течение семестра магистры самостоятельно готовятся по отдельным разделам дисциплины, представляют рефераты и презентации, обсуждают выбранные темы на практических занятиях.

- 7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.
- 7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Код компетенции из ФГОС ВО	Наименование компетенции из ФГОС ВО	П.	ланируемые результаты обучения	Процедура освоения
ОПК-1.	ОПК-1.1.	31	нает:	Устный
Способен	Выявляет и	•	основные понятия, законы и	опрос,
представлять	анализирует		модели физики и химии;	письменный
современную	проблемы,	•	физическую и химическую	опрос,
научную картину	возникающие в		сущность процессов,	выступлени
мира, выявлять	ходе		протекающих при реализации	е на
естественнонаучн	профессиональной		нанотехнологий, возможности	семинарах,
ую сущность	деятельности,		и характеристики материалов,	презентации
проблем,	основываясь на		используемых в	докладов.
определять пути	современной		нанотехнологиях;	
их решения и	научной картине	•	квантовые основы	
оценивать	мира		современной наноинженерии;	
эффективность		•	- основные научно-	
сделанного	ОПК-1.2.		технические проблемы и	
выбора	Реализует и		перспективы развития	
	совершенствует		нанотехнологии, ее	
	новые методы,		взаимосвязь со смежными	
	идеи, подходы и		областями;	
	алгоритмы		тенденции и перспективы	
	решения		развития электроники и	
	теоретических и		наноэлектроники, а также	
	прикладных задач в		смежных областей науки и	
	области		техники;	
	профессиональной	•	основные понятия, идеи,	
	деятельности		методы, подходы и алгоритмы	
	ОПК-1.3.		решения теоретических и	
	Проводит		прикладных задач в области	
	качественный и		электроники и	
	качественный и количественный		наноэлектроники	
	анализ выбранного	•	новые методологические	
	методов решения		подходы к решению задач в	
	выявленной		области профессиональной	
	проблемы, при		деятельности;	
	необходимости	•	основные подходы к	
	вносит		описанию реальных физико-	
	Billoomi		химических и	

термодинамических процессов при получении новых материалов для микроэлектроники и наноэлектроники;

Умеет:

- создавать и анализировать теоретические модели физических и химических процессов и явлений в полупроводниках и диэлектриках;
- анализировать, систематизировать и обобщать научнотехническую информацию в области современного материаловедения;
- самостоятельно изучать и понимать специальную научную и методическую литературу, связанную с проблемами физики полупроводников и диэлектриков, физики систем пониженной размерности;
- выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, анализировать и обрабатывать соответствующую научнотехническую литературу с учетом зарубежного опыта;
- выбирать метод решения выявленной проблемы, проводить его качественный и количественный анализ, при необходимости вносить необходимые коррективы для достижения оптимального результата Владеет:
- навыками находить и критически анализировать информацию, выявлять естественнонаучную сущность проблем;
- методами научного анализа проблем, определять пути их решения и оценивать

эффективность сделанного выбора навыками реализовать и совершенствовать новые

- павыками реализовать и совершенствовать новые методы, идеи, подходы и алгоритмы решения теоретических и прикладных задач в области профессиональной деятельности
- создавать и анализировать теоретические модели и проводить физико-химический анализ процессов и явлений микроэдектронике;
- выбирать методы и средства решения конкретных задач, использовать для их решения физических измерительных приборов и приемов.
- анализировать, систематизировать и обобщать научнотехническую информацию в области современного материаловедения;
- самостоятельно изучать и понимать специальную научную и методическую литературу, связанную с проблемами наноэлектроники и физики систем пониженной размерности;

ОПК-2

Способен применять современные методы исследования, представлять и аргументировано защищать результаты выполненной работы

ОПК-2.1.

Выбирает или самостоятельно формулирует тему исследования, составляет программу исследования

ОПК-2.2.

Самостоятельно выбирает методы исследования, разрабатывает и проводит исследования

ОПК-2.3.

Знает:

- актуальные проблемы, основные задачи, направления, тенденции и перспективы развития современной электроники и наноэлектроники, а также смежных областей науки и техники
- принципы составления программы исследований по выбранной теме в области изучения материалов и компонентов электроники и наноэлектроники;
- современные инновационные методики исследований, в том числе с использованием

Устный опрос, письменный опрос, выступлени е на семинарах, презентации докладов.

