

# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физический факультет

### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Спецпрактикум

Кафедра физики конденсированного состояния и наносистем

Образовательная программа 03.04.02 — Физика

Профиль подготовки: **Физика наносистем** 

Уровень высшего образования: **Магистратура** 

Форма обучения: Очная

Статус дисциплины: вариативная

| Рабочая программа дисциплины «Спецпрактикум» составлена в 2020 году в соответствии с требованиями ФГОС ВО по направлению подготовки 03.04.02 – Физика, профиль подготовки «Физика наносистем» (уровень: магистратура) от «28» августа 2015 г. №913. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Разработчики: кафедра физики конденсированного состояния и наносистем.  Палчаев Д.К., д.фм.н., профессор  Хамидов М.М., д.фм.н., профессор                                                                                                          |
| Рабочая программа дисциплины одобрена на заседании кафедры физики конденсированного состояния и наносистем от «»2020г., протокол №                                                                                                                  |
| Дав.кафедрой                                                                                                                                                                                                                                        |
| Председатель Мурлиева Ж.Х.                                                                                                                                                                                                                          |
| Рабочая программа дисциплины согласовано с учебно-методическим управлением «23 » 03 2020 г.                                                                                                                                                         |
| Начальник УМУ Гасангаджиева А.Г.                                                                                                                                                                                                                    |

### Аннотация рабочей программы дисциплины

Дисциплина «Спецпрактикум» входит в <u>вариативную</u> часть образовательной программы <u>магистратуры</u> по направлению 03.04.02 – физика, профиль подготовки «Физика наносистем».

Дисциплина реализуется на физическом факультете на кафедре физики конденсированного состояния и наносистем.

Содержание дисциплины охватывает круг вопросов физики конденсированного состояния, а именно изучение основ метода и оборудования для зондовой локальной спектроскопии; изучение различных технологических режимов получения нанопорошков и нанокерамики, а так же исследование их структуры, морфологии и свойств.

Дисциплина нацелена на формирование следующих компетенций выпускника: общекультурных ОК-1 общепрофессиональных ОПК-6, профессиональных – ПК-2, ПК-7.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лабораторные занятия, самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме — отчёт по выполненным работам, итоговый контроль в форме дифференцированного зачёта.

Объем дисциплины 144 часа, 4 зачетные единицы, в том числе в академических часах по видам учебных занятий

| Семестр |     |        |                | Форма проме- |               |          |       |               |
|---------|-----|--------|----------------|--------------|---------------|----------|-------|---------------|
|         |     |        | жуточной атте- |              |               |          |       |               |
|         | Кон | тактна | стации (зачет, |              |               |          |       |               |
|         | Bce |        |                | в том        | дифференциро- |          |       |               |
|         | го  | Лек    | Лабора-        | Практи-      | КСР           | консуль- | числе | ванный зачет, |
|         |     | ции    | торные         | ческие       |               | тации    | экза- | экзамен)      |
|         |     |        | занятия        | занятия      |               |          | мен   |               |
| 1       | 144 | 0      | 68             | 0            |               |          | 76    | дифференциро- |
|         |     |        |                |              |               |          |       | ванный зачет  |

#### 1. Цели освоения дисциплины

Цель дисциплины: формирование у студентов практических навыков по спецдисциплинам: «Оптические свойства наносистем» и «Механические, кинетические и магнитные свойства наносистем» относится к дисциплинам профессионального цикла ОПОП магистратуры по магистерской программе «Физика наносистем». Данная дисциплина призвана выработать профессиональные компетенции, связанные со способностью использовать теоретические знания в области квантовой механики, электричества, атомной физики, физики твердого тела и физики наносистем для решения конкретных практических задач по изучению твердых тел в микро- и нано- состояниях.

В результате выполнения специального физического практикума магистранты приобретают знания о функциональных особенностях и правилах эксплуатации новейшего высокотехнологического оборудования; методах исследования оптических и электрических свойств, а так же их температурных зависимостей. Учащиеся получают практические навыки научных исследований и анализа полученных результатов. В конечном итоге, выполнение специального физического практикума направлено на подготовку профессиональных и конкурентоспособных специалистов в области физики наносистем, способных работать на инженерно-технических должностях в научно-исследовательских лабораториях НИИ, вузов, предприятий.

### 2. Место дисциплины в структуре ОПОП магистратуры

Дисциплина «Специальный физический практикум» входит в блок **Б1.В.ОД.7**. образовательной программы (ФГОС ВО) магистратуры по направлению 03.04.02— «Физика», профиля подготовки «Физика наносистем».

Настоящий спецпрактикум предназначен для подготовки магистров по направлению «Физика» в соответствии с требованиями, отраженными в ФГОС ВО. Особенность программы состоит в фундаментальном характере освоения дисциплины с целью не только сообщения студентам определенной суммы конкретных сведений по вопросам теории физики конденсированного состояния и наносистем, но и формирования у магистров практических навыков в постановке, проведении эксперимента, обработке и анализе научных результатов. Совокупность приобретенных навыков и знаний может быть полезной при формировании магистерской диссертации, а также при создании и аттестации эксплуатационных характеристик новых конструкционных материалов.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

(перечень планируемых результатов обучения).

