

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Энергетический спектр электронов и фононов

Кафедра физики конденсированного состояния и наносистем

Образовательная программа **03.03.02** – **Физика**

Профиль подготовки: **Фундаментальная физика**

Уровень высшего образования: **Бакалавриат**

Форма обучения: Очная

Статус дисциплины: **по выбору**

Рабочая программа дисциплины «Энергетический спектр электронов и фононов» составлена в 2020 году в соответствии с требованиями ФГОС ВО по направлению подготовки 03.03.02 — Физика, профиль подготовки «Фундаментальная физика» (уровень: бакалавриат) от « <u>07</u> » <u>августа 2014 г.</u> №937.
Разработчики: кафедра физики конденсированного состояния и наносистем.
Палчаев Д.К., д.фм.н., профессор Мурлиева Ж.Х., д.фм.н., профессор
Рабочая программа дисциплины одобрена на заседании кафедры физики конденсированного состояния и наносистем от «2&>022020г., протокол №6
/ Зав.кафедрой —
Председатель
Рабочая программа дисциплины согласовано с учебно-методическим управлением «23» 2020 г.
Начальник УМУ Гасангаджиева А.Г.

Аннотация рабочей программы дисциплины

Дисциплина <u>Энергетический спектр электронов и фононов</u> входит в вариативную часть образовательной программы <u>бакалавриата</u> по направлению (специальности) <u>03.03.02 – физика.</u>

Дисциплина реализуется на физическом факультете кафедрой физики конденсированного состояния и наносистем.

Спецкурс «Энергетический спектр электронов и фононов» является одним из основополагающих разделов физики конденсированных сред, в том числе наноразмерных. Цель спецкурса не только в получении фундаментальных знаний, но в расширении кругозора студентов, необходимого при решении нестандартных задач, в том числе и прикладного характера.

Дисциплина нацелена на формирование следующих компетенций выпускника: общекультурных – $\underline{OK-7}$, общепрофессиональных – $\underline{O\PiK-2}$, профессиональных – $\underline{\PiK-1}$, $\underline{\PiK-2}$, $\underline{\PiK-5}$. Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия, самостоятельная работа.

Объем дисциплины **72** часа, **2** зачетные единицы, в том числе в академических часах по видам учебных занятий

Ce-				Форма промежу-				
местр				точной аттеста-				
]	Контактна	я работа обуч	ающихся с	преподав	ателем	CPC,	ции (зачет, диф-
	Bce-			из них			в том	ференцированный
	го	Лекции	Лабора-	Практи-	КСР	консуль-	числе	зачет, экзамен)
			торные	ческие		тации	зачет	
			занятия	занятия				
7	72	18 34						зачет

1. Цели освоения дисциплины

Целями освоения дисциплины «Энергетический спектр электронов и фононов» являются: формирование у студентов системы знаний по физике конденсированного состояния, общекультурных и профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению подготовки 03.03.02 - Физика.

В результате изучения данной дисциплины студенты приобретают сведения о природе формирования энергетического спектра электронов и фононов, а также знания, необходимые для оценок свойств металлов и неметаллов. Кроме изложения основных вопросов курса рассматривается связь кинетических свойств с другими свойствами. Изучение этого спецкурса будет способствовать формированию навыков при решении задач и постановке простейших экспериментов, необходимых для расширения кругозора, понимания и дальнейшего изучения различных разделов физики. В конечном итоге, все это направлено на подготовку профессиональных и конкурентоспособных специалистов в области физики конденсированного состояния, способных работать на инженернотехнических должностях в научно-исследовательских лабораториях НИИ, вузов, предприятий.

2.Место дисциплины в структуре ОПОП бакалавриата

Дисциплина **Б1.В.ДВ.9.1.** «Энергетический спектр электронов и фононов» входит в вариативную часть образовательной программы (ФГОС ВО) бакалавриата по направлению 03.03.02— «Физика», профиля подготовки «Фундаментальная физика».

Особенность программы состоит в фундаментальном характере изложения дисциплины, направленной на выработку профессиональных компетенций, связанные со способностью использовать теоретические знания в области общей физики, статистической физики для решения конкретных практических задач с учетом особенностей спектра колебаний атомов кристаллической решетки.

В условиях возросшей актуальности в разработке технологии новых конструкционных материалов, в частности наноразмерных, необходимо повышение уровня образования студентов за счет изучение связи параметров неравновесной с параметрами равновесной термодинамики. Изучение особенностей энергетического спектра электронов и фононов расширяет возможности понимания процессов, происходящих в твердых телах, связанных с динамикой решетки атомов.

Микроскопическое рассмотрение природы формирования электро- и теплопроводности и их температурной зависимости с учетом ангармонизма колебаний атомов, в том числе в наноразмерных объектах, вырабатывает способность к абстрактному мышлению, применению математического аппарата, выявлению причинно-следственной связи различных процессах. Совокупность приобретенных знаний может быть полезной при создании и аттестации эксплуатационных характеристик новых конструкционных материалов.

Изучение настоящего спецкурса необходимо для облегчения усвоения студентами других разделов физики твердого тела: физики диэлектриков, физики полупроводников, физики металлов и физики магнитных явлений.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Компетенции	Формулировка компетенции	Планируемые результаты обучения (показатели
	из ФГОС ВО	достижения заданного уровня освоения компетен-
		ций)
ОК-7	Способность к самоорганизации и самообразованию	 дий) Знает: способы реализации самоорганизации и самообразования в образовательном процессе; способы организации самостоятельной работы для изучения дисциплины Умеет: ставить перед собой цели и формулировать задачи, определять и привлекать необходимые ресурсы для их достижения. Владеет: методами организации и планирования самостоятельной деятельности и рационального использования времени, необходимых для до-
		 стижения поставленных целей и задач; способами самоконтроля, самоанализа, демонстрировать стремление к самосовершенствованию.

ОПК 2	Способность использовать в	Зизат
ПК-1	Способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей; Способность использовать специализированные знания в области физики для освоения профильных физических дисциплин	 фундаментальные разделы математики: основы математического анализа, способы решения дифференциальных уравнений и др.; Умест: использовать базовые знания фундаментальных разделов математики для расшифровки теоретических положений физики конденсированных сред; проводить теоретические оценки (расчеты) температурных зависимостей кинетических (электро- и теплосопротивление) и равновесных (теплоемкость) свойств; определять пределы возможности принятых теоретических моделей при интерпретации свойств конденсированных сред обусловленных эффектом ангармонизма; Владеет: методами работы с пакетом современных компьютерных программ; математическими методами обработки и представления экспериментальных результатов в удобном для интерпретации виде; методом корреляционного анализа связи кинетических и равновесных свойств. Знает: Знать уравнение движения элемента объема с учетом тензора упругих модулей кристаллической решетки; энергию гармонического осциллятора в рамках классической и квантовой механики; распределение Гиббса; термодинамические потенциалы. Умеет: критически анализировать и излагать получаемую информацию, пользоваться учебной литературой, Internet – ресурсами применять полученные знания в области физики конденсированного состояния при решении задач связанных с интерпретацией кинетических свойств с учетом ангармонизма. Владеет: навыками провеления научных исследований
		 навыками проведения научных исследований в избранной области экспериментальных и (или) теоретических физических исследований навыками реализации информационных технологий с учетом отечественного и зарубежного опыта.
ПК-2	Способность проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложно-	 Знает: методики исследования кинетических свойств и принцип работы современных установок, в том числе, автоматизированная установка для одновременных исследований электросопротивления и теплового расширения. Умеет: • понимать, излагать и критически анализировать

