

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ФИЗИКА И ТЕХНОЛОГИЯ ПОЛИКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

Кафедра «Инженерная физика»

Образовательная программа

11.03.04 «Электроника и наноэлектроника»

Профили подготовки:

Микроэлектроника и твёрдотельная электроника

Уровень высшего образования:

Бакалавриат

Форма обучения:

Очная

Статус дисциплины:

вариативная

Махачкала 2020 г

Рабочая программа дисциплины составлена в <u>2018</u> году в соответствии с требованиями ФГОС ВО по направлению подготовки (специальности) 11.03.04- «Электроника и наноэлектроника», профиль подготовки: микроэлектроника и твердотельная электроника (уровень: бакалавриата) от « <u>12» _марта</u> 20<u>15</u> г. № <u>218_</u>.

Разработчик(и): _*Шабанов Ш.Ш., - к.т.н., доцент кафедры ИФ*____

Рабочая программа дисциплины одобрена:

на заседании кафедры _*Инженерной физики* от <u>17. 02. 2020</u> г., протокол № 6

Зав. кафедрой Яви Садыков С.А.

на заседании Методической комиссии $_{\underline{\phi}u\underline{3}u\underline{4}e\underline{c}k\underline{o}\underline{c}\underline{o}}$ _ факультета от $\underline{28.02.}$ 2020 г., протокол №6.

Председатель Мургиева Ж.Х.

Рабочая программа дисциплины согласована с учебно-методическим

управлением <u>28. 02. 2020</u> г. _________

Аннотация рабочей программы дисциплины

Дисциплина **Физика и технология поликристаллических материалов** входит в вариативную часть образовательной программы бакалавриата по направлению 11.03.04 — Электроника и наноэлектроника. Дисциплина реализуется на физическом факультете кафедрой Инженерная физика.

Содержание дисциплины охватывает круг вопросов, связанных с получением новых поликристаллических материалов, теоретическими основами физики спекания и их свойствами.

Дисциплина нацелена на формирование следующих компетенций выпускника: профессиональных - <u>ПК-8, ПК-9.</u>

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: <u>лекции, практические занятия, самостоятельная работа студентов</u>.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме *коллоквиума*, *контрольной работы* и промежуточный контроль в форме *зачета*, *экзамена*.

Объем дисциплины 2 зачетных единиц, в том числе в академических часах по видам учебных занятий

	Учебные занятия								Форма	
		в том числе:								
d		Контактная работа обучающихся с преподавателем					ся с	CPC,	(зачет,	
Семестр								В	дифференцир	
ем				из них					ованный	
C	всего	ero	из пих					числ	зачет, экзамен	
	BC	013	Лекц	Лабора	Практи	КС	консул	e		
		всего	ии	торные	ческие	P	ьтации	экза		
				занятия	занятия			мен		
3	108	54	18		36			54	OLEDOMOLI	
3	108	34	18		30			34	экзамен	

1. Цели освоения дисциплины

«Физика Цель изучения дисциплины И технология поликристаллических материалов» состоит В формировании систематических фундаментальных определяющих знаний принципов, процессы спекании порошкообразных физическо-химические при формованных тел, а также в изучении явлений и процессов фазообразования и структуры керамических материалов, использующихся при разработке новых технологий получения материалов с улучшенными свойствами для микро и наноэлектроники.

2.Место дисциплины в структуре ОПОП бакалавриата

Дисциплина <u>Физика и технология поликристаллических материалов</u> входит в <u>вариативную</u> часть образовательной программы <u>бакалавриата</u> по направлению (специальности) <u>11.03.04</u> «Электроника и наноэлектроника».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Компетенции	Формулировка компетенции из ФГОС ВО	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенций)
ПК-8	способность выполнять работы по технологической подготовке производства материалов и изделий электронной техники	 Энает: технологические маршруты организации производства материалов и изделий микро и наноэлектроники Умеет: выполнять работы по технологической подготовке производства материалов и изделий микро и наноэлектроники Владеет: навыками выполнять работы по технологической подготовке производства материалов и изделий микро и наноэлектроники

ПК-9	готовность организовывать метрологическое обеспечение производства материалов и изделий электронной техники	 э основные методы, способы и средства организации метрологического обеспечения производства материалов и изделий электронной техники; нормативную документацию для контроля соответствия разрабатываемых проектов стандартам и другим нормативным документам умеет: внедрять результаты исследований и разработок в производство; выполнять работы по технологической подготовке производства материалов и изделий электронной техники; организовать метрологическое обеспечение производства материалов и изделий электронной техники. Владеет: навыками организации метрологического обеспечения производства материалов и изделий электронной техники.