| Код компетен- | нруемых результатов обучени Наименование компетенции | Планируемые результаты обучения               |
|---------------|------------------------------------------------------|-----------------------------------------------|
| ции из        | из ФГОС ВО                                           |                                               |
| ΦΓΟС ΒΟ       |                                                      |                                               |
| ОК-1          | Способностью к абстракт-                             | Знает:                                        |
|               | ному мышлению, анализу,                              | • ключевые события в развитии совре-          |
|               | синтезу                                              | менной науки, отразившиеся в кон-             |
|               |                                                      | цепциях современной философии и               |
|               |                                                      | методологии науки;                            |
|               |                                                      | • методы анализа и синтеза научно пе-         |
|               |                                                      | риодической информации.                       |
|               |                                                      | Умеет:                                        |
|               |                                                      | • анализировать и воспринимать ин-            |
|               |                                                      | формацию из источников различного типа;       |
|               |                                                      | • абстрактно мыслить и анализировать,         |
|               |                                                      | синтезировать полученную информа-             |
|               |                                                      | цию.                                          |
|               |                                                      | Владеет:                                      |
|               |                                                      | • методиками персонального и коллек-          |
|               |                                                      | тивного представления результатов             |
|               |                                                      | аналитической работы.                         |
| ОПК-6         | Способность использовать                             | Знает:                                        |
|               | знания современных про-                              | • современные методы изучения оп-             |
|               | блем и новейших достиже-                             | тических и электрических свойств;             |
|               | ний физики в научно-                                 | • принцип работы спектрометриче-              |
|               | исследовательской работе.                            | ского комплекса на базе монохроматора МДР-41; |
|               |                                                      | • принцип работы измерителя LCR –             |
|               |                                                      | 78110G.                                       |
|               |                                                      | Умеет:                                        |
|               |                                                      | • проводить исследования оптиче-              |
|               |                                                      | ских и электрических свойств со-              |
|               |                                                      | временными методами;                          |
|               |                                                      | • проводить исследования на спек-             |
|               |                                                      | трометрическом комплексе на базе              |
| <u> </u>      | 1                                                    | T T T T T T T T T T T T T T T T T T T         |

| F    | T                                             |                                                                     |
|------|-----------------------------------------------|---------------------------------------------------------------------|
|      |                                               | монохроматора МДР-41;                                               |
|      |                                               | • проводить исследования диэлек-                                    |
|      |                                               | трических свойств на комплексе                                      |
|      |                                               | LCR – 78110G.                                                       |
|      |                                               | Владеет:                                                            |
|      |                                               | • расшифровывать спектры фотопро-                                   |
|      |                                               | водимости и термостимулированн-                                     |
|      |                                               | ной проводимости;                                                   |
|      |                                               | • определять размер наночастиц по краю спектра поглощения;          |
|      |                                               | • определять реальную и мнимую ча-                                  |
|      |                                               | сти диэлектрической проницаемости.                                  |
| ПК-2 | Способность свободно                          | Знает:                                                              |
|      | владеть разделами физики,                     | • теоретические основы, основные                                    |
|      | необходимыми для решения научно – инновацион- | понятия, законы и модели общей физики;                              |
|      | ных задач и применять ре-                     | <ul><li>физики,</li><li>базовые теоретические знания фун-</li></ul> |
|      | зультаты научных исследо-                     | даментальных разделов общей и                                       |
|      | ваний в инновационной де-                     | теоретической физики;                                               |
|      | ятельности.                                   | • методы обработки и анализа экспе-                                 |
|      |                                               | риментальной и теоретической ин-                                    |
|      |                                               | формации в области оптических и                                     |
|      |                                               | электрических свойств мультифер-                                    |
|      |                                               | роиков и ВТСП;                                                      |
|      |                                               | • физические основы поведения оптических и электрических свойств    |
|      |                                               | веществ с перовскитной структурой                                   |
|      |                                               | при фазовых переходах второго ро-                                   |
|      |                                               | да;                                                                 |
|      |                                               | Умеет:                                                              |
|      |                                               | • понимать, излагать и критически                                   |
|      |                                               | анализировать базовую информа-                                      |
|      |                                               | цию в области оптических и элек-                                    |
|      |                                               | трических свойств мультиферрои-                                     |
|      |                                               | ков и ВТСП;                                                         |
|      |                                               | • использовать базовые теоретиче-                                   |
|      |                                               | ские знания фундаментальных раз-                                    |
|      |                                               | делов общей и теоретической фи-                                     |
|      |                                               | зики для решения задач оптических                                   |
|      |                                               | и электрических свойств мульти-                                     |
|      |                                               | ферроиков и ВТСП;                                                   |
|      |                                               | Владеет:                                                            |
|      |                                               | • методикой и теоретическими осно-                                  |
|      |                                               | вами анализа экспериментальной и                                    |
|      |                                               | теоретической информации в области оптических и электрических       |
|      |                                               | сти оптических и электрических свойств мультиферроиков и ВТСП;      |
|      |                                               | • экспресс анализом и диагностиче-                                  |
|      |                                               | скими методами исследования                                         |
|      |                                               | нанокерамики;                                                       |
|      | <u>l</u>                                      | папокерамики,                                                       |