го физического оборудобазовую информацию в области физики явлевания) и информационных ний, обусловленных рассеянием квазичастиц технологий с учетом отена колебаниях решетки атомов; чественного и зарубежного использовать базовые теоретические знания опыта фундаментальных разделов общей и теоретической физики для интерпретации температурных зависимостей кинетических и равновесных свойств с учетом ангармонизма колебаний атомов. Владеет: • разделами физики, необходимыми для решения научно - инновационных задач и применять результаты научных исследований в инновационной деятельности; • методикой и теоретическими основами анализа экспериментальной и теоретической информации, позволяющей учитывать ангармонизм колебаний решетки атомов металлов и неметаллов: • навыками по составлению аналитических обзоров по кинетическим и равновесным свойствам новых функциональных материалов с целью выявления природы их формирования. ПК-5 Способность Знает: пользоваться современными методами об-• современные методы обработки, анализа и синтеработки, анализа и синтеза за информации, полученной в эксперименте; физической информации в • различные модели и методы теоретических расизбранной области физичечетов кинетических свойств. ских исследований (ПК-5); Умеет: • пользоваться современными методами обработки, анализа и синтеза физической информации в области исследования кинетических свойств твердых тел; • применять полученные теоретические знания при решении конкретных задач при исследованиях кинетических свойств твердых тел с учетом отечественного и зарубежного опыта; • применять полученные знания при решении задач на семинарских занятиях и при выступлении на студенческих научных форумах. Владеет: •навыками решения задач для описания поведения кинетических свойств металлов, в том числе сплавов, и неметаллов в зависимости от структуры и типа межатомной связи; •современными методами обработки, анализа и синтеза физической информации в области физики конденсированных сред; •навыком прогнозирования кинетических свойств при создании новых материалов.

4. Объем, структура и содержание дисциплины. 4.1. Объем дисциплины составляет ____2__ зачетные единицы, **72** академических часа.

4.2. Структура дисциплины.

№ п/п	Раздел дисциплины	стр	еместра	вк. раб	пюча .студ	я са . и '	. раб., амост. грудо- часах)	Pa6.	Форма текущего контроля успеваемости. (по неделям семестра.)
		Семе	Семестр Неделя семестра		Прак. Зан.	Лаб. зан.	Контроль сам. Раб.	сам. Раб.	Форма промежу- точной аттеста- ции (по неделям се- местра)
	Модуль 1. Электронная струк	гура	н и св	ойст	ъа мо	ета.	плов		
1.	Тема. 1. Классические и квантово - механические представления в теории металлов. Приближение свободных электронов.	7	1-2	2	4	_	2		Контр.раб
2	Тема. 2. Теплоемкость Фермигаза. Плотность электронных состояний. Приближение почти свободных электронов.	7	3-4	2	4	-	2		Контр.раб
3	<u>Тема 3</u> . Зоны Бриллюэна. Закон дисперсии для обобществленных электронов в поле периодического потенциала.	7	5-6	2	4	-	4		Тест
4	Тема 4. Кинетические свойства металлов. Соотношения Онзагера. Обобщенные уравнения переноса.	7	7-8	2	4	-	4		Тест
	Итого по модулю 1: 36 час.			8	16	-	12		
M	одуль 2. Энергетический спектр	фон	онов	и те	плов	ые	свойст	ва	
3	Тема. 1. Фононы Границы частотного спектра ко- лебаний решетки. Колебания це- почки из атомов одного сорта.	7	9-10	2	2	-		٠	Собес.
4	Тема 2. Колебания цепочки из атомов двух сортов. Акустические и оптические моды колебаний.		11-12		4	-	2		Контр. Раб.
5	Тема 3. Теплоемкость твердых тел. Приближение Эйнштейна. И Дебая. Функции спектральной плотности состояний в модели Дебая и Эйнштейна	7	12-13	2	4	-	2		Тест

6	Тема4. Тепловое расширение	7	2	4	-	2	Тест
	Микроскопическая и феноменоло-						
	гические теории. Истинные и						
	средние значения КТР.						
7	<u>Тема 5. Теплопроводность.</u> Реше-	7	2	4	1	2	Контр. Раб.
	точн. теплопроводность. Расчет						
	теплопров-ти в квазигармониче-						
	ском приближении (формула						
	Лейбфрида и Шломана). Расчет						
	теплопров-ти с учетом ангармо-						
	низма.						
8	Итого по модулю 2:		10	18		8	зачет
	36 час						
	Итого по дисциплине:		18	34		20	
	72 час						

Модуль 1. Электронная структура и свойства металлов.

Лекции.

Тема 1.Понятие металла. Классическая электронная теория металлов.

Квантово-механические представления в теории металлов. Приближение свободных электронов.

<u>Тема 2.</u> Магнитная восприимчивость и теплоемкость Ферми-газа. Плотность электронных состояний. Приближение почти свободных электронов.

<u>Тема 3.</u>Зоны Бриллюэна. Построение зон Бриллюэна. Закон дисперсии для обобществленных электронов в поле периодического потенциала. Сравнение моделей слабой и сильной связей.

<u>Тема 4.</u>Кинетические свойства металлов. Соотношения Онзагера. Обобщенные уравнения переноса. Механизмы рассеяние электронов в переходных и непереходных металлах. Длина свободного пробега.

Практические занятия

- 1. Энергия электронного газа.
- 2. Псевдопотенциал.
- 3. Заполнение энергетических зон значениями энергий.
- 4. Электронная структура жидких металлов.
- 5. Гальваномагнитные свойства металлов.
- 6. Формулы для расчета электросопротивления (Блоха-Грюнайзена, Дж. Займана, Кубо).
- 7. Закон Видемана-Франца.
 - 8. Природа связи электросопротивления с термической деформацией металлов *Модуль 2. Энергетический спектр фононов и тепловые свойства*

Лекции.

<u>Тема 1.</u> Уравнение упругой волны. Границы частотного спектра колебаний решетки. Нулевые колебания. Фононы. Колебания цепочки из атомов одного сорта.

<u>Тема 2.</u>Колебания цепочки из атомов двух сортов. Закон дисперсии в акустической и оптической ветвях колебаний атомов.

<u>Тема 3.</u>Теплоемкость твердых тел. Функции спектральной плотности состояний в модели Дебая и Эйнштейна. Приближение Эйнштейна. Приближение Дебая. Соотношение между характеристическими температурами Дебая и Эйнштейна.

<u>Тема 4.</u>Тепловое расширение. Микроскопическая и феноменологические теории. Истинные и средние значения КТР.

<u>Тема 5.</u>Решеточная теплопроводность. Нормальные процессы и процессы переброса. Выражение для расчета теплопроводности в квазигармоническом приближении (Лейбфрида и Шломана).

Практические занятия

- 1. Нулевые колебания. Характеристическая температура.
- 2. Закон дисперсии частоты, фазовой и групповой скоростей для цепочки из атомов одного сорта.
- 3. Особенности акустических и оптических мод колебаний для цепочки из атомов 2^x сортов .Ионно-плазменная частота. Запрещенная зона частот в ионных кристаллах.
- 4. Учет влияния взаимодействия атома с 4мя ближайшими соседями.
- 5. Расчет теплоемкости по модели Дебая и сравнение с экспериментом. Особенности теплоемкости в наноразмерных системах.
- 6. Особенности теплового расширения анизотропных и рыхлоупакованных структур (отрицательные значения КТР).
- 7. Особенности теплового расширения композиционных сплошных и пористых материалов.
- 8. Учет влияния ангармонизма при расчетах теплосопротивления. Связь теплосопротивления с термической деформацией.
- 9. Особенности теплосопротивления анизотропных и рыхлоупакованных структур.