Анализирует, интерпретирует, оценивает, представляет и защищает результаты выполненного исследования с обоснованными выводами и рекомендациями

- проблемно-ориентированных прикладных программных средств;
- основы качественного и количественного анализа методов решения выявленной проблемы;
- основные приемы обработки и представления результатов выполненного исследования
- требования к оформлению результатов выполненной работы;
- пакеты программ по графическому представлению результатов выполненной работы.

Умеет:

- для выполнения своих профессиональных задач определить и собрать необходимую исходную информацию, на основе анализа ситуации поставить цель работы и сформулировать последовательность решения задач, необходимых для ее достижения;
- находить необходимую профессиональную информацию в периодической литературе, банках и базах данных (в том числе в сети Интернет), оценивать и обрабатывать ее, пользоваться компьютерными методами сбора, хранения и обработки информации;

Владеет:

- навыками выбирать и формулировать конкретные задачи исследований;
- проводить качественный и количественный анализ методов решения выявленной проблемы, оценивать эффективность выбранного метода
- навыками планировать

исследования по заданной методике для эффективного решения поставленной задачи;

- опытом выявления сути материаловедческих проблем твердотельной электроники, конкретизации целей и задач исследований объектов;
- навыками самостоятельно выбирать методы исследования, разрабатывать и проводить исследования;
- опытом выявления сути материаловедческих проблем твердотельной электроники, конкретизации целей и задач исследований объектов навыками обработки, анализа и интерпретации полученных данных с использованием современных информационных технологий
- навыками формулировать и аргументировать выводы и рекомендации по исследовательской работе, оформлять, представлять и докладывать результаты исследований;
- навыками представления итогов работы в виде научных публикаций, тезисов докладов, оформления заявок на изобретения и др.;
- опытом использования результатов исследований для оформления научных проектов, грантов, участия в различных молодежных конкурсах;
- опытом внедрения результатов исследований на практике.

Способен приобретать и использовать

ОПК-3.

приооретать и использовать новую информацию в своей предметной

ОПК-3.1.

Демонстрирует умения получать и использовать новые знания в области профессиональной деятельности, в том

Знает:

 - основные виды и свойства нанобъектов, наноматериалов, приборов и устройств на их основе, типовые технологические процессы их получения, Устный опрос, письменный опрос, выступлени е на семинарах,

области, предлагать новые идеи и подходы к решению инженерных задач. числе в междисциплинарно м контексте

ОПК-3.2.

Предлагает новые идеи и подходы к решению инженерных задач с использованием современных информационных технологий

элементную базу, а также типовое оборудование; технологические процессы получения и обработки наноматериалов, их возможности, ограничения, взаимосвязи и перспективы развития; критерии выбора вариантов технологии. современные принципы поиска, хранения, обработки, анализа и представления информации о новых

материалах и технологиях твердотельной электроники и

различных источников и баз данных в требуемом формате

наноэлектроники из

с использованием информационных,

технологий;
возможность поиска,
управления, обработки и
обмена информацией при
решении инженерных задач
материаловедения по
направлению электроники и
наноэлектроника.

компьютерных и сетевых

Умеет:

- письменно и устно правильно (логично) излагать постановку задачи и результаты работы;
- анализировать и прогнозировать работоспособность наноматериалов, устройств и приборов на их основе в различных условиях их эксплуатации;
- использовать специализированные знания в области физики конденсированного состояния вещества для обеспечения технологической реализации материалов и элементов электронной техники в приборах и устройствах электроники и наноэлектроники.

миниконференци

технолого процессан наномате	и управления ическими ми при производстве риалов, приборов и в на их основе,
обеспечи продукци требовани рынка. • навыками идеи и по инженерн использон информан	вающие выпуск и, удовлетворяющей иям стандартов и и предлагать новые одходы к решению ных задач с ванием современных ционных технологий нению новых