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет 2 зачетных единиц, 108 академических часов.

4.2. Структура дисциплины.

№ п/п	Разделы и темы дисциплины	Семестр	Неделя семестра	c pa	шрактические Практические занятия занятия	Лабораторн в на занятия в на занятия	ую ов и	Самостоятельная работа	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)
	_		П						
1	Введение. Характеристика исходных материалов.	9		4	8			10	(Д3), (С)
2	Основы процессов технологии поликристаллически х материалов			4	8			10	(Д3), (С)
	Итого по модулю 1:			8	16			20	
		1	<u> </u>		Модул	ть 2			
3	Спекание. Механизмы спекания			4	8			10	(ДЗ), (С), (КСР)
4	Методы получения поликристаллических неметаллических материалов.			2	4			10	
5	Физико-химические принципы создания композитных материалов.			4	8			14	(Д3), (С), (КСР)
	Итого по модулю 2:			10	20			34	
	ИТОГО: 108			18	36			54	

4.3. Содержание дисциплины, структурированное по темам (разделам).

Модуль 1

Тема 1. Введение. Характеристика исходных материалов.

Дисперсные системы и порошки. Физико-химические свойства твёрдых тел в связи с их дисперсностью. Реакционная способность порошков (активность). Специфика дисперсных систем. Термодинамические свойства дисперсных (гетерогенных) систем. Искривление поверхности. Капиллярное давление. Уравнение Лапласа. Изменение химического потенциала, давления пара и растворимости вещества при искривлении его поверхности.

Тема 2. Основы процессов технологии поликристаллических материалов

Зерновой состав и измельчение компонентов. Химические методы получения порошков. Приготовление формовочной массы. Формование. Удаление времнной технологической связки. Спекание поликристаллических изделий. Дополнительные виды обработки.

Модуль 2

Тема 3. Спекание. Механизмы спекания

Спекание как диффузионный процесс. Спекание как диффузионно-вязкая ползучесть. Припекание. Формирование контакта при припекании. Механизмы припекания. Кинетика припекания. Влияние газовой среды на кинетику спекания. Стадии спекания. Технологические факторы ускоряющие спекание.

Тема 4. Методы получения поликристаллических неметаллических материалов.

Рекристаллизационное спекание. Горячее прессование. Реакционное спекание. Горячее изостатическое спекание.

Тема 5. Физико-химические принципы создания композитных материалов.

Структура и свойства дисперсно-упрочненных композиционных материалов. Материалы на основе тугоплавких соединений. Керметы. Волокнистые композиционные материалы. Термодинамическая совместимость компонентов в композиционных материалах. Кинетика твёрдофазного взаимодействия.

4.3.1. Содержание лекционных занятий

моду	Содержание темы					
ЛЬ						
1.	<i>Лекция 1.</i> Введение. Характеристика исходных материалов.					
	Дисперсные системы и порошки. Физико-химические свойства твёрдых тел в связи с их дисперсностью. Реакционная способность порошков (активность). Специфика дисперсных систем.					
	<u>Лекция</u> 2. Термодинамические свойства дисперсных (гетерогенных) систем.					
	Искривление поверхности. Капиллярное давление. Уравнение Лапласа. Изменение химического потенциала, давления пара и растворимости вещества при искривлении его поверхности.					
	<u>Лекция 3.</u> Основы процессов технологии поликристаллических материалов					
	Зерновой состав и измельчение компонентов. Химические методы получения порошков. Приготовление формовочной массы. Формование.					
	<u>Лекция 4.</u> Удаление времнной технологической связки. Спекание поликристаллических изделий. Дополнительные виды обработки.					
2.	<u>Лекция 5.</u> Спекание.					
	Спекание как диффузионный процесс. Спекание как диффузионновязкая ползучесть. Припекание. Формирование контакта при припекании.					
	<u>Лекция 6.</u> Механизмы спекания					
	Механизмы припекания. Кинетика припекания. Влияние газовой среды на кинетику спекания. Стадии спекания. Технологические факторы ускоряющие спекание.					

<u>Лекция 7.</u> Методы получения поликристаллических неметаллических материалов.