|      |                                                                                                                        | <ul> <li>методами обработки и анализа экспериментальной и теоретической информации в области оптических и электрических свойств мультиферроиков и ВТСП;</li> <li>владеть разделами физики, необходимыми для решения научно – инновационных задач и применять результаты научных исследований в инновационной деятельности.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ПК-7 | Способностью руководить научно-исследовательской деятельностью в области физики обучающихся по программам бакалавриата | <ul> <li>энать:</li> <li>особенности профессиональной деятельности научного сотрудника и преподавателя высшей школы;</li> <li>методику и методологию по организации научно-исследовательской деятельности;</li> <li>навыки составления и оформления научно-технической документации, научных отчетов, обзоров, докладов и статей;</li> <li>методику учебного эксперимента по физике на младших курсах ВО. Уметь:</li> <li>составлять план выполнения научных исследований;</li> <li>организовывать научноисследовательскую деятельность в области физики обучающихся по программам бакалавриата;</li> <li>обрабатывать результаты научного эксперимента;</li> <li>составлять таблицы и графики по результатам проведения научных экспериментов;</li> <li>руководить научноисследовательской деятельностью в области физики обучающихся по программам бакалавриата;</li> <li>объяснять учащимся результаты, полученные в ходе научного исследования в научных лабораториях.</li> <li>Владеть:</li> <li>навыками работы с научным физическим оборудованием;</li> <li>навыками подготовки и редактирования научных публикаций, планирования и осуществления публичных выступлений;</li> </ul> |
|      |                                                                                                                        | • навыками организации и управления научно-исследовательскими и при-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| _                                   |
|-------------------------------------|
| кладными работами при решении кон-  |
| кретных задач в соответствии с про- |
| филем бакалавриата;                 |
| • навыками подготовки учебномето-   |
| дических материалов по профилю ба-  |
| калавриата;                         |
| • методами демонстрации и интерпре- |
| тации физических явлений;           |
| • умениями и навыками самостоятель- |
| ного устранения неполадок в работе  |
| физического оборудования;           |
| • способностью и готовностью приме- |
| нять на практике навыки составления |
| и оформления научно-технической     |
| документации, научных отчетов, об-  |
| зоров, докладов и статей.           |

**4. Объем, структура и содержание дисциплины.**4.1. Объем дисциплины составляет **4** зачетные единицы, **144** академических часов.

4.2. Структура дисциплины.

| №<br>п/п                                                                              | Раздел дисциплины                                                                                                                                                              | Семестр | Неделя семестра | Лаборн.<br>Зан. | Контр. за самост. гуд. и тру-<br>сажост. (в ча-<br>сах) работой | самост. рабо | Форма текущего контроля успеваемости. (по неделям семестра.) Форма промежуточной аттестации (по неделям семестра) |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-----------------|-----------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------|
| Модуль 1. Изучение приборной базы для исследования электрических и оптических свойств |                                                                                                                                                                                |         |                 |                 |                                                                 |              |                                                                                                                   |
| 1.                                                                                    | Изучение работы Спектрометрического комплекса на базе монохроматора МДР-41 для исследования люминесценции и пропускания 0,2-25,8 мкм с оптическим азотно-проточным криостатом. |         | 1-2             | 8               |                                                                 | 10           | Опрос и письменный<br>отчёт о выполненной<br>работе                                                               |
| 2                                                                                     | Изучение принципа работы комплекса LCR – 78110G.                                                                                                                               |         | 3-4             | 8               |                                                                 | 10           | Опрос и письменный отчёт о выполненной работе                                                                     |
|                                                                                       | Итого по модулю 1:<br>36 час                                                                                                                                                   |         |                 | 16              |                                                                 | 20           | Отчет                                                                                                             |
|                                                                                       | Модуль 2. Исследование о лоднопрессованны                                                                                                                                      |         |                 |                 |                                                                 |              |                                                                                                                   |