7.2. Типовые контрольные задания

7.2.1. Экзаменационные вопросы

- 1. Статистическое определение энтропии. Свойства энтропии.
- 2. Типы термодинамических процессов. Тепловой эффект изохорных и изобарных процессов.
- 3. Основные термодинамические функции и соотношения между ними.
- 4. Химический потенциал и парциальные мольные величины.
- 5. Модели и термодинамические свойства растворов. Термодинамика образования жидких и твёрдых растворов.
- 6. Условия фазового и химического равновесия. Правило фаз Гиббса.
- 7. Существующие представления о механизмах зародышеобразования и роста новой фазы.
- 8. Механизмы роста на поверхности.
- 9. Золь-гель-процесс.
- 10. Химическое осаждение из газовой фазы.
- 11. Метод Ленгмюра-Блоджетт
- 12. Молекулярно-лучевая эпитаксия.
- 13. Автоэпитаксия кремния.
- 14. Жидкофазная эпитаксия.
- 15. Методы получения эпитаксиальных слоёв из твёрдой фазы.
- 16. Химические и электрохимические методы нанесения металлические и диэлектрических плёнок из растворов.
- 17. Термическое окисление кремния. Методы осаждения окисных плёнок кремния.
- 18. Термодинамика поверхностных явлений. Поверхностное давление. Формула Гиббса-Томсона.
- 19. Физическая и химическая адсорбция на поверхности твёрдых тел. Кинетика процесса физической адсорбции. Уравнение изотермы Ленгмюра. Биполярная световая генерация.
- 20. Термоактивные процессы. Закон Аррениуса. Механизм кинетики химических реакций.
- 21. Механизмы диффузии атомов в твёрдом теле. Законы Фика.

- 22. Диффузионная и химическая кинетика гетерогенных процессов.
- 23. Механизмы разрушения монокристаллов при абразивной обработке поверхности полупроводников. Механизмы возникновения трещин.
- 24. Химико-механическое полирование.
- 25. Удаление загрязнений с поверхности подложки. Процессы химического удаления кремния и германия с поверхности твёрдой фазы (травление).
- 26. Полирующее травление кремния в паро-газовых смесях.
- 27. Вакуумно-термическое испарение.
- 28. Ионно-плазменное травление.
- 29. Локальное и локально-анизотропное травление полупроводников.
- 30. Плазмохимическое травление.

7.2.2. Контрольные вопросы к самостоятельной работе

Тема 1. Тема 1. Термодинамические основы технологических процессов

Статистическое определение энтропии.

Свойства энтропии. Статический смысл температуры.

Закон сохранения энтропии в открытых системах.

Типы термодинамических процессов.

Тепловой эффект изохорных и изобарных процессов.

Тепловой эффект и энтропия необратимых процессов.

Условия самопроизвольности изотермических процессов в открытых системах.

Основные термодинамические функции и соотношения между ними.

Химический потенциал и парциальные мольные величины.

Термодинамические функции идеального газа.

Понятие о стандартном состоянии веществ и таблицах стандартных термодинамических величин.

Модели и термодинамические свойства растворов.

Термодинамика образования жидких и твёрдых растворов.

Условия фазового и химического равновесия. Правило фаз Гиббса.

<u>Тема 2.</u> Теоретические основы процессов нанесения вещества на поверхность твёрдой фазы. Физико-химические основы эпитаксиальной и тонкоплёночной технологии

Существующие представления о механизмах зародышеобразования и роста новой фазы.

Прогнозирование вероятности и характера протекания процессов эпитаксии с использованием критериев физико-химического взаимодействия веществ.

Механизмы роста на поверхности.

Золь-гель-процесс.

Химическое осаждение из газовой фазы.

Метод Ленгмюра-Блоджетт.

Молекулярно-лучевая эпитаксия.

Автоэпитаксия кремния. Автоэпитаксия кремния из паро-газовой смеси. Получение автоэпитаксиальных слоёв кремния пиролизом силана.

Эпитаксия полупроводниковых соединений группы A^3B^5 . Примеры процессов гетеро- и хемоэпитаксии из газовой фазы.

Жидкофазная эпитаксия.

Методы получения эпитаксиальных слоёв из твёрдой фазы. Получение тонких плёнок методами физической конденсации из газообразной фазы. Нанесение тонких плёнок методом вакуум-термического испарения и конденсации. Катодное и ионно-плазменное нанесение.

Нанесение металлических плёнок. Системы металлизации кремниевых ИС. Получение окисных плёнок кремния. Термическое окисление кремния.

Методы осаждения окисных плёнок кремния. Химические и электрохимические методы нанесения металлические и диэлектрических плёнок из растворов.

Тема 3. Поверхностные явления и межфазные взаимодействия

Термодинамика поверхностных явлений. Поверхностное давление. Формула Гиббса-Томсона.

Физическая и химическая адсорбция на поверхности твёрдых тел.

Кинетика процесса физической адсорбции. Уравнение изотермы Ленгмюра.

Роль адсорбции, растворения и диффузии в газопоглощении материалов.

Тема 4. Кинетические и диффузионные процессы

Термоактивные процессы.

Закон Аррениуса.

Механизм кинетики химических реакций.