Рекристаллизационное спекание. Горячее прессование. Реакционное спекание. Горячее изостатическое спекание.

Лекция 8. Физико-химические принципы создания композитных материалов.

Структура и свойства дисперсно-упрочненных композиционных материалов. Материалы на основе тугоплавких соединений. Керметы. Волокнистые композиционные материалы.

Лекция 9. Термодинамическая совместимость компонентов в композиционных материалах. Кинетика твёрдофазного взаимодействия.

4.3.2. Темы семинарских и практических занятий

- 1. Искусственные органические волокна. Арамидные и полиэтиловые.
- 2. Искусственные неорганические волокна. Стеклянные волокна, волокна окиси алюминия, борные волокна, углеродные волокна, волокна на основе кремния.
- 3. Частица и усы
- 4. Блочные керамики. Технические керамики. Стекла. Стеклокерамика
- 5. Жидкофазная технология. Золь-гель технология. Осаждение из газовой фазы
- 6. Изгиб пластин. Изотропные материалы.
- 7. Главные напряжения и деформация. Критерий разрушения.
- 8. Дополнительные параметры, характеризующие вязкость разрушения.
- 9. Искривление фронта трещины. Отклонение плоскости трещины.
- 10. Акустическая эмиссия.

4.3.3. Темы самостоятельной работы

- 1. Методы определения плотности, пористости и водопоглощения.
- 2. Сидиментационный анализ.
- 3. Технологии получения керамических материалов.
- 4. Методы определения упругих характеристик керамических материалов и композитов.
- 5. Теплофизические свойства.

- 6. Методики определения теплопроводности и коэффициента термического расширения керамических и композиционных материалов.
- 7. Электрофизические свойства. Диэлектрическая проницаемость.
- 8. Методики определения элетропроволности керамических материалов.
- 9. Структура керамических и композиционных материалов.
- 10. Фазообразование в керамике.
- 11. Эволюция микроструктуры при высокотемпературной обработке.
- 12. Механохимические эффекты.
- 13. Прочностные свойства керамических материалов.

5. Образовательные технологии

Активные и интерактивные формы, лекции, практические занятия, контрольные работы, коллоквиумы, зачеты и экзамены, компьютеры. В течение семестра студенты решают задачи, указанные преподавателем, к каждому семинару. В каждом семестре проводятся контрольные работы (на семинарах). Зачет выставляется после решения всех задач контрольных работ, выполнения домашних и самостоятельных работ.

При проведении занятий используются компьютерные классы, оснащенные современной компьютерной техникой. При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа проекционным оборудованием и интерактивной доской.

По всему лекционному материалу подготовлен конспект лекций в электронной форме и на бумажном носителе, большая часть теоретического материала излагается с применением слайдов (презентаций) в программе **Power Point**, а также с использованием интерактивных досок.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Промежуточный контроль.

В течение семестра студенты выполняют:

- домашние задания, выполнение которых контролируется и при необходимости обсуждается на практических занятиях;

- промежуточные контрольные работы во время практических занятий для выявления степени усвоения пройденного материала;
- выполнение итоговой контрольной работы по решению задач, охватывающих базовые вопросы курса: в конце семестра.

Итоговый контроль.

Зачет в конце 7 семестра, включающий проверку теоретических знаний и умение решения по всему пройденному материалу.

дисциплину рекомендуется ПО темам, предварительно ознакомившись с содержанием каждой из них по программе учебной дисциплины. При первом чтении следует стремиться к получению общего представления об изучаемых вопросах, а также отметить трудные и неясные При повторном изучении темы необходимо освоить теоретические положения, математические зависимости и выводы. Для более эффективного запоминания и усвоения изучаемого материала, полезно иметь рабочую тетрадь (можно использовать лекционный конспект) и заносить в нее формулировки законов и основных понятий, новые незнакомые термины и названия, формулы, уравнения, математические зависимости и их выводы, так как при записи материал значительно лучше усваивается и запоминается.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

Компет енции из ФГОС ВО	Формулировка компетенции из ФГОС ВО	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенций)	Процедура освоения
ПК-8	способность выполнять работы по технологической подготовке производства	 Знает: технологические маршруты организации производства материалов и изделий микро и наноэлектроники 	Устный опрос, письменный опрос, выступление на семинарах, мини-