| глощения, ширины запрещенной зоны, энергии активации примесных центров исходных и термообработанных нанопорошков на основе УВа <sub>2</sub> Си <sub>3</sub> О <sub>7-у</sub> .  4 Исследования края поглощения, ширины запрещенной зоны, энергии активации примесных центров исходных и термообработанных нанопорошков на основе ВіFeO <sub>3</sub> .  5 Изучение явления люминесценции в широкозонных полупроводниках А <sup>2</sup> В <sup>6</sup> Итого по модулю 2: 20 16 Отчет о выполненработе, результаты следования  Итого по модулю 2: 36 час  Модуль 3. Исследование термостимулированной проводимости исходных и темообработанных холоднопрессованных нанопорошков на основе УВа <sub>2</sub> Си <sub>3</sub> О <sub>7-у</sub> .  5 Исследования термостимулированной проводимости исходных и темообработанных холоднопрессованных нанопорошков на основе УВа <sub>2</sub> Си <sub>3</sub> О <sub>7-у</sub> .  6 Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе УВа <sub>2</sub> Си <sub>3</sub> О <sub>7-у</sub> .  6 Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе УВа <sub>2</sub> Си <sub>3</sub> О <sub>7-у</sub> .  6 Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе УВа <sub>2</sub> Си <sub>3</sub> О <sub>7-у</sub> .  6 Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных колоднопрессованных нанопорошков на основе ВіFeO <sub>3</sub> 7 Исследования диэлектри— 11 12 4 4 отчёт о выполнения основе ВіFeO <sub>3</sub> |   |                                                                                                                                                                                |     |             |       |           |                                  |                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-------|-----------|----------------------------------|----------------------------------------------------------|
| щения, ширины запрещенной зоны, энергии активации примесных центров исходных и термообработанных нанопорошков на основе ВіFеОз   20   16   Отчет                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 | глощения, ширины запрещенной зоны, энергии активации примесных центров исходных и термообработанных нанопорошков на основе YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-y</sub> . | 11  |             |       |           | 6                                | отчёт о выполненной работе, результаты ис-<br>следования |
| несценции в широкозонных полупроводниках А²В6  Итого по модулю 2: 36 час  Модуль 3. Исследование термостимулированной проводимости исходных и тмообработанных холоднопрессованных нанопорошков на основе YBa2Cu3O7-хисходных и термообработанных холоднопрессованных нанопорошков на основе YBa2Cu3O7-ху.  Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе YBa2Cu3O7-у.  Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе BiFeO3  Исследования диэлектрической проницаемости исходных и термообработанных холоднопрессованных нанопорошков на основе BiFeO3  Итого по модулю 3: 36 час  Модуль 4. Исследование электрических и оптических свойств                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 | щения, ширины запрещенной зоны, энергии активации примесных центров исходных и термообработанных нанопорошков на                                                               |     | 6-7         | 8     |           | 6                                | отчёт о выполненной работе, результаты ис-<br>следования |
| Зб час         Модуль 3. Исследование термостимулированной проводимости исходных и т мообработанных холоднопрессованных нанопорошков на основе YBa₂Cu₃O₂.  Также и диэлектрической проницаемости BiFeO₃           5 Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе YBa₂Cu₃O₂.         11 9-10 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 | Изучение явления люминесценции в широкозонных полупроводниках                                                                                                                  |     | 8           | 4     |           | 4                                | отчёт о выполненной работе, результаты ис-<br>следования |
| Модуль 3. Исследование термостимулированной проводимости исходных и т мообработанных холоднопрессованных нанопорошков на основе YBa₂Cu₃O₂.           5 Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе YBa₂Cu₃O₂.         11 9-10 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | •                                                                                                                                                                              |     |             | 20    |           | 16                               | Отчет                                                    |
| мообработанных холоднопрессованных нанопорошков на основе YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-1</sub> также и диэлектрической проницаемости BiFeO <sub>3</sub> 5 Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-у</sub> .  6 Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных холоднопрессованных холоднопрессованных нанопорошков на основе BiFeO <sub>3</sub> 7 Исследования диэлектрической проницаемости исходных и термообработанных холоднопрессованных нанопорошков на основе BiFeO <sub>3</sub> 8 Итого по модулю 3: 36 час  Модуль 4. Исследование электрических и оптических свойств                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                |     |             |       |           |                                  |                                                          |
| Также и диэлектрической проницаемости BiFeOз  5 Исследования термостимулированной проводимости исходных и термообработанных канопорошков на основе BiFeOз  6 Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных холоднопрессованных канопорошков на основе BiFeOз  7 Исследования диэлектрической проницаемости исходных и термообработанных холоднопрессованных нанопорошков на основе BiFeOз  11 12 4 4 отчёт о выполнени работе, результаты следования следования и термообработанных холоднопрессованных нанопорошков на основе BiFeOз  10 Итого по модулю 3: 36 час                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                |     |             |       |           |                                  |                                                          |
| 5       Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе ВБГеОз       11       9-10       8       6       отчёт о выполнег работе, результаты следования         6       Исследования термостимулированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе ВБГеОз       11       10-11       8       6       отчёт о выполнег работе, результаты следования         7       Исследования диэлектрической проницаемости исходных и термообработанных холоднопрессованных нанопорошков на основе ВБГеОз       11       12       4       4       отчёт о выполнени работе, результаты следования         8       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                                                                                                                                                                                |     |             |       |           |                                  |                                                          |
| лированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе ВіFeO3  7 Исследования диэлектрической проницаемости исходных и термообработанных холоднопрессованных нанопорошков на основе ВіFeO3  7 Итого по модулю 3: 36 час  Модуль 4. Исследование электрических и оптических свойств                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 | 1                                                                                                                                                                              |     | <del></del> |       | T - T     |                                  | отчёт о выполненной                                      |
| мулированной проводимо- сти исходных и термообра- ботанных холоднопрессо- ванных нанопорошков на основе ВіFeO3  7 Исследования диэлектри- ческой проницаемости ис- ходных и термообработан- ных холоднопрессованных нанопорошков на основе ВіFeO3  Итого по модулю 3: 36 час  Модуль 4. Исследование электрических и оптических свойств                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | лированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на ос-                                                                                   |     |             |       |           |                                  | работе, результаты ис-                                   |
| 7 Исследования диэлектрической проницаемости исходных и термообработанных холоднопрессованных нанопорошков на основе ВіFeO3  Итого по модулю 3: 36 час  Модуль 4. Исследование электрических и оптических свойств                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 | мулированной проводимо-<br>сти исходных и термообра-<br>ботанных холоднопрессо-<br>ванных нанопорошков на                                                                      | 11  | 10-11       | 8     | 6         | Ó                                | отчёт о выполненной работе, результаты ис-<br>следования |
| Итого по модулю 3: 20 16 36 час Модуль 4. Исследование электрических и оптических свойств                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 | Исследования диэлектрической проницаемости исходных и термообработанных холоднопрессованных нанопорошков на основе                                                             | 11  | 12          | 4     | 4         | 1                                | отчёт о выполненной работе, результаты ис-<br>следования |
| Модуль 4. Исследование электрических и оптических свойств                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | Итого по модулю 3:                                                                                                                                                             |     |             | 20    | 1         | 16                               |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                                                                                                                                                                                |     |             |       |           |                                  |                                                          |
| HAHOCTDVKTVDUDOBAHHAIY KEDAMUK HA OCHOBE VRa2CU2O2 u RiFeO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                                                                                                                                                                |     |             |       |           |                                  |                                                          |
| nunverpykryphpobumbia kepumik nu venobe i buzeujo j.y n bireoj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | наноструктурирован                                                                                                                                                             | ных | керам       | ик на | основе ҮВ | a <sub>2</sub> Cu <sub>3</sub> ( | O <sub>7-у</sub> и BiFeO <sub>3</sub>                    |
| 9 Исследования диэлектриче-<br>ской проницаемости наноке-<br>рамики на основе BiFeO <sub>3</sub>   11   13   4   8   Результаты исслед                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 | ской проницаемости наноке                                                                                                                                                      |     | 13          | 4     | 8         | 3                                | Результаты исследова-<br>ния                             |

| 10 | Исследования края погло-     | 14 | 4  | 8  | Результаты | исследова- |
|----|------------------------------|----|----|----|------------|------------|
|    | щения, ширины запрещен-      |    |    |    | ния        |            |
|    | ной зоны, энергии активации  |    |    |    |            |            |
|    | примесных центров наноке-    |    |    |    |            |            |
|    | рамики BiFeO <sub>3.</sub> . |    |    |    |            |            |
| 11 | Исследования края погло-     | 15 | 4  | 8  | Результаты | исследова- |
|    | щения, ширины запрещен-      |    |    |    | ния        |            |
|    | ной зоны, энергии активации  |    |    |    |            |            |
|    | примесных центров наноке-    |    |    |    |            |            |
|    | рамики ҮВа2Си3О7-у.          |    |    |    |            |            |
|    | Итого по модулю 4: 36        |    | 12 | 24 | Отчёт      |            |
|    | час                          |    |    |    |            |            |
|    | Итого за дисциплину: 144     |    | 68 | 76 | Зачёт      |            |
|    | час                          |    |    |    |            |            |