5. Образовательные технологии:

В соответствии с требованиями ФГОС ВО по реализации компентентностного подхода, дисциплина предусматривает широкое использование в учебном процессе активных и интерактивных форм занятий в виде: лекции, семинаров, контрольных работ, коллоквиума, и зачета. В процессе преподавания дисциплины «Энергетический спектр электронов и фононов» применяются следующие образовательные технологии: развивающее обучение, проблемное обучение, коллективная система обучения, лекционно-зачетная система обучения. При чтении данного курса применяются такие виды лекций, как вводная, лекция-информация, обзорная, проблемная, лекция-визуализация. Лекции сопровождаются представлением материалов виде презентаций с использований анимации, выход на сайты, где представлены соответствующие иллюстрации и демонстрации для излагаемого материала.

При проведении занятий используются компьютерные классы, оснащенные современной компьютерной техникой: мультимедиа проекционным оборудованием и интерактивной доской.

Удельный вес занятий, проводимых в интерактивных формах (лекция-беседа, лекция-дискуссия, лекция-консультация, проблемная лекция, лекция-визуализация, лекция с запланированными ошибками), определяется главной целью (миссией) программы, особенностью контингента обучающихся и содержанием конкретных дисциплин, и в целом, в учебном процессе по данной дисциплине они должны составлять не менее 20 часов аудиторных занятий. Число лекций от общего числа аудиторных занятий определено учебной программой.

Для выполнения физического практикума и подготовке к практическим (семинарским) занятиям изданы учебно-методические пособия и разработки, которые в сочетании с внеаудиторной работой способствуют формированию и развития профессиональных навыков обучающихся. В процессе лабораторного практикума формируется у студентов умение производить расчеты с помощью пакета стандартных компьютерных математических программ, что позволяет существенно приблизить уровень культуры статистической обработки результатов измерений в практикуме к современным стандартам, принятым в науке и производственной деятельности. На этих занятиях студенты закрепляют навыки

(приобретенные на 1-2 курсах) по оценке погрешностей результатов измерений, что совершенно необходимо для работы в специальных учебных и производственных лабораториях. В рамках учебного процесса предусмотрено приглашение для чтения лекций ведущих ученых из центральных вузов и академических институтов России.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов, предусмотрена учебным планом в объеме не менее 50%, в том числе подготовка к экзаменам и зачетам, от общего количества часов. Она необходима для более глубокого усвоения изучаемого курса, формирования навыков исследовательской работы и умение применять теоретические знания на практике. Самостоятельная работа должна носить систематический характер. Результаты самостоятельной работы контролируются преподавателем и учитываются при аттестации студента (зачет, экзамен). При этом проводятся: тестирование, экспрессопрос на семинарских и практических занятиях, заслушивание докладов, проверка письменных работ и т.д.

Самостоятельная работа студентов реализуется в виде:

- повторения пройденного материала;
- подготовки к лабораторно-практическим работам;
- оформления лабораторно-практических работ (заполнение таблиц, решение задач, написание выводов);
- подготовки к контрольным работам;

TC

- выполнения индивидуальных заданий по основным темам дисциплины;
- 7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.
- 7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

Код и наиме-	Код и наименование	Планируемые результаты обуче-	Процедура
нование ком-	индикатора достиже-	ния (показатели достижения за-	освоения
петенции из	ния компетенций (со-	данного уровня освоения компе-	
ΦΓΟС ΒΟ	ответствии с ПООП	тенций)	
	(при наличии)		
OK – 7	способностью к само-	Знает:	Устный
	организации и самооб-	• способы реализации самоор-	опрос, пись-
	разованию	ганизации и самообразования	менный
		в образовательном процессе;	опрос
		• способы организации само-	
		стоятельной работы для изу-	
		чения дисциплины	
		Умеет:	
		• ставить перед собой цели и	
		формулировать задачи, опре-	
		делять и привлекать необхо-	
		димые ресурсы для их дости-	
		жения.	
		Владеет:	
		• методами организации и пла-	
		нирования самостоятельной	
		деятельности и рационально-	

		го использования времени,	
		 необходимых для достижения поставленных целей и задач; способами самоконтроля, самоанализа, демонстрировать стремление к самосовершенствованию. 	
ОПК-2	способностью использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей	 фундаментальные разделы математики: основы математического анализа, способы решения дифференциальных уравнений и др.; Умеет: использовать базовые знания фундаментальных разделов математики для расшифровки теоретических положений физики конденсированных сред; проводить теоретические оценки (расчеты) температурных зависимостей кинетических (электро- и теплосопротивление) и равновесных (теплоемкость) свойств; определять пределы возможности принятых теоретических моделей при интерпретации свойств конденсированных средобусловленных эффектом ангармонизма; Владеет: методами работы с пакетом современных компьютерных программ; математическими методами обработки и представления экспериментальных результатов в удобном для интерпретации виде; методом корреляционного анализа связи кинетических и равновесных свойств. 	Письменный опрос
ПК-1	Способность исполь-	Знает:	Устный опрос
	зовать специализированные знания в области физики для освоения профильных физических дисциплин	 уравнение движения элемента объема с учетом тензора упругих модулей кристаллической решетки; энергию гармонического осциллятора в рамках классической и квантовой механики; распределение Гиббса; термодинамические потенциалы. Умеет: критически анализировать и из- 	

ПК-2	Способность прово-	лагать получаемую информацию, пользоваться учебной литературой, Internet – ресурсами • применять полученные знания в области физики конденсированного состояния при решении задач связанных с интерпретацией кинетических свойств с учетом ангармонизма. Владеет: • навыками проведения научных исследований в избранной области экспериментальных и (или) теоретических физических исследований • навыками реализации информационных технологий с учетом отечественного и зарубежного опыта. Знает:	Мини-
	дить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта	методики исследования кинетических свойств и принцип работы современных установок, в том числе, автоматизированная установка для одновременных исследований электросопротивления и теплового расширения. Умеет: • понимать, излагать и критически анализировать базовую информацию в области физики явлений, обусловленных рассеянием квазичастиц на колебаниях решетки атомов; • использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для интерпретации температурных зависимостей кинетических и равновесных свойств с учетом ангармонизма колебаний атомов. Владеет: • разделами физики, необходимыми для решения научно — инновационных задач и применять результаты научных исследований в инновационной деятельности; • методикой и теоретическими основами анализа экспериментальной и теоретической информации, позволяющей учиты-	конференция

		вать ангармонизм колебаний	
		решетки атомов металлов и не-	
		металлов;	
		• навыками по составлению ана-	
		литических обзоров по кинети-	
		ческим и равновесным свой-	
		ствам новых функциональных	
		материалов с целью выявления	
		природы их формирования.	
ПК-5	Способность пользо-	Знает:	Устный опрос,
	ваться современными	• современные методы обработки,	круглый стол
	методами обработки,	анализа и синтеза информации, по-	1 3
	анализа и синтеза физи-	лученной в эксперименте;	
	ческой информации в	• различные модели и методы тео-	
	избранной области фи-	ретических расчетов кинетических	
	зических исследований	свойств.	
	(ПК-5);	Умеет:	
		• пользоваться современными мето-	
		дами обработки, анализа и синтеза	
		физической информации в области	
		исследования кинетических свойств	
		твердых тел;	
		• применять полученные теоретиче-	
		ские знания при решении конкрет-	
		ных задач при исследованиях кине-	
		тических свойств твердых тел с	
		учетом отечественного и зарубеж-	
		ного опыта;	
		• применять полученные знания при	
		решении задач на семинарских за-	
		нятиях и при выступлении на сту-	
		денческих научных форумах.	
		Владеет:	
		• навыками решения задач для опи-	
		сания поведения кинетических	
		свойств металлов, в том числе	
		сплавов, и неметаллов в зависимо-	
		сти от структуры и типа межатом-	
		ной связи;	
		• современными методами обработ-	
		ки, анализа и синтеза физической	
		информации в области физики кон-	
		денсированных сред;	
		• навыком прогнозирования кине-	
		тических свойств при создании но-	
		вых материалов.	