	материалов и изделий электронной техники	 Умеет: выполнять работы по технологической подготовке производства материалов и изделий микро и наноэлектроники Владеет: навыками выполнять работы по технологической подготовке производства материалов и изделий микро и наноэлектроники 	конференция.
ПК-9	готовность организовывать метрологическое обеспечение производства материалов и изделий электронной техники	 Знает: основные методы, способы и средства организации метрологического обеспечения производства материалов и изделий электронной техники; нормативную документацию для контроля соответствия разрабатываемых проектов стандартам и другим нормативным документам Умеет: 	Устный опрос, письменный опрос, выступление на семинарах, мини-конференция.
		 внедрять результаты исследований и разработок в производство; выполнять работы по технологической подготовке производства материалов и изделий электронной техники; организовать метрологическое обеспечение производства материалов и изделий электронной техники. Владеет: навыками организации метрологического обеспечения производства материалов и 	

	изделий электронной техники.	

7.2. Типовые контрольные задания

7.2.1. Экзаменационные вопросы

- 1. Введение. Характеристика исходных материалов.
- 2. Физико-химические свойства твёрдых тел в связи с их дисперсностью. Реакционная способность порошков (активность).
- 3. Термодинамические свойства дисперсных (гетерогенных) систем.
- 4. Искривление поверхности. Капиллярное давление. Уравнение Лапласа.
- 5. Изменение химического потенциала, давления пара и растворимости вещества при искривлении его поверхности. Основы процессов технологии поликристаллических материалов
- 6. Зерновой состав и измельчение компонентов. Химические методы получения порошков.
- 7. Приготовление формовочной массы. Формование.
- 8. Удаление времнной технологической связки.
- 9. Спекание поликристаллических изделий. Дополнительные виды обработки.
- **10.** Спекание. Спекание как диффузионный процесс. Спекание как диффузионно-вязкая ползучесть.
- 11. Припекание. Формирование контакта при припекании.
- 12. Механизмы спекания. Механизмы припекания. Кинетика припекания.
- 13. Влияние газовой среды на кинетику спекания. Стадии спекания. Технологические факторы ускоряющие спекание.
- 14. Рекристаллизационное спекание.
- 15. Горячее прессование.
- 16. Реакционное спекание.

- 17. Горячее изостатическое спекание.
- 18. Физико-химические принципы создания композитных материалов.
- 19. Структура и свойства дисперсно-упрочненных композиционных материалов. Материалы на основе тугоплавких соединений. Керметы.
- 20. Волокнистые композиционные материалы.
- 21. Термодинамическая совместимость компонентов в композиционных материалах.
- 22. Кинетика твёрдофазного взаимодействия.

7.2.2. Контрольные вопросы к самостоятельной работе

- 1. Диффузионно-вязкое течение.
- 2. Механизм объёмной диффкзии.
- 3. Механизм поверхностной диффузии.
- 4. Испарение-конденсация.
- 5. Дислокационный механизм.
- 8. Припекание разноимённых тел.
- 9. Припекание взаимно нерастворимых тел.
- 10. Кинетика спекания в присутствии жидкой фазы.
- 11. Рост зёрен. Изменение размера пор при спекании.
- 12. Аномальных рост зёрен.
- 13. Коалесценция пор.
- 14. Активирование (механическое, химическое, тепловое).
- 15. Вывод уравнения объёмного эффекта.

7.3.3. Примеры текстовых заданий для промежуточного контроля

- 1. На какую область размеров тел простирается понятие дисперсности в классической керамической технологии?
- А) 100нм-1000нм
- Б) 1нм-100мкм
- В) 100нм-10мкм
- Г) 10нм-1мкм
- Д) 100нм-100мкм
- 2. Что называется дисперсностью? Дисперсность это:
- А) Раздробленность или рассеянность вещества или материала
- Б) Степень измельчённости вещества или материала
- В) Раздробленные частицы твёрдого тела с размером 0,1-1мкм, распределённые в матричной среде

- Г) Разделение молекул на составляющие их более простые частицыатомы, комплексы атомов
- Д) Тонкое измельчение твёрдого тела или жидкости в результате которой образуются дисперсные системы

3. Главной чертой дисперсного состояния является:

- А) Повышение прочности материала путём введения в него мелких тугоплавких соединений
- Б) Мелкодисперсные порошки с размером частиц 0,1-1мкм
- В) Ведущаю роль поверхностных явлений
- Г) Способность вещества понижать свободную энергию поверхности раздела фаз в результате адсорбции
- Д) Натяжение поверхностного слоя, характеризующее силы межатомного (межмолекулярного) взаимодействия в веществе