### 4.3. Содержание дисциплины, структурированное по темам (разделам)

### 4.3.2. Содержание лабораторно-практических занятий по дисциплине

Модуль 1. Изучение приборной базы для исследования электрических и оптических свойств

- Тема 1. Изучение работы спектрометрического комплекса
- Тема 2. Изучение работы комплекса LCR 78110G.

Модуль 2. Исследование оптических свойств исходных и термообработанных холоднопрессованных нанопорошков на основе YBa2Cu3O7-у и BiFeO3

- Тема 3. Исследования края поглощения, ширины запрещенной зоны, энергии активации примесных центров порошков YBa2Cu3O7-у и BiFeO3.
- Тема 4. Изучение явления люминесценции в широкозонных полупроводниках.
- Модуль Исследование термостимулированной проводимости термообработанных холоднопрессованных нанопорошков на основе ҮВа2Си3О7-у, а также и диэлектрической проницаемости ВіFeO3
  - Тема 5. Исследования термостимулированной проводимости порошков YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-у</sub> и BiFeO<sub>3</sub>.
  - Тема 6. Исследования диэлектрической проницаемости порошков BiFeO<sub>3</sub>.

Модуль 4. Исследование электрических и оптических свойств

наноструктурированных керамик на основе ҮВа2Си3О7-у и ВіFeO3

- Тема 7. Исследования диэлектрической проницаемости нанокерамки BiFeO<sub>3</sub>.
- Тема 8. Исследования края поглощения, ширины запрещенной зоны, энергии активации примесных центров нанокерамик YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-у</sub> и BiFeO<sub>3</sub>.

### 5. Образовательные технологии

В соответствии с требованиями ФГОС ВО реализация компентентностного подхода дисциплины предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий (компьютерных симуляций, разбор конкретных ситуаций) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся. В течение семестра студенты последовательно решают проблемы согласно разработанному плану. Зачет выставляется после выполнения всех лабораторных работ, обработки и анализа экспериментальных данных. Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью программы, особенностью контингента обучающихся, и, в целом, в учебном процессе по данной дисциплине они в часах должны составлять не менее 30% от общего количества часов аудиторных занятий.

Занятия по спецппрактикуму проводятся в специально оборудованных лабораториях **НОЦ** «Нанотехнологии» ДГУ: «Лаборатория для исследования оптических и фотоэлектрических свойств» на спектрометрическом комплексе на базе монохроматора МДР-41

Для выполнения специального физического практикума и подготовки к практическим занятиям изданы учебно-методические пособия и разработки, которые в сочетании с внеаудиторной работой способствуют формированию и развития профессиональных навыков обучающихся. Готовятся к изданию новые пособия. В процессе выполнения лабораторного практикума у студентов появляются навыки производить расчеты с помощью пакета современных математических программ, что позволяет существенно приблизить уровень статистической культуры обработки результатов измерений в практикуме к современным стандартам, принятым в науке и производственной деятельности.

### 6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа является важнейшим компонентом образовательного процесса, формирующим личность студента, развивающим его способности к самообучению и повышению своего профессионального уровня.

Самостоятельная работа заключается в изучении отдельных тем курса по рекомендуемой преподавателем учебной литературе, в подготовке к лабораторному практикуму, в выполнении домашнего задания, выданного на практических занятиях, в широком использовании информационных технологий для выполнения поставленной задачи. Для облегчения самостоятельной работы студентов, наряду с основной рекомендованной и дополнительной литературой, изданы учебные пособия.

Самостоятельная работа студентов, предусмотрена учебным планом в объеме не менее 50%, от общего количества часов, в том числе и подготовка к зачету. Она необходима для более глубокого усвоения изучаемого курса, формирования навыков исследовательской работы и умения применять теоретические знания на практике. Самостоятельная работа должна носить систематический характер. Результаты самостоятельной работы контролируются преподавателем и учитываются при аттестации студента (зачет). При этом проводятся: экспресс-опрос, проверка и анализ результатов исследований и т.д. Самостоятельная работа студентов реализуется в виде:

- подготовки к лабораторно-практическим работам;
- оформлении лабораторно-практических работ (расчет навесок, заполнение таблиц, графиков, написание выводов);
- обобщение результатов и подготовка отчета о выполненной работе.