7.2. Типовые контрольные задания

1. <u>Примерные вопросы для самостоятельной работы по разделу электронная структура и свойства металлов</u>

- 1. Температурная зависимость электросопротивление металлов (сплавов);
- 2. Температурная зависимость теплового расширения металлов (сплавов);
- 3. Зависимость электросопротивления от термической деформации металлов (сплавов);
- 4. Разделение механизмов рассеяния электронов в различных проводниках;
- 5. Температурная зависимость магнитной восприимчивости металлов (сплавов);
- 6. Температурная зависимость теплопроводности металлов (сплавов);

- 7. Особенности изменения свойств металлов (сплавов) при фазовых переходах первого и второго рода;
- 8. Зависимость характеристического электросопротивления в зависимости от концентрации в двойных сплавах.
- 9. Связь между различными равновесными и неравновесными свойствами;
- 10. Особенности свойств сплавов с: гигантским магнитосопротивлением, обладающих памятью, сплавов, обладающих свехпластичностью и т.д.

Типовые контрольные тестовые задания ВАРИАНТ 1

- 1. Что является следствием ограниченности размеров кристалла при рассмотрении поведения свободного электрона в металле?
 - 1) Верхний предел энергии свободных электронов.
 - 2) Дискретность энергетического спектра.
 - 3) Возможность пренебрежения общей потенциальной энергией.
 - 4) Рассмотрение поведения электронов в потенциальной яме (в металле)
 - 5) Возможность пренебрежения периодическим потенциалом.
- 2. Чем обусловлена слабость периодического потенциала?
 - 1) Малостью потенциальной энергии взаимодействия электрона с ионом.
 - 2) Экранировкой ионов быстрыми электронами.
 - 3) Малостью превышения кинетической энергии над потенциальной.
 - 4) Большими значениями энергии Ферми.
 - 5) Незначительным превышением потенциальной энергии над кинетической.
- 3. Какие волновые вектора эквивалентны друг другу?
 - 1) Отличающиеся на $2\pi/L$.
 - 2) Отличающиеся на $2\pi/a$
 - 3) Максимальный и минимальный вектора.
 - 4) Отличающиеся на К_F
 - 5) Отличающиеся на $2\pi/\lambda$.
- 4. Чем обусловлена температурная зависимость электросопротивления металлов?
 - 1) Изменением вкладов рассеяния на дефектах при изменении температуры.
 - 2) Изменением амплитуды колебаний с температурой.
 - 3) Изменением ангармонизма колебаний с температурой.
 - 4) Изменением частоты колебаний атомов.
 - 5) Возрастанием числа статических дефектов решетки с температурой.
 - 5. В каком случае закон дисперсии для электрона непрерывен?
 - 1) Электрон в металле.
 - 2) Электрон в роле периодического потенциала.
 - 3) Электрон в бесконечном пространстве.
 - 4) Электрон в межатомном пространстве.
 - 5) Электрон осциллирует вблизи иона.
 - 6. Число занятых энергетических состояний для трехвалентного металла:
 - 1) $\frac{1}{2}$ N; 2) N; 3) 2N; 4) $\frac{3}{2}$ N; 5) $\frac{1}{3}$ N.
 - 7. Параметр, определяющий энергию Ферми:
 - 1) Число электронов
 - 2) Валентность металла
 - 3) Размеры кристалла
 - 4) Плотность вещества
 - 5) Концентрация электронов.
- 8. Какие основные упрощения используются при рассмотрении приближения почти свободных электронов?
 - 1) Пренебрегаются потенциалом взаимодействия электрона с ионом.
 - 2) Пренебрегается энергией, необходимой для вырывания электрона из металла.

- 3) Пренебрегается суммарной потенциальной энергией электрона.
- 4) Рассматривается электрон в потенциальной яме.
- 5) Рассматривается движение одного электрона в поле ионов, экранированных остальными электронами.
- 9. Каким параметром определяется зона Бриллюэна?
 - 1) Размером кристалла.
 - 2) Межатомным расстоянием.
 - 3) Импульсом Ферми.
 - 4) Энергией Ферми.
 - 5) Волновым вектором Ферми.

- 1. Каким параметром определяется минимальное и максимальное значения импульса электрона в металле, соответственно
 - 1) Размером кристалла и межатомным расстоянием.
 - 2) Фермиевской скоростью и массой электрона.
 - 3) Размером кристалла и размером атома.
 - 4) Размером атома и размером межатомного расстояния.
 - 5) Массой электрона и фермиевской скоростью.
- 2. Чем обусловлена слабость потенциала взаимодействия электрона с ионом?
 - 1) Экранировкой иона электронами.
 - 2) Явлением, приводящим к фриделевским осцилляциям.
 - 3) Периодичностью потенциала.
 - 4) Большими значениями скорости Ферми электронов.
 - 5) Величиной разности кинетической и потенциальной энергии электрона.
- 3. Почему импульсы электронов в поле периодического потенциала не могут принимать значения выше $2\pi\hbar/a$?
 - 1) Значение импульса ограничено размерами кристалла.
 - 2) Вследствие многозначности импульса.
 - 3) Вследствие периодичности потенциала.
 - 4) Значение импульса ограничено межатомным расстоянием.
 - 5) Вследствие дискретности спектра.
- 4. Отличается ли температурный коэффициент фононного электросопротивления металла в твердом и жидком состояниях?
 - 1) Не отличается.
 - 2) В жидком больше, чем в твердом.
 - 3) В жидком меньше, чем в твердом.
 - 4) Определяется ходом изменения теплоемкости.
 - 5) Определяется ходом изменения теплового расширения.
- 5. Отличается ли закон дисперсии электрона в поле периодического потенциала от закона дисперсии свободного электрона в пределах зоны Бриллюэна?
 - 1) Отличается существенно.
 - 2) Не отличается.
 - 3) Отличается незначительно.
 - 4) Отличается в пределе малых энергий.
 - 5) Отличается в пределе больших энергий.
- 6. Какой объем приходится на разрешенные состояния импульсов в импульсном пространстве?
 - 1) $4/3\pi P_F$; 2) $\pi^2 \hbar^3 / L^3$; 3) $(2\pi/L)^3$; 4) $2\pi \hbar/V$; 5) $(2\pi \hbar/L)^3$.
- 7. Как зависит электросопротивление металлов от силы межатомного взаимодействия?
 - 1) Однозначная прямая пропорциональность.
 - 2) Неоднозначная прямая пропорциональность.
 - 3) Однозначная обратная пропорциональность,

- 4) Неоднозначная обратная пропорциональность.
- 5) Не зависит.
- 8. Чем обусловлена Фриделевские осцилляции?
 - 1) Периодичностью потенциала,
 - 2) Осцилляциями электрона вблизи иона.
 - 3) Корпускулярно-волновым дуализмом свойств электрона.
 - 4) Экранировкой ионов электронами.
 - 5) Интерференцией быстрых электронов в решетке.
- 9. Каков объем сферы Ферми для двухвалентного металла?
 - 1) Больше зоны Бриллюэна в 2 раза.
 - 2) Меньше зоны Бриллюэна в 2 раза.
 - 3) Равен зоне Бриллюэна.
 - 4) Значительно больше зоны Бриллюэна.
 - 5) Значительно меньше зоны Бриллюэна.