4. Количественно дисперность порошков характеризуется

- А) Удельной поверхностью частиц
- Б) удельной поверхностью порошка
- В) Средним размером частиц порошка данной фракции
- Г) Размером частиц и гранулометрическим составом
- Д) Весовым содержанием в процентах (%) частиц данной фракции

5. Соотношение между поверхностью тела (зерна) и объёмом характеризуется:

- А) полную поверхность тела (зерна)
- Б) во сколько раз поверхность больше

B)

6. Определить удельную поверхность частицы кубической формы

A)
$$\frac{3}{a}$$
; Б) $\frac{4}{a}$; В) $\frac{5}{a}$; Г) $\frac{6}{a}$; Д) $\frac{2}{a}$;

7. Определить удельную поверхность частицы сферической формы: R-радиус сферы, d-диаметр сферы

A)
$$\frac{2}{R}$$
; Б) $\frac{3}{R}$; В) $\frac{4}{R}$; Г) $\frac{5}{d}$; Д) $\frac{8}{d}$;

8. Удельная поверхность:

- А) Это отношение суммарной поверхности тела (сыпучего или консолидировнного) к его массе или (реже) к объёму
- Б) Полная площадь поверхности тела
- В) Площадь единицы поверхности с учётом шероховатости
- Г) Поверхность всех частиц (зёрен) материала взятых в произвольном количестве
- Д) Среди ответов А-Г нет правильного

9. Какова размерность удельной поверхности

A)
$$\mathrm{M}^2$$
; Б) M^{-1} ; В) $\frac{\mathrm{M}^2}{\mathrm{c}}$; Г) M -кг; Д) $\frac{\mathrm{k}\mathrm{c}}{\mathrm{M}^2}$;

10. Каковы размеры ультрадисперсных порошков

A) 0,1-0,001мкм; Б) 0,01-0,001мкм; В) 10нм-1мкм; Г) 1нм-1000нм; Д) 100нм-10мкм;

11. Гранулометрия – это

- А) Совокупность методов определения гранулометрического состава сыпучего материала
- Б) Разновидность количественного анализа проводимого путём взвешивания вещества (материала) или анализируемого компонента, выделенного в свободном состоянии
- В) Процесс получения гранул из дисперсных порошков
- Г) выраженное в процентах содержание частиц в гранулометрических фракциях по отношению к общему количеству анализируемого порошка
- Д) Среди ответов А-Г нет верного

12. Гранулометрический состав – это:

- А) Группа частиц (гранул), размеры которых находятся в некоторых установленных пределах
- Б) выраженное в процентах содержание частиц в гранулометрических фракциях по отношению к общему количеству анализируемого порошка
- В) Выраженное в процентах содержание частиц и (или) конгломерат (гранул) размером от единиц до десятков миллиметров

- Г) Процесс получения гранул из дисперсных порошков, и определение их размеров
- Д) Среди ответов А-Г нет верного

13. Гранулометрические фракции – это:

- А) Группа частиц (гранул), размеры которых находятся в некоторых установленных пределах определяемых методикой классификации или гранулометрии
- Б) Выраженное в процентах содержание частиц в гранулометрических фракциях по отношению к общему количеству анализируемого порошка
- В) выраженное в процентах содержание частиц и (или) конгломерат (гранул) размером от единиц до десятков миллиметров
- Г) Процесс получения гранул из дисперсных порошков, и определение их размеров
- Д) Среди ответов А-Г нет верного
- 14. Определить числовой процент по известному весовому содержанию (использовать данные таб. Для фракции 40-50 весовое содержание в % частиц данной фракции 10%)

A) 0.01%; B) 0.02%; B) 0.03%; Γ)0.05%; Π)0.06%;