### 7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

| Код и наиме- | Код и наименова- | Планируемые результаты обуче-    | Процедура осво- |
|--------------|------------------|----------------------------------|-----------------|
| нование ком- | ние достижения   | ния                              | ения            |
| петенции из  | компетенции      |                                  |                 |
| ΦΓΟС ΒΟ      |                  |                                  |                 |
| OK-1         | Способностью к   | Знает:                           | Письменный      |
|              | абстрактному     | • ключевые события в развитии    | опрос           |
|              | мышлению, анали- | современной науки, отразившие-   |                 |
|              | зу, синтезу      | ся в концепциях современной      |                 |
|              |                  | философии и методологии науки;   |                 |
|              |                  | • методы анализа и синтеза науч- |                 |
|              |                  | но периодической информации.     |                 |
|              |                  | Умеет:                           |                 |
|              |                  | • анализировать и воспринимать   |                 |

|       |                                                                                                                                                                                                   | информацию на поточников воз                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|       |                                                                                                                                                                                                   | информацию из источников различного типа; • абстрактно мыслить и анализировать, синтезировать полученную информацию. Владеет: • методиками персонального и коллективного представления результатов аналитической работы.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ic                                          |
| ОПК-6 | Способность использовать знания современных проблем и новейших достижений физики в научно-исследовательской работе                                                                                | <ul> <li>Знает:</li> <li>современные методы изучения оптических и электрических свойств;</li> <li>принцип работы спектрометрического комплекса на базе монохроматора МДР-41;</li> <li>принцип работы измерителя LCR – 78110G.</li> <li>Умеет:</li> <li>проводить исследования оптических и электрических свойств современными методами;</li> <li>проводить исследования на спектрометрическом комплексе на базе монохроматора МДР-41;</li> <li>проводить исследования диэлектрических свойств на комплексе LCR – 78110G.</li> <li>Владеет:</li> <li>расшифровывать спектры фотопроводимости и термостимулированнной проводимости;</li> <li>определять размер наночастиц по краю спектра поглощения;</li> <li>определять реальную и мнимую части диэлектрической проницаемости.</li> </ul> | Контроль выполнения индивидуального задания |
| ПК-2  | способность сво-<br>бодно владеть раз-<br>делами физики,<br>необходимыми для<br>решения научно —<br>инновационных<br>задач и применять<br>результаты науч-<br>ных исследований<br>в инновационной | <ul> <li>Знает:</li> <li>● теоретические основы, основные понятия, законы и модели общей физики;</li> <li>● методы обработки и анализа экспериментальной и теоретической информации в области оптических и электрических свойств мультиферроиков и ВТСП;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Устный опрос,<br>Круглый стол               |

|      | деятельности      | • физические основы поведения                              |               |
|------|-------------------|------------------------------------------------------------|---------------|
|      |                   | оптических и электрических                                 |               |
|      |                   | свойств веществ с перовскит-                               |               |
|      |                   | ной структурой при фазовых                                 |               |
|      |                   | переходах второго рода;                                    |               |
|      |                   | Умеет:                                                     |               |
|      |                   | • понимать, излагать и критиче-                            |               |
|      |                   | ски анализировать базовые                                  |               |
|      |                   | теоретические знания фунда-                                |               |
|      |                   | ментальных разделов общей и                                |               |
|      |                   | теоретической физики в обла-                               |               |
|      |                   | сти оптических и электриче-                                |               |
|      |                   | ских свойств мультиферрои-                                 |               |
|      |                   | ков и ВТСП;                                                |               |
|      |                   | Владеет:                                                   |               |
|      |                   | • методикой и теоретическими                               |               |
|      |                   | основами анализа и обработки                               |               |
|      |                   | экспериментальных данных                                   |               |
|      |                   | по оптическим, тепловым и                                  |               |
|      |                   | электрическим свойствам                                    |               |
|      |                   | мультиферроиков и ВТСП;                                    |               |
|      |                   | • экспресс анализом и дигно-                               |               |
|      |                   | стическими методами иссле-                                 |               |
|      |                   | дования нанокерамики;                                      |               |
|      |                   | • разделами физики, необходи-                              |               |
|      |                   | мыми для решения научно -                                  |               |
|      |                   | инновационных задач и при-                                 |               |
|      |                   | менять результаты научных                                  |               |
|      |                   | исследований в инновацион-                                 |               |
|      |                   | ной деятельности.                                          |               |
| ПК-7 | Способностью ру-  | Знать:                                                     | Устный опрос, |
|      | ководить научно-  | • особенности профессиональной                             | Круглый стол  |
|      | исследовательской | деятельности научного сотруд-                              |               |
|      | деятельностью в   | ника и преподавателя высшей                                |               |
|      | области физики    | школы;                                                     |               |
|      | обучающихся по    | • методику и методологию по                                |               |
|      | программам бака-  | организации научно-                                        |               |
|      | лавриата          | исследовательской деятельно-                               |               |
|      |                   | сти;                                                       |               |
|      |                   | • навыки составления и оформления научно-технической доку- |               |
|      |                   | ментации, научных отчетов, об-                             |               |
|      |                   | зоров, докладов и статей;                                  |               |
|      |                   | • методику учебного экспери-                               |               |
|      |                   | мента по физике на младших                                 |               |
|      |                   | курсах ВО.                                                 |               |
|      |                   | Уметь:                                                     |               |
|      |                   | • составлять план выполнения                               |               |
|      |                   |                                                            |               |
| i e  |                   | научных исследований;                                      |               |
|      |                   | научных исследований; • организовывать научно-             |               |

- в области физики обучающихся по программам бакалавриата;
- обрабатывать результаты научного эксперимента;
- составлять таблицы и графики по результатам проведения научных экспериментов;
- руководить научноисследовательской деятельностью в области физики обучающихся по программам бакалавриата;
- объяснять учащимся результаты, полученные в ходе научного исследования в научных лабораториях.

#### Владеть:

- навыками работы с научным физическим оборудованием;
- навыками подготовки и редактирования научных публикаций, планирования и осуществления публичных выступлений;
- навыками организации и управления научноисследовательскими и прикладными работами при решении конкретных задач в соответствии с профилем бакалавриата;
- навыками подготовки учебнометодических материалов по профилю бакалавриата;
- методами демонстрации и интерпретации физических явлений;
- умениями и навыками самостоятельного устранения неполадок в работе физического оборудования;
- способностью и готовностью применять на практике навыки составления и оформления научно-технической документации, научных отчетов, обзоров, докладов и статей.