- 1. Каким параметром определяется интервал между состояниями энергий электронов?
 - 1) Энергией Ферми.
 - 2) Размером металла.
 - 3) Размерами атомов.
 - 4) Межатомным расстоянием.
 - 5) Плотностью металла.
- 2. О чем гласит теорема Блоха?
 - 1) Волновое уравнение с периодическим потенциалом имеет вид произведения функции плоской волны на функцию, периодическую с периодом решетки.
 - 2) Собственные функции периодические с периодом кристалла имеют вид функции плоской волны на функцию, описывающую периодическим потенциалом.
 - 3) Собственные функции волнового уравнения имеют вид произведения плоской волны на функцию, описывающую периодичность потенциала с периодом решетки.
 - 4) Собственные функции волнового уравнения с периодическим потенциалом имеют вид произведения функции плоской волны на функцию потенциала периодическую в решетке кристалла.
 - 5) Волновое уравнение с периодическим потенциалом имеет вид произведения периодической функции плоской волны на периодическую функцию потенциала.
- 3. Интервал физически значимых волновых векторов:
 - 1) $0 \div K_{F}$.
 - 2) Интервал волновых векторов, отличающихся от $2\pi/L$.
 - 3) Зона Бриллюэна.
 - 4) Зона запрещенных значений энергий.
 - 5) Зона разрешенных значений энергий.
- 4. Что в основном обусловливает рост теплоемкости металлов при высоких температурах?
 - 1) Термическое возбуждение обобществленных электронов.
 - 2) Термическое возбуждения ионов.
 - 3) Термическое возбуждение быстрых электронов.
 - 4) Термическое возбуждение быстрых электронов и ионов.
 - 5) Термическое возбуждение ионов и обобществленных электронов.
- 5. Чем определяется периодичность закона дисперсии энергии электронов в зависимости от импульса?
 - 1) Волновыми свойствами электронов.
 - 2) Многозначностью волновых вектора
 - 3) Принципом Паули.
 - 4) Импульсом Ферми.

- 5) Величиной псевдопотенциала.
- 6. Чему равно число занятых электронами энергетических состояний?

1) ZN/2; 2) 2ZN; 3)ZN; 4)ZNe
$$-\frac{\varepsilon_{R}}{K_{B}T}$$
; 5)Z $Ne^{\frac{\varepsilon_{n}-\varepsilon_{R}}{K_{B}T}}$

- Максимальное значение энергии, которую теряет электрон при взаимодействии с фононом:
- 1) Равно значению энергии Ферми.
- 2) Равно разности значений энергии Ферми и максимальной энергии колебаний атома.
- 3) Равно значению тепловой энергии электрона.
- 4) Равно максимальному значению энергии колебаний иона.
- 5) Равно суммарному значению тепловых энергий электрона и фонона.
- 8. Какие основные упрощения используются при рассмотрении приближения свободных электронов?
 - 1) Пренебрегаются потенциалом взаимодействия электрона с ионом.
 - 2) Пренебрегается энергией, необходимой для вырывания электрона из металла.
 - 3) Пренебрегается суммарной потенциальной энергией электрона.
 - 4) Рассматривается электрон в потенциальной яме.
 - 5) Рассматривается движение одного электрона в поле ионов, экранированных остальными электронами.
- 9. Каким параметром определяется зона Бриллюэна?
 - 1) Размером кристалла.
 - 2) Межатомным расстоянием.
 - 3) Импульсом Ферми.
 - 4) Энергией Ферми.
 - 5) Волновым вектором Ферми.

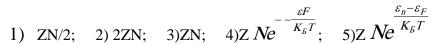
- 1. Почему импульсы электронов в металле принимают дискретные значения?
 - 1) Из-за взаимодействия с ионами.
 - 2) Из-за взаимодействия с поверхностью металла.
 - 3) Из-за ограниченности размеров кристалла.
 - 4) Из-за периодичности потенциала.
 - 5) Из-за проявления волновой природы электронами.
- 2. Чем определяется интервал запрещенных значений энергий электронов?
 - 1) Энергией Ферми.
 - 2) Псевдопотенциалом.
 - 3) Периодом изменения потенциала.
 - 4) Размерами кристалла.
 - 5) Типом связи.
- 3. Чем различаются размеры зоны Бриллюэна различных металлов?
 - 1) Числом энергетических состояний.
 - 2) Числом физически значимых импульсов.
 - 3) Размером решетки.
 - 4) Размером обратной решетки.
 - 5) Размером поверхности Ферми.
- 4. Чем обусловлена теплопроводность металлов?
 - 1) Электронами.
 - 2) Больше электронами, меньше фононами.
 - 3) Меньше электронами, больше фононами.
 - 4) Электронами и фононами в равной мере.
 - 5) Фононами.

- 5. В чем причина разделения энергетического спектра электронов в поле периодического потенциала на разрешенные и запрещенные значения?
 - 1) В различии зарядов ионов и электронов.
 - 2) В сильной подвижности электронов.
 - 3) В многозначности волнового вектора.
 - 4) В дифракции электронов на решетке ионов.
 - 5) В периодичности потенциала.
- 6. В чем основное различие интерпретаций физических свойств металлов в рамках квантовой и классической механик?
 - 1) Числом электронов, формирующих свойств металлов.
 - 2) Величиной подвижности электронов.
 - 3) Разностью величин подвижности электронов и ионов
 - 4) Представлениями о длине свободного пробега.
 - 5) Представлениями об эффективной массе.
- 7. Что из себя представляет металл?
 - 1) Вещество, содержащее совокупность сильносвязанных ионов и относительно свободных электронов, участвующих в проводимости тока.
 - 2) Вещество. Представляющее собой совокупность системы положительно заряженных ионов, образующих кристаллическую решетку (пространственную структуру) и системы сильно подвижных электронов.
 - 3) Совокупность ионов, образующих пространственную структуру и относительно сильно подвижных электронов, наделяющих вещество специфическими свойствами
 - 4) Совокупность системы положительных, малоподвижных ионов, образующих пространственную структуру и системы свободных электронов, участвующих в проводимости тока.
 - 5) Совокупность системы положительных относительно малоподвижных ионов, образующих пространственную структуру (решетку) и системы сильноподвижных электронов, наделяющих вещество специфическими электронными свойствами.
- 8. Основное упрощение при рассмотрении приближения почти свободных электронов:
 - 1) Одноэлектронное приближение.
 - 2) Строгая периодичность потенциала.
 - 3) Адиабатическое приближение.
 - 4) Малость потенциала взаимодействия электрона с ионами.
 - 5) Блоховская функция.
- 9. Что понимается под одномерной зоной Бриллюэна?
 - 1) Интервал, определяемый величиной $2\pi/a$.
 - 2) Интервал, определяемый величиной $\varepsilon_{\rm F}$.
 - 3) Интервал, определяемый величиной $2\pi/L$.
 - 4) Интервал, определяемый величиной k_F.
 - 5) Интервал, определяемый величиной 2πn/L.

- 1. Что является следствием периодичности волновой функции электрона в кристалле?
 - 1) Дискретность энергетического спектра.
 - 2) Многозначность спектра.
 - 3) Квази-непрерывность спектра.
 - 4) Осцилляции электрона вблизи иона.
 - 5) Возникновение зон запрещенных значений.
- 2. К чему приводит ограниченность размеров металла?
 - 1) К верхнему предеулу энергии обобществленных электронов.
 - 2) К дискретности энергетического спектра.
 - 3) К возможности пренебрежения общей потенциальной энергией.