Таблица Характеристика зернового состава полидисперсного материала

Размер	Весовое	Весовое	Фракция	Средний	Весовое	Функция
частиц х	содержание	содержание	Δx в мкм	размер	содержание	распределения
В МКМ	в % частиц.	в % частиц,		частиц	в % частиц	$F = \frac{dQ}{dQ} \sim \frac{\Delta Q}{dQ}$
	меньших	больших		данной	данной	$dx \Delta x$
	или равных	или равных		фракции	фракции	$=f_4(x_{cp}) \%/MKM$
	данному	данному		Хер В МКМ	$\Delta Q = f_3(x)$	
	размеру,	размеру.				
	$Q=f_1(x)$	$Q=f_2(x)$				
1	2	3	4	5	6	7
50	100	0				
40	90	10	40-50	45	10	1,0
30	75	25	30-40	35	15	1,5
20	50	50	20-30	25	25	2,5
10	20	80	10-20	15	30	3,0

0	0	100	0-10	5	20	2,0

15. Определить весовой (объёмный) процент (содержания) частиц по числовому проценту (содержанию) используя данные Таб для фракции 40-50

A)~10%; B)~15%; B)~25%; Γ)~30%; Π)~20%;

Размер частиц х в мкм	Весовое содержание в % частиц. меньших или равных данному размеру, $Q=f_1(x)$	Весовое содержание в % частиц, больших или равных данному размеру. $Q=f_2(x)$	Фракция	Средний размер частиц данной фракции x_{cp} в мкм	Весовое содержание в % частиц данной фракции $\Delta Q = f_3(x)$	Функция распределения $F = \frac{dQ}{dx} \sim \frac{\Delta Q}{\Delta x} = f_4(x_{cp}) \% / MKM$
1	2	3	4	5	6	7
50	100	0				
40	90	10	40-50	45	10	1,0
30	75	25	30-40	35	15	1,5
20	50	50	20-30	25	25	2,5
10	20	80	10-20	15	30	3,0
0	0	100	0-10	5	20	2,0

16. Определить средневзвешенный размер частиц по объёму (или по массе) используя данные табл.

А) 33,2мкм; Б) 21,5мкм; В) 15,4мкм; Г) 1,618мкм; Д) 3,14мкм

17. Определить средневзвешенный размер частиц по поверхности зёрен используя данные таблицы

А) 1,13мкм; Б) 19,1мкм; В) 13,1мкм; Г) 31,1мкм; Д) 11,14мкм

18. Из характеристики зернового состава полидисперсного материала табл. определить удельную поверхность порошка при насыпной плотности $\gamma=2,5$ г/см³

A) $1825 \text{ cm}^2/\Gamma$; Б) $1,825 \text{ cm}^2/\Gamma$; В) $21,78 \text{ cm}^2/\Gamma$; Г) $35,13 \text{ cm}^2/\Gamma$; Д) $17,19 \text{ cm}^2/\Gamma$:

Критерии оценок на курсовых экзаменах

В экзаменационный билет рекомендуется включать не менее 3 вопросов, охватывающих весь пройденный материал, также в билетах могут быть задачи и примеры.

Ответы на все вопросы оцениваются максимум 100 баллами.

Критерии оценок следующие:

- **100 баллов** студент глубоко понимает пройденный материал, отвечает четко и всесторонне, умеет оценивать факты, самостоятельно рассуждает, отличается способностью обосновывать выводы и разъяснять их в логической последовательности.
- 90 баллов студент глубоко понимает пройденный материал, отвечает четко и всесторонне, умеет оценивать факты, самостоятельно рассуждает, отличается способностью обосновывать выводы и разъяснять их в логической последовательности, но допускает отдельные неточности.
- **80 баллов** студент глубоко понимает пройденный материал, отвечает четко и всесторонне, умеет оценивать факты, самостоятельно рассуждает, отличается способностью обосновывать выводы и разъяснять их в логической последовательности, но допускает некоторые ошибки общего характера.
- **70 баллов** студент хорошо понимает пройденный материал, но не может теоретически обосновывать некоторые выводы.
- **60 баллов** студент отвечает в основном правильно, но чувствуется механическое заучивание материала.
- **50 баллов** в ответе студента имеются существенные недостатки, материал охвачен «половинчато», в рассуждениях допускаются ошибки.
- **40 баллов** ответ студента правилен лишь частично, при разъяснении материала допускаются серьезные ошибки.
- **20-30 баллов** студент имеет общее представление о теме, но не умеет логически обосновать свои мысли.
 - 10 баллов студент имеет лишь частичное представление о теме.
 - **0 баллов** нет ответа.

Эти критерии носят в основном ориентировочный характер. Если в билете имеются задачи, они могут быть более четкими.