#### 7.2. Типовые контрольные задания

### Модуль 1. Изучение приборной базы для исследования электрических и оптических свойств

1. Назначение и принципы действия основных компонентов спектрометрического комплекса.

- 2. Принцип работы монохроматора МДР-41
- 3. Работа оптического азотно-проточного криостата.
- 4. Регулировка температуры в криостате.
- 5. Принцип работы оптических приемников.
- 6. Оптическая градуировка спектрометрического комплекса.
- 7. Изучение принципа работы комплекса LCR 78110G.
- 8. Общие свойства сегнетоэлектриков и мультиферроиков.
- 9. Электроемкость.
- 10. Мнимая и реальные части диэлектрической проницаемости.
- 11. Диэлектрические потери.
- 12. Импеданс.

### Модуль 2. Исследование оптических свойств исходных и термообработанных холоднопрессованных нанопорошков на основе YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-y</sub> и BiFeO<sub>3</sub>

- 1. Граница поглощения или край оптического поглощения.
- 2. Определение ширины запрещенной зоны полупроводников по краю собственного поглощения.
- 3. Определение размера наночастиц по краю оптического поглощения.
- 4. Собственная и примесная проводимость.
- 5. Характеристика центров прилипания и рекомбинации в полупроводниках.
- 6. Определение энергии активации примесных центров.
- 7. Механизмы возникновения и виды люминесценции. Тушение люминесценции.
- 8. Люминесцентный анализ. Способ исследования люминесценции на спектрометрическом комплексе.

## Модуль 3. Исследование термостимулированной проводимости исходных и термообработанных холоднопрессованных нанопорошков на основе YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-y</sub>, а также и диэлектрической проницаемости BiFeO<sub>3</sub>

- 1. Термоактивационные методы исследования полупроводников и диэлектриков.
- 2. Возможности метода термостимулированной проводимости (ТСП).
- 3. Обработка экспериментальных результатов.
- 4. Расчет энергетических и кинетических параметров по данным (ТСП)

### Модуль 4. Исследование электрических и оптических свойств наноструктурированных керамик на основе YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-v</sub> и BiFeO<sub>3</sub>

- 1. Особенности поведения физических свойств наноразмерных объектов.
- 2. Анализ различия особенностей диэлектрической проницаемости нанопорошков и нанокерамики на основе BiFeO<sub>3</sub>.
- 3. Анализ различия особенностей спектров поглощения, ширины запрещенной зоны, энергии активации примесных центров нанопорошков и нанокерамики BiFeO<sub>3</sub>...
- 4. Анализ различия особенностей спектров поглощения, ширины запрещенной зоны, энергии активации примесных центров нанопорошков и нанокерамики YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>-

## 7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

посещение занятий
 выполнение лабораторных работ
 30 баллов

оформление лабораторно-практических работ 20 баллов

Промежуточный контроль по дисциплине включает: устный опрос

<u>20 баллов</u>

• отчет за модуль

20 баллов

### 8. Перечень основной и дополнительной учебной литературы, необходимой для освоения лиспиплины.

### Основная литература:

- 1. Федотов А.К. Физическое материаловедение. Часть 1. Физика твердого тела [Электронный ресурс]: учебное пособие / А.К. Федотов. Электрон. текстовые данные. Минск: Вышэйшая школа, 2010. 400 с. 978-985-06-1918-1. Режим доступа: http://www.iprbookshop.ru/20161.html (26.09.2018)
- 2. Филяк М.М. Основные физические процессы в проводниках, полупроводниках и диэлектриках [Электронный ресурс]: учебное пособие / М.М. Филяк. Электрон. текстовые данные. Оренбург: Оренбургский государственный университет, ЭБС ACB, 2015. 134 с. 978-5-7410-1188-1. Режим доступа: http://www.iprbookshop.ru/54132.html (26.09.2018)
- 3. Перлин Е.Ю. Физика твердого тела. Оптика полупроводников, диэлектриков, металлов [Электронный ресурс] : учебное пособие / Е.Ю. Перлин, Т.А. Вартанян, А.В. Федоров. Электрон. текстовые данные. СПб. : Университет ИТМО, 2008. 217 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/65343.html
- 4. Плотников П.Г. Изучение полупроводников в курсе ФТТ [Электронный ресурс] : учебное пособие / П.Г. Плотников, Л.В. Плотникова. Электрон. текстовые данные. СПб. : Университет ИТМО, 2015. 67 с. 2227-8397. Режим доступа: <a href="http://www.iprbookshop.ru/66454.html">http://www.iprbookshop.ru/66454.html</a>

#### Дополнительная литература:

- 1. Паринов И.А. Сверхпроводники и сверхпроводимость. Том 1. Получение и эксперимент [Электронный ресурс]: словарь-справочник / И.А. Паринов. Электрон. текстовые данные. Ростов-на-Дону: Южный федеральный университет, 2008. 714 с. 978-5-9275-0462-6. Режим доступа: <a href="http://www.iprbookshop.ru/47124.html">http://www.iprbookshop.ru/47124.html</a>
- 2. Кашкаров П.К., Тимошенко В.Ю.. Оптика твердого тела и низкоразмерных структур. М., Пульс, 2008, 292 с.
- 3. Шалимова К. В., Физика полупроводников. М., Издательство: Лань. 2010. 392 с.
- 4. Алешкин В.Я.. Современная физика полупроводников/ Курс лекций. Нижний Новгород 2013. 132 с.
- 5. Методы оптической спектроскопии./ под ред. Кулаковой И.И., Фёдоровой О.А./ Методическое пособие. М.: МГУ, 2015, 117 с.
- 6. Суздалев И.П. Нанотехнология: Физико-химия нанокластеров, наноструктур и наноматериалов. М. «Либроком» 2009.