- 4) К рассмотрению поведения электронов в потенциальной яме.
- 5) К возможности пренебрежения периодическим потенциалом.
- 3. Что определяет малость псевдопотенциала?
 - 1) Малость потенциальной энергии взаимодействия электрона с ионом.
 - 2) Экранировка ионов электронами.
 - 3) Малость превышения кинетической энергии под потенциальной.
 - 4) Большие значения энергии Ферми.
 - 5) Незначительность превышения потенциальной энергии над кинетической.
- 4. Чем определяется эквивалентность волновых векторов?
 - 1) Величиной 2π/L
 - 2) Величиной $2\pi/a$.
 - 3) Максимальным и минимальным значениями волнового вектора.
 - 4) Величиной k_F.
 - 5) Величиной $2\pi/\lambda$.
- 5. Температурная зависимость электросопротивления металлов обусловлена:
 - 1) Изменением вкладов рассеяния на дефектах при изменении температуры.
 - 2) Изменением амплитуды колебаний с температурой.
 - 3) Изменением ангармонизма колебаний с температурой.
 - 4) Изменением частоты колебаний атомов.
 - 5) Возрастанием числа статических дефектов решетки с температурой.
- 6. Закон дисперсии для электронов непрерывен, если рассматривается:
 - 1) Электрон в металле.
 - 2) Электрон в поле периодического потенциала.
 - 3) Электрон в бесконечном пространстве.
 - 4) Электрон в межатомном пространстве.
 - 5) Осциллирующий электрон вблизи иона.
- 7. Занятые энергетические состояния двухвалентного металла:
- 1) ½ N; 2) N; 3) 2N; 4) 3/2 N; 8. Что определяет значение энергии Ферми?
 - 1) Число электронов.
 - 2) Валентность металла.
 - 3) Размеры кристалла.
 - 4) Плотность электронов.
 - 5) Концентрация электронов.
- 9. Закон дисперсии вблизи границы зоны Бриллюэна:
 - 1) Такой же, как и в центре зоны.
 - 2) Кривая, описывающая закон дисперсии перпендикулярна границе зоны.
 - 3) Кривая, описывающая закон дисперсии, образует положительный угол с грани-

5) 1/3 N.


- 4) Кривая, описывающая закон дисперсии, образует отрицательный угол.
- 5) Кривая, описывающая закон дисперсии, параллельна границе.

Вариант 6

- 1. Значением какого параметра задается минимальная энергия, которой может обладать электрон в металле?
 - 1) Фермиевской скоростью.
 - 2) Размером кристалла.
 - 3) Размером атома.
 - 4) Массой электрона.
 - 5) Межатомным расстоянием.
- 2. Почему потенциал взаимодействия электрона с ионами в металле оказывается малым?
 - 1) Из-за экранировки иона электронами.

- 2) Из-за фриделевских осцилляций.
- 3) Из-за периодичности потенциала.
- 4) Ввиду больших значений скоростей фермионов.
- 5) Из-за малости разности кинетической и потенциальной энергий электрона.
- 3. Почему волновые вектора электронов в поле периодического потенциала не могут принимать любые значения ниже. $2\pi/L$?
 - 1) Значение импульса ограничено размерами кристалла.
 - 2) Ввиду многозначности импульса.
 - 3) Вследствие периодичности потенциала.
 - 4) Значение импульса ограничено межатомным расстоянием.
 - 5) Из-за дискретности спектра.
- 4. Сферы Ферми трехвалентного металла заполняют:
 - 1) Зону Бриллюэна.
 - 2) Две зоны Бриллюэна.
 - 3) Полторы зоны Бриллюэна.
 - 4) Три зоны Бриллюэна.
 - 5) Половину зоны Бриллюэна.
- 5. Как отличается температурный коэффициент электросопротивления металла в жидком состоянии от температурной зависимости электросопротивленяия в твердом состоянии?
 - 1) Не отличается.
 - 2) В жидком больше, чем в твердом.
 - 3) Определяется ходом изменения теплового расширения.
 - 4) В жидком меньше, чем в твердом.
 - 5) Определяется ходом изменения теплоемкости.
- 6. Как отличается закон дисперсии электрона в поле периодического потенциала от закона дисперсии свободного электрона в пределах зоны Бриллюэна?
 - 1) Отличается незначительно.
 - 2) Отличается существенно.
 - 3) Не отличается.
 - 4) Отличается в пределе больших энергий.
 - 5) Отличается в пределе малых энергий.
- 7. Зависимость электросопротивления от силы межатомного взаимодействия:
 - 1) Однозначная обратная пропорциональность.
 - 2) Однозначная прямая пропорциональность.
 - 3) Неоднозначная прямая пропорциональность.
 - 4) Неоднозначная обратная пропорциональность.
 - Не зависит.
- 8. Какой объем приходится на разрешенное состояние волнового вектора?
 - 1) $2/3 k_{\text{F}}$ 2) $(\pi/L)^3$; 3) $(2\pi/L)^3$; 4) $2\pi/V$; 5) $(2\pi)^3/L$
- 9. Фриделевскейе осцилляции являются результатом:
 - 1) Осцилляций электрона вблизи иона.
 - 2) Интерференцией быстрых электронов в решетке.
 - 3) Корпускулярно-волновым дуализмом свойств электрона.
 - 4) Периодичностью потенциала.
 - 5) Экранировкой ионов электронами.

- 1. Что понимается под интервалом физически значимых волновых векторов?
 - 1) Зона разрешенных значений энергий.
 - 2) Зона Бриллюэна.
 - 3) Зона запрещенных значений энергий.
 - 4) Интервал волновых векторов, отличающихся на $2\pi/a$.
 - 5) $0 \div k_F$.
- 2. Отличается ли характер рассеяния электронов нна тепловых колебаниях атомов в твердом и жидком состояниях металла?
 - 1) Отличается незначительно.
 - 2) Отличается существенно.
 - 3) Не отличается.
 - 4) Зависит от скачка объема при плавлении.
 - 5) Зависит от концентрации электронов в твердом и жидком состояниях.
- 3. Каким параметром определяется кратность импульса электрона в металле?
 - 1) Энергией Ферми.
 - 2) Размером металлического образца.
 - 3) Размером атомов.
 - 4) Межатомным расстоянием.
 - 5) Плотностью металла.
- 4. Теорема Блоха:
 - 1) Волновое уравнение с периодическим потенциалом имеет вид произведения функции плоской волны на функцию периодическую с периодом решетки.
 - Собственные функции волнового уравнения с периодическим потенциалом имеют вид произведения функции плоской волны на функцию потенциала периодическую в решетке кристалла.
 - 3) Собственные функции периодические с периодом кристалла имеют вид функции плоской волны на функцию, описывающую периодический потенциал.
 - 4) Собственные функции волнового уравнения имеют вид произведения плоской волны на функцию, описывающую периодичность потенциала кристалла.
 - 5) Волновое уравнение с периодическим потенциалом имеет вид произведения периодической функции плоской волны на периодическую функцию потенциала.
- 5. Параметр, определяющий зону Бриллюэна:
 - 1) Энергия Ферми.
 - 2) Межатомное расстояние.
 - 3) Размер кристалла.
 - 4) Импульс Ферми.
 - 5) Волновой вектор Ферми.
- 6. Чему обязана периодичность закона дисперсии электронов в зависимости от импульса?
 - 1) Многозначности волнового вектора.
 - 2) Принципу Паули.
 - 3) Волновым свойствам электронов.
 - 4) Импульсу Ферми.
 - 5) Величине псевдопотенциала.
- 7. Чем определяется число занятых энергетических состояний?