Шкала диапазона для перевода рейтингового балла в «5»-бальную систему:

 $<\!(0-50>\!)$ баллов — неудовлетворительно

 $\ll 51-65$ » баллов — удовлетворительно

«66 - 85» баллов – хорошо

«86 - 100» баллов – отлично

«51 и выше» баллов – зачет

8. Перечень основной,	Библиографическое описание (авторы/составители, заглавие, вид	Количество экземпляров в
дополнительной	издания, издательство, год издания,	наличии в
учебной литературы,	количество страниц)	библиотеке/ в
необходимой для	I y	каталоге ЭБС
освоения		
дисциплины №		
ОСНОВНАЯ ЛИТ	ГЕРАТУРА	
1.	Композиционные материалы. Т.5:	1
	Разрушение и усталость / ред.: Л.Браутман, Р.Крок; пер. с англ. под ред. Г.П.ЧерепановаМ. : Мир, 1978483,[1] сБиблиогр. в конце стПредм. указ.: с. 476-48375-00.Местонахождение: Научная библиотека ДГУ	(в научной библиотеке ДГУ)
2.	Неупругие свойства композиционных материалов/ ред. К.Геракович; пер. с англ. Н.П.Жмудя под ред. Ю.М.ТарнопольскогоМ. : Мир, 1978294,[1] с(Механика. Новое в зарубежной науке/ ред. серии: А.Ю.Ишлинский, Г.Г.Черный. 16) Библиогр. в конце докл85-00.Местонахождение: Научная библиотека ДГУ	1 (в научной библиотеке ДГУ)
3.	Композиционные материалы. Т.5: Разрушение и усталость / ред.:	1

	Л.Браутман, Р.Крок; пер. с англ. под ред. Г.П.ЧерепановаМ.: Мир, 1978483,[1] сБиблиогр. в конце стПредм. указ.: с. 476-48375-00.Место нахождение: Научная библиотека ДГУ	(в научной библиотеке ДГУ)
4.	Нажипкызы М. Физико-химические основы нанотехнологий и наноматериалов [Электронный ресурс]: учебное пособие / М. Нажипкызы, Р.Е. Бейсенов, З.А. Мансуров. — Электрон. текстовые данные. — Саратов: Ай Пи Эр Медиа, 2018. — 196 с. — 978-5-4486-0164-4. — Режим доступа: http://www.iprbookshop.ru/73346.html	В каталоге ЭБС (с указанием электронного адреса)
5.	Салахов А.М. Керамика для технологов [Электронный ресурс] / А.М. Салахов, Р.А. Салахова. — Электрон. текстовые данные. — Казань: Казанский национальный исследовательский технологический университет, 2010. — 234 с. — 978-5-7882-0913-5. — Режим доступа: http://www.iprbookshop.ru/61861.html	В каталоге ЭБС (с указанием электронного адреса)
дополнительна	Я ЛИТЕРАТУРА	
1.	Ремпель А.А. Материалы и методы нанотехнологий [Электронный ресурс] : учебное пособие / А.А. Ремпель, А.А. Валеева. — Электрон. Текстовые данные. — Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2015. — 136 с. — 978-5-7996-1401-0. — Режим доступа: http://www.iprbookshop.ru/68346.html	указанием

2.	Волочко А.Т. Огнеупорные и тугоплавкие керамические материалы [Электронный ресурс] / А.Т. Волочко, К.Б. Подболотов, Е.М. Дятлова. — Электрон. Текстовые данные. — Минск: Белорусская наука, 2013. — 386 с. — 978-985-08-1640-5. — Режим доступа: http://www.iprbookshop.ru/29487.html	В каталоге ЭБС (с указанием электронного адреса)
3.	Солнцев Ю.П. Специальные материалы в машиностроении [Электронный ресурс] : учебник для вузов / Ю.П. Солнцев, Е.И. Пряхин, В.Ю. Пирайнен. — Электрон. Текстовые данные. — СПб. : XИМИЗДАТ, 2017. — 639 с. — 978-5-93808-297-7. — Режим доступа: http://www.iprbookshop.ru/67355.html	В каталоге ЭБС (с указанием электронного адреса)
4.	Композиционные покрытия с микро- и нанокерамическими фазами [Электронный ресурс]: методические указания / . — Электрон. Текстовые данные. — Казань: Казанский национальный исследовательский технологический университет, 2015. — 40 с. — 2227-8397. — Режим доступа: http://www.iprbookshop.ru/63703.html	В каталоге ЭБС (с указанием электронного адреса)
5.	Физико-химические основы создания активных материалов [Электронный ресурс] : учебник / Ю.В. Кабиров [и др.]. — Электрон. Текстовые данные. — Ростов-на-Дону: Южный федеральный университет, 2011. — 278 с. — 978-5-9275-0847-1. — Режим доступа:	В каталоге ЭБС (с указанием электронного адреса)