Механизмы диффузии атомов в твёрдом теле. Законы Фика.

Начальные и граничные условия в задачах диффузии.

Диффузионные задачи на удаление вещества из твёрдого тела.

Принципы вакуумного обезгаживания материалов.

Роль диффузии в газопроницаемости вакуумных оболочек.

Диффузионные задачи на введение вещества в твёрдое тело.

Принципы диффузионного легирования полупроводников.

Диффузионная и химическая кинетика гетерогенных процессов.

Тема 5. Процессы механического удаления вещества

Механизмы разрушения монокристаллов при абразивной обработке поверхности полупроводников.

Механизмы возникновения трещин. Влияние сред на процессы разрушения. Технологические особенности процесса резания полупроводниковых материалов. Технологические особенности и механизмы разрушения полупроводниковых материалов в процессах шлифования и полирования.

Химико-механическое полирование.

Кристаллографическая абразивная обработка монокристаллов кремния. разделение полупроводниковых пластин на заготовки.

Тема 6. Физико-химические основы процессов химического удаления вещества с поверхности твёрдой фазы-подложки.

Пути попадания примесей на подложку и физико-химические основы процессов очистки поверхности.

Удаление загрязнений с поверхности подложки.

Процессы химического удаления кремния и германия с поверхности твёрдой фазы (травление).

Локальное и локально-анизотропное травление полупроводников. Полирующее травление кремния в паро-газовых смесях.

Тема 7. Физико-химические основы процессов вакуум-термического удаления вещества с поверхности твёрдой фазы.

Вакуумно-термическое испарение.

Ионно-плазменное травление.

7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля -60 % и промежуточного контроля -50 %.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов, 5- участие на практических занятиях 15 баллов,
- выполнение лабораторных заданий 25 баллов,
- выполнение домашних (аудиторных) контрольных работ 10 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос 5 баллов,
- письменная контрольная работа 15 баллов,
- тестирование 20 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

Основная

- 1. Борисенко В.Е., Воробьёва А.И., Уткина Е.А. Наноэлектроника. М.: Бином, 2009. 223 с.
- 2. Пул Ч., Оуэнс Ф. Нанотехнологии. Техносфера, 2007 376 с.
- 3. Нанотехнологии и специальные материалы: учебное пособие для вузов / Ю. П. Солнцев, Е. И. Пряхин, С. А. Вологжанина, А. П. Петкова; под редакцией Ю. П. Солнцева. 3-е изд. Санкт-Петербург: ХИМИЗДАТ, 2020. 336 с. ISBN 078-5-93808-346-3. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/97818.html
- 4. Глущенко, А. Г. Наноматериалы и нанотехнологии : учебное пособие / А. Г. Глущенко, Е. П. Глущенко. Самара : Поволжский государственный университет телекоммуникаций и информатики, 2017. 269 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/75388.html
- 5. Нанотехнологии в электронике-3.1 / И. И. Амиров, Е. А. Артамонова, А. Г. Балашов [и др.]; под редакцией Ю. А. Чаплыгин. Москва: Техносфера, 2016. 480 с. ISBN 978-5-94836-423-0. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/58864.html
- 6. Верещагина, Я. А. Инновационные технологии. Введение в нанотехнологии: учебное пособие / Я. А. Верещагина. Казань: Казанский национальный исследовательский технологический университет, 2009. 115 с. ISBN 978-5-7882-0778-0. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/61850.html

Дополнительная

7. Нанотехнологии. Химические, физические, биологические и экологические аспекты : монография / М. Н. Тимофеева, В. Н. Панченко, В. В. Ларичкин [и др.]. — Новосибирск : Новосибирский государственный технический университет, 2019. — 283 с. — ISBN 978-5-7782-3863-3. — Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. — URL: http://www.iprbookshop.ru/98798.html

- 7. Голдобина, В. Г. Нанотехнологии в машиностроении : учебное пособие / В. Г. Голдобина. Белгород : Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2018. 151 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/92230.html
- 8. Неволин, В. К. Зондовые нанотехнологии в электронике / В. К. Неволин. Москва : Техносфера, 2014. 174 с. ISBN 978-5-94836-382-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/26894.html
- 9. Галочкин, В. А Введение в нанотехнологии и наноэлектронику: конспект лекций / В. А Галочкин. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2013. 364 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/71825.html
- 10. Неволин, В. К. Квантовая физика и нанотехнологии / В. К. Неволин. Москва : Техносфера, 2013. 128 с. ISBN 978-5-94836-361-5. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/16975.html