- 8. Предельная энергия, теряемая электроном при взаимодействии с фононом равна:
 - 1) Максимальной энергии Ферми.
 - 2) Максимальному значению энергии колебаний ионов.
 - 3) Значению тепловой энергии электрона.
 - 4) Разности значений энергии Ферми и максимальной энергии атома.
 - 5) Суммарной тепловой энергии электрона и фонона.
- 9. Упрощения, используемые при рассмотрении приближения свободных электронов:
 - 1) Рассматривается электрон в потенциальной яме.
 - 2) Пренебрегают потенциалом взаимодействия электрона с ионом.
 - 3) Пренебрегают энергией, необходимой для вырывания электрона из металла.
 - 4) Пренебрегают суммарной потенциальной энергией электрона.
 - 5) Рассматривается движение электрона в поле ионов, экранированных остальными электронами.

Вариант 8

- 1. Прочему импульсы электронов в металле не могут принимать любые значения?
 - 1) Из-за взаимодействия с ионами.
 - 2) Из-за взаимодействия с поверхностью металла.
 - 3) Из-за периодичности потенциала.
 - 4) Из-за ограниченности размеров кристалла.
 - 5) Из-за проявления волновой природы электронами.
- 2. Интервал запрещенных значений энергий определяется:
 - 1) Энергией Ферми.
 - 2) Периодом изменения потенциала.
 - 3) Типом связи.
 - 4) Псевдопотенциалом.
 - 5) Размером кристалла.
- 3. Размеры зоны Бриллюэна определяется:
 - 1) Числом энергетических состояний.
 - 2) Числом физически значимых импульсов.
 - 3) Размером обратной решетки.
 - 4) Размером прямой решетки.
 - 5) Размером поверхности Ферми.
- 4. Теплопроводность металлов определяется:
 - 1) Электронами.
 - 2) Меньше электронами, больше фононами.
 - 3) Больше электронами, меньше фононами.
 - 4) Электронами и фононами в равной мере. 5) Фононами.
- 5. Почему энергетический спектр электронов имеет запрещенные значения энергий для электронов?
 - 1) Из-за различия зарядов ионов и электронов.
 - 2) Из-за сильной подвижности электронов.
 - 3) Из-за многозначности волнового вектора.
 - 4) Из-за дифракции электронов на решетке ионов.
 - 5) Из-за периодичности потенциала.

- 6. Чем различаются интерпретации физических свойств металлов в рамках квантовых и классических представлений?
 - 1) Величиной подвижности электронов.
 - 2) Числом электронов, формирующих свойства металлов.
 - 3) Разностью величин подвижности электронов и ионов.
 - 4) Представлениями о длине свободного пробега.
 - 5) Представлениями об эффективной массе.
- 7. Что понимается под зоной Бриллюэна?
 - 1) Интервал, определяемый величиной $\varepsilon_{\rm F}$.
 - 2) Интервал, определяемый величиной $2\pi/a$
 - 3) Интервал, определяемый величиной $2\pi/L$.
 - 4) Интервал, определяемый величиной k_F.
 - 5) Интервал, определяемый величиной P_F.
- 8. Что наделяет металл специфическими электронными свойствами?
 - 1) Свободные электроны.
 - 2) Валентные электроны.
 - 3) Обобществленные электроны.
 - 4) Электроны проводимости.
 - 5) Связанные электроны.
- 9. Какие основные упрощения используются при рассмотрении приближения почти свободных электронов?
 - 1) Малость потенциала взаимодействия электрона с ионом.
 - 2) Блоховская функция.
 - 3) Одноэлектронное приближение.
 - 4) Строгая периодичность потенциала.
 - 5) Адиабатическое приближение.

Правильные ответы на тестовые вопросы к курсу "Электронная структура и свойства металлов"

	k kypey Shekipolilan elpykiypa ii ebonelba metashob								
№ вопроса	1	2	3	4	5	6	7	8	9
вариант									
1	2	3	2	3	3	4	5	2	2
2	1	5	4	3	5	5	3	5	3
3	2	4	3	2	2	1	4	3	2
4	3	2	4	2	4	1	5	4	1
5	2	2	3	2	3	3	2	5	2
6	2	5	1	3	4	4	1	3	2
7	2	3	2	2	2	1	1	2	4
8	4	4	3	3	4	2	2	3	1

2. Примерные вопросы для самостоятельной работы по разделу «Энергетический спектр фононов и тепловые свойства»

- 1. Построение температурной зависимости теплосопротивления германия и кремния в области низких температур от 80 до 300К.
- 2. Расчет теплосопротивления кремния по формуле Лебфрида-Шломана. Сравнение расчетных и экспериментальных данных по теплосопротивлению кремния.
- 3. Сравнение расчетов теплоемкости неметаллов по моделям Дебая и Эйнштейна.

- 4. Расчет характеристического фононного теплосопротивления для ионных и ковалентных соединений. Сравнение со значениями, полученными по эмпирическим данным.
- 5. Расчет характеристического фононного теплосопротивления для соединений с рыхлоупакованной структурой.
- 6. Построение корреляций теплосопротивление термическая деформация для изотропных веществ.
- 7. Построение корреляций теплосопротивление термическая деформация для анизотропных веществ.
- 8. Зависимость теплопроводности неметаллов от размера наночастиц.

Типовые тестовые задания

ВАРИАНТ 1

1. Полная энергия колебаний кристаллической решетки равна:

1) $E=1/4M\omega^2\xi^2$; 2) $E=1/2M\omega^2\xi^2$; 3) $E=M\omega^2\xi^2$; 4) $E=3/2M\omega^2\xi^2$; 5) $E=1/3M\omega^2\xi^2$, где M, ω , ξ - масса, частота и амплитуда колебаний атомов.

2. Как связаны между собой фазовая и групповая скорости для двухатомной цепочки в длинноволновом пределе?

1)
$$v_{rp} = v_{\phi}$$
; 2) $v_{\phi} = \frac{1}{2} v_{rp}$; 3) $v_{\phi} = 2 v_{rp}$; 4) $v_{\phi} = 1/3 v_{rp}$; 5) $v_{\phi} = 3/2 v_{rp}$.

3. Оптические колебания атомов возникают:

- 1) В цепочке, состоящей из атомов 2^x сортов.
- 2) В цепочке, состоящей из атомов 1^{ro} сорта под действием облучения.
- 3) В цепочке, состоящей из атомов 1^{ro} сорта, при температурах выше $T_{\rm D}$.
- 4) В цепочке, состоящей из атомов 1^{го} сорта вблизи температуры плавления.
- 5) В кристалле, подвергнутом деформации сжатия.

4. В теории Дебая частота колебаний:

- 1) Одинакова для всех атомов при любой температуре.
- 2) Меняется от 0 и ограничена ω_D .
- 3) Имеет столько значений, сколько атомов в единице объема вещества.
- 4) Ниже T_D все атомы колеблются с частотой ω_1 , выше T_D с частотой ω_2 .
- 5) Все атомы колеблются с нулевой частотой.

5. Теплоемкость твердых в теории Дебая при низких температурах изменяется пропорционально:

1) $C_v \sim T^2$; 2) $C_v \sim T^4$; 3) $C_v \sim \exp(T_D/T)$; 4) $C_v \sim T^3$; 5) $C_v \sim T$.

6. Коэффициент теплопроводности численно равен:

- 1) Градиенту температуры на образце.
- 2) Количеству теплоты, необходимому для нагревания тела на 1°.
- 3) Количеству теплоты, проходящему через поперечное сечение образца.
- 4) Произведению плотности вещества на теплоемкость.
- 5)Количеству теплоты, проходящему через единичное поперечное сечение образца в единицу времени при градиенте температуры, равном 1.