	http://www.iprbookshop.ru/47179.html	
6.	Нанотехнологии и специальные материалы [Электронный ресурс]: учебное пособие для вузов / Ю.П. Солнцев [и др.]. — Электрон. Текстовые данные. — СПб. : XИМИЗДАТ, 2017. — 336 с. — 978-5-93808-296-0. — Режим доступа: http://www.iprbookshop.ru/67351.html	указанием электронного

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. Федеральный портал «Российское образование» http://www.edu.ru/
- 2. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
- 3. Теоретические сведения по физике и подробные решения демонстрационных вариантов тестовых заданий, представленных на сайте Росаккредагентства (www.fepo.ru).
- 4. Российский портал «Открытого образования» http://www.openet.edu.ru
- 5. Сайт образовательных ресурсов Даггосуниверситета http://edu.icc.dgu.ru
- 6. <u>www.biblioclub.ru</u> Электронная библиотечная система «Университетская библиотека online».
- 7. www.iqlib.ru Интернет-библиотека образовательных изданий, в который собраны электронные учебники, справочные и учебные пособия
- 8. Информационные ресурсы научной библиотеки Даггосуниверситета http://elib.dgu.ru (доступ через платформу Научной электронной библиотеки elibrary.ru).
- 9. www.affp.mics.msu.su

10. Методические указания для обучающихся по освоению дисциплины.

Студент в процессе обучения должен не только освоить учебную программу, но и приобрести навыки самостоятельной работы. Студент должен уметь планировать и выполнять свою работу. Удельный вес самостоятельной работы составляет по времени 30% от всего времени изучаемого цикла. Это отражено в учебных планах и графиках учебного

процесса, с которым каждый студент может ознакомиться у преподавателя дисциплины.

Главное в период обучения своей специальности - это научиться методам самостоятельного умственного труда, сознательно развивать свои творческие способности и овладевать навыками творческой работы. Для этого необходимо строго соблюдать дисциплину учебы и поведения.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что-то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Вид учебных занятий	Организация деятельности студента			
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на практических работах.			
Практически	Проработка рабочей программы, уделяя особое внимание			
е занятия	целям и задачам структуре и содержанию дисциплины. Конспектирование источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы, работа с текстом. Решение расчетно-графических заданий, решение задач по алгоритму и др.			
Реферат	Поиск литературы и составление библиографии, использование от 3 до 5 научных работ, изложение мнения авторов и своего суждения по выбранному вопросу; изложение основных аспектов проблемы. Кроме			

	того, приветствуется поиск информации по теме реферата в Интернете, но с обязательной ссылкой на
	источник, и подразумевается не простая компиляция
	материала, а самостоятельная, творческая,
	аналитическая работа, с выражением собственного мнения по рассматриваемой теме и грамотно
	сделанными выводами и заключением. Ознакомиться со структурой и оформлением реферата.
Подготовка к	При подготовке к зачету необходимо ориентироваться на
зачету	конспекты лекций, рекомендуемую литературу и др.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Чтение лекций с использованием мультимедийных презентаций. Использование анимированных интерактивных компьютерных демонстраций и практикумов-тренингов по ряду разделов дисциплины.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Материально – техническая база кафедры экспериментальной физики, которая осуществляет подготовку по направлению 11.03.04 «Электроника и наноэлектроника», готовить отвечающих позволяет бакалавров, требованиям ФГОС. На кафедре имеются 3 учебных и 5 научных лабораторий, оснащенных современной технологической, измерительной и диагностической аппаратурой; в том числе функционирует проблемная НИЛ Функционируют «Твердотельная электроника». специализированные учебные и научные лаборатории: Физика и технология керамических твердотельной электроники, Физика материалов ДЛЯ И технология Электрически тонкопленочных структур, активные диэлектрики электронике, Физическая химия полупроводников и диэлектриков.

Лекционные занятия проводятся в аудитории, оснащенной мультимедиым проекционным оборудованием и интерактивной доской.