### 9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

Даггосуниверситет имеет доступ к комплектам библиотечного фонда основных отечественных и зарубежных академических и отраслевых журналов по профилю подготовки магистра по направлению **03.04.02** – **физика**:

- 1. 3GC IPRbooks: http://www.iprbookshop.ru/
- 2. Электронно-библиотечная сист*ема* «Университетская библиотека онлайн» www.biblioclub.ru договор № 55\_02/16 от 30.03.2016 г. об оказании информационных услуг.(доступ продлен до сентября 2019 года).

- 3. Доступ к электронной библиотеки на <a href="http://elibrary.ru">http://elibrary.ru</a> основании лицензионного соглашения между ФГБОУ ВПО ДГУ и «ООО» «Научная Электронная библиотека» от 15.10.2003. (Раз в 5 лет обновляется лицензионное соглашение)
- 4. Национальная электронная библиотека <a href="https://нэб.рф/">https://нэб.рф/</a>. Договор №101/НЭБ/101/НЭБ/1597 от 1.08.2017г. Договор действует в течении 1 года с момента его подписания.
- 5. Федеральный портал «Российское образование» <a href="http://www.edu.ru/">http://www.edu.ru/</a> (единое окно доступа к образовательным ресурсам).
- 6. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
- 7. Российский портал «Открытого образования» http://www.openet.edu.ru
- 8. Сайт образовательных ресурсов Даггосуниверситета <a href="http://edu.icc.dgu.ru">http://edu.icc.dgu.ru</a>
- 9. Информационные ресурсы научной библиотеки Даггосуниверситета <a href="http://elib.dgu.ru">http://elib.dgu.ru</a> (доступ через платформу Научной электронной библиотеки elibrary.ru).
- 10. Федеральный центр образовательного законодательства <a href="http://www.lexed.ru">http://www.lexed.ru</a>
- 11. <a href="http://www.phys.msu.ru/rus/library/resources-online/">http://www.phys.msu.ru/rus/library/resources-online/</a> электронные учебные пособия, изданные преподавателями физического факультета МГУ.
- 12. <a href="http://www.phys.spbu.ru/library/">http://www.phys.spbu.ru/library/</a> электронные учебные пособия, изданные преподавателями физического факультета Санкт-Петербургского госуниверситета.
- 13. **Springer.** Доступ ДГУ предоставлен согласно договору № 582-13SP подписанный Министерством образования и науки предоставлен по контракту 2017-2018 г.г., подписанный ГПНТБ с организациями-победителями конкурса. <a href="http://link.springer.com">http://link.springer.com</a>. Доступ предоставлен на неограниченный срок
- 14. SCOPUS <a href="https://www.scopus.com">https://www.scopus.com</a> Доступ предоставлен согласно сублицензионному договору № Scopus/73 от 08 августа 2017г. подписанный Министерством образования и науки предоставлен по контракту 2017-2018 г.г., подписанный ГПНТБ с организациями-победителями конкурса. Договор действует с момента подписания по 31.12.2017г.
- 15. **Web of Science** webofknowledge.com Доступ предоставлен согласно сублицензионному договору № WoS/280 от 01 апреля 2017г. подписанный Министерством образования и науки предоставлен по контракту 2017-2018 гг., подписанный ГПНТБ с организациями-победителями конкурса Договор действует с момента подписания по 30.03.2017г.
- 16. «Pro Quest Dissertation Theses Global» (PQDT Global). база данных зарубежных –диссертации. Доступ продлен согласно сублицензионному договору № ProQuest/73 от 01 апреля 2017 года <a href="http://search.proquest.com/">http://search.proquest.com/</a>. Договор действует с момента подписания по 31.12.2017г.
- 17. **Sage** мультидисциплинарная полнотекстовая база данных. Доступ продлен на основании сублицензионного договора № **Sage/73 от 09.01.2017** <a href="http://online.sagepub.com/">http://online.sagepub.com/</a> Договор действует с момента подписания по 31.12.2017г.
- 18. **American Chemical Society.** Доступ продлен на основании сублицензионного договора №**ACS/73 от 09.01.2017 г.** <u>pubs.acs.org</u> Договор действует с момента подписания по 31.12.2017г.
- 19. Science (академическому журналу The American Association for the Advancement of Science (AAAS) <a href="http://www.sciencemag.org/">http://www.sciencemag.org/</a>. Доступ продлен на основании сублицензионного договора № 01.08.2017г. Договор действует с момента подписания по 31.12.2017г.
- **10. Методические указания для обучающихся по освоению дисциплины.** Перечень учебно-методических материалов, предоставляемых студентам во время

#### занятий:

- учебно-методические пособия;
- инструкции и описания к экспериментальным установкам;

## 11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Программное обеспечение: MS Power Point (MS Power Point Viewer), Adobe Acrobat Reader, средство просмотра изображений, табличный процессор; интернет, Е-mail. Обработка экспериментальных результатов осуществляется с помощью специальных компьютерных программ.

### 12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Выполнение спецпрактикума осуществляется на базе НОЦ «Нанотехнологии» ДГУ в специально оборудованных лабораториях:

- «Лаборатория для исследования оптических и фотоэлектрических свойств» на спектрометрическом комплексе на базе монохроматора МДР-41 для исследования люминесценции и пропускания 0,2-25,8 мкм с оптическим азотно-проточным криостатом и установке на базе спектрометра ИКС 14 А;
- лаборатория для исследования температурной зависимости электросопротивления и диэлектрических свойств на автоматизированной установке, созданной на базе комплекса LCR 78110G.