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. 3EC IPRbooks: http://www.iprbookshop.ru/
- 2. Электронно-библиотечная сист*ема* «Университетская библиотека онлайн» www.biblioclub.ru.
- 3. Электронной библиотека на http://elibrary.ru.
- 4. Электронный каталог НБ ДГУ [Электронный ресурс]: база данных содержит сведения о всех видах лит, поступающих в фонд НБ ДГУ/Дагестанский гос. ун-т. Махачкала, 2010 Режим доступа: http://elib.dgu.ru.
- 5. Moodle [Электронный ресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. Махачкала, г. Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/
- 6. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru.
- 7. Сайт образовательных ресурсов Даггосуниверситета http://edu.icc.dgu.ru
- 8. http://www.phys.msu.ru/rus/library/resources-online/ электронные учебные пособия, изданные преподавателями физического факультета МГУ.
- 9. http://www.phys.spbu.ru/library/ электронные учебные пособия, изданные преподавателями физического факультета Санкт-Петербургского госуниверситета.
- 10. **Springer.** http://link.springer.com, http://materials.springer.com/
- 11. **Scopus:** https://www.scopus.com
- 12. **Web of Science:** webofknowledge.com

10. Методические указания для обучающихся по освоению дисциплины.

Студент в процессе обучения должен не только освоить учебную программу, но и приобрести навыки самостоятельной работы. Студент должен уметь планировать и выполнять свою работу. Удельный вес самостоятельной работы составляет по времени 30% от всего времени изучаемого цикла. Это отражено в учебных планах и графиках учебного процесса, с которым каждый студент может ознакомиться у преподавателя дисциплины.

Главное в период обучения своей специальности - это научиться методам самостоятельного умственного труда, сознательно развивать свои творческие способности и овладевать навыками творческой работы. Для этого необходимо строго соблюдать дисциплину учебы и поведения.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что-то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Вид учебных	Организация деятельности студента
занятий	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно
	фиксировать основные положения, выводы, формулировки, обобщения;
	помечать важные мысли, выделять ключевые слова, термины. Проверка
	терминов, понятий с помощью энциклопедий, словарей, справочников
	с выписыванием толкований в тетрадь. Обозначить вопросы, термины,
	материал, который вызывает трудности, пометить и попытаться найти
	ответ в рекомендуемой литературе. Если самостоятельно не удается
	разобраться в материале, необходимо сформулировать вопрос и задать
П	преподавателю на консультации, на практических работах.
Практические	Проработка рабочей программы, уделяя особое внимание целям и
занятия	задачам структуре и содержанию дисциплины. Конспектирование
	источников. Работа с конспектом лекций, подготовка ответов к
	контрольным вопросам, просмотр рекомендуемой литературы, работа с
	текстом. Решение расчетно-графических заданий, решение задач по алгоритму и др.
Реферат	Поиск литературы и составление библиографии, использование от 3 до
Геферат	5 научных работ, изложение мнения авторов и своего суждения по
	выбранному вопросу; изложение основных аспектов проблемы. Кроме
	того, приветствуется поиск информации по теме реферата в Интернете,
	но с обязательной ссылкой на источник, и подразумевается не простая
	компиляция материала, а самостоятельная, творческая, аналитическая
	работа, с выражением собственного мнения по рассматриваемой теме и
	грамотно сделанными выводами и заключением. Ознакомиться со
	структурой и оформлением реферата.
Подготовка к	При подготовке к зачету необходимо ориентироваться на конспекты
зачету	лекций, рекомендуемую литературу и др.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Чтение лекций с использованием мультимедийных презентаций. Использование анимированных интерактивных компьютерных демонстраций и практикумов-тренингов по ряду разделов дисциплины.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Материально — техническая база кафедры экспериментальной физики, которая осуществляет подготовку по направлению 11.04.04 «Электроника и наноэлектроника», позволяет готовить магистров, отвечающих требованиям ФГОС. На кафедре имеются 3 учебных и 5 научных лабораторий, оснащенных современной технологической, измерительной и диагностической аппаратурой; в том числе функционирует проблемная НИЛ «Твердотельная электроника». Функционируют специализированные учебные и научные лаборатории: Физика и технология керамических материалов для твердотельной электроники, Физика и технология тонкопленочных структур, Электрически активные диэлектрики в электронике, Физическая химия полупроводников и диэлектриков.

Лекционные занятия проводятся в аудитории, оснащенной мультимедиым проекционным оборудованием и интерактивной доской.