7. Истинное значение линейного коэффициента теплового расширения равно:

1) $\alpha = \Delta \ell/\ell$; 2) $\alpha = \Delta \ell/(\ell \Delta P)$; 3) $\alpha = da/(adT)$; 4) $\alpha = \Delta \ell/(\ell \Delta T)$; 5) $\alpha = dV/(VdT)$; где а - межатомное расстояние, ℓ - размер образца, T - температура, P - давление.

1. Число возбуждений в кристалле равно:

- 1) Числу атомов в единице объема N:
- 2) 3N; 3) N/2; 4) N/3; 5) N_A/N, где N_A- число Авогадро.

2. Среднее значение скорости звука для изотропных кубических кристаллов равно:

$$1)v_{cp} = 2v_{\perp} + v_{\parallel}; \ 2) \ v_{cp} = (v_{\perp} + v_{\parallel})/2; \ 3) \ v_{cp} = \sqrt{v_{\perp}v_{\parallel}} \ ; \ 4) \ v_{cp} = \sqrt{2v_{\perp}v_{\parallel}} \ ;$$

5)
$$v_{cp} = (2v_{\perp} + v_{\parallel})/3$$
.

3. Максимальная частота колебаний атомов в теории Дебая равна:

1)
$$\omega = v_{3B}(6\pi^2 N/V);$$
 2) $\omega = v_{3B}(6\pi^2 N/V)^{1/2};$ 3) $\omega = v_{3B}(6\pi^2 N/V)^{1/3};$

4)
$$\omega = v_{3R}^2 (6\pi^2 N/V)$$
; 5) $\omega = v_{3R} (6N/V)^{1/3}$;

4. Функция плотности состояний в теории Эйнштейна имеет вид:

1) вертикальной прямой; 2) синусоиды; 3) экспоненты; 4) параболы; 5) гиперболы.

5. Тепловое расширение твердых тел обусловлено:

- 1) Нарастанием числа вакансий.
- 2) Наличием ангармонизма колебаний атомов.
- 3) Существованием параметра квазиупругой связи.
- 4) Наличием градиента температуры в образце.
- 5) Изменением теплоемкости вещества с изменением температуры.

6. Теплоемкость в теории Дебая при высоких температурах $T > T_D$

1)
$$C_p \sim T$$
;

2)
$$C_p \sim T^2$$

1)
$$C_p \sim T$$
; 2) $C_p \sim T^2$; 3) $C_p = const$; 4) $C_p \sim T^{-1}$; 5) $C_p \sim T^3$.

4)
$$C_p \sim T^{-1}$$

5)
$$C_p \sim T^3$$

7. Теплопроводность решетки в области высоких температур меняется по закону:

1)
$$\lambda \sim T^3$$

1)
$$\lambda \sim T^3$$
; 2) $\lambda \sim \exp T_D / T$; 3) $\lambda \sim T^{-1}$; 4) $\lambda \sim T$; 5) $\lambda \sim T^{1/2}$.

3)
$$\lambda \sim T^{-1}$$
;

5)
$$\lambda \sim T^{1/2}$$

ВАРИАНТ 3

1. Что означает условие $\partial \omega / \partial k = 0$?

- 1) В кристалле возбуждены только длинноволновые колебания.
- 2) Соседние атомы колеблются в противофазе.
- 3) Условие затухания упругой волны.
- 4) В кристалле отсутствуют длинноволновые колебания.
- 5) Упругих колебаний нет вообще.

2. Функция плотности состояний $D(\omega) = f(\omega)$ в теории Дебая имеет вид:

- 1) прямой; 2) синусоиды; 3) экспоненты; 4) $D(\omega) \sim \omega^2$; 5) $D(\omega) \sim \omega^3$.
- 3. Центр масс длинноволновых оптических мод:
- 1) Смещается в сторону тяжелого атома.
- 2) Смещается в сторону легкого атома.
- 3) Смещается вместе с атомами элементарной ячейки.
- 4) Изменяет свое положение по закону синуса.
- 5) Изменяет свое положение случайным образом.

4. Теплоемкости при постоянном давлении и объеме связаны соотношением:

1)
$$C_p = C_v(1 + \gamma \beta T)$$
; 2) $C_p = C_v(1 + \gamma \beta T)^{-1}$; 3) $C_p = C_v$;

4)
$$Cp = C_v \gamma$$
; 5) $C_p = C_v / \gamma$, где γ - параметр Грюнайзена, β - КТР.

5. Микроскопическая теория теплового расширения:

- 1) Не описывает ход температурной зависимости КТР при $T > T_D$.
- 2) Описывает ход температурной зависимости приT< T_D.
- 3) Не описывает ход температурной зависимости КТР.
- 4) Описывает температурную зависимость КТР от ~0К до Тпл.
- 5) Описывает зависимость КТР от давления.

6. Чему равен дебаевский волновой вектор кремния, если его атомная плотность равна $5\cdot 10^{28}$ м $^{-3}$?

1) $1,43 \cdot 10^{10} \text{ m}^{-1}$; 2) $5,0 \cdot 10^{8} \text{ m}^{-1}$; 3) $4,3 \cdot 10^{9} \text{ m}^{-1}$; 4) $2,5 \cdot 10^{-10} \text{ m}^{-1}$; 5) $3 \cdot 10^{-1} \text{ m}^{-1}$;

7. Закон Фурье записывается в виде:

1) $\alpha = L^2/\tau$; 2) $Q/s\tau = -\lambda$ grad T; 3) $Q/s = \lambda$ grad T; 4) $\lambda = 1/3C_v\upsilon l$; 5) $Q/s\tau = -T$ grad λ . Где α - температуропроводность, λ - теплопроводность, υ - скорость звука, τ - время, s- площадь сечения, L- длина образца, Q- количество теплоты.

ВАРИАНТ 4

1. Максимальное значение волнового вектора равно:

1) $2\pi/L$; 2) π/L ; 3) $\pm 2\pi/\alpha_0$; 4) $\pm \pi/\alpha_0$; 5) $\pm 3/2\pi/\alpha_0$, где L - длина образца, α - межатомное расстояние.

2. Какие волны не переносят энергию?

1) Бегущие; 2) Стоячие; 3) Продольные; 4) Короткие; 5) Длинные.

3. Температура Дебая - это:

- 1) Температура, при которой поляризуемость диэлектриков обращается в 0.
- 2) Половина температуры плавления.
- 3) Температура перехода вещества в сверхпроводящее состояние.
- 4) Температура, при которой снимается "вырождение" электронного газа.
- 5) Температура, при которой возбуждаются колебания со всевозможными частотами от ω_{min} до ω_{max} .

4. Параметр Грюнайзена показывает:

- 1) Относительное изменение температуры при относительном изменении давления.
- 2) Относительное изменение объема при относительном изменении давления.
- 3) Относительное сжатие тела при относительном растяжении.
- 4) Относительное изменение частоты колебаний при относительном изменении объема.
- 5) Изменение энтропии с температурой при постоянном объеме.

5. Функция спектральной плотности состояний в теории Дебая D(ω) определяет:

- 1) Плотность заполнения спектрального участка отω до ω+dω.
- 2) Определяет среднее число возбужденных квантов.
- 3) Вероятность того, что колебания с частотой ω_i имеет энергию ϵ_i
- 4) Среднее значение энергии осцилляторов при некоторой температуре.
- 5) Концентрацию фононов при данной температуре.

6. Теплоемкость в теории Эйнштейна при низких температурах пропорциональна:

1) $C_V \sim T$; 2) $C_V \sim T^3$; 3) $C_V \sim T^4$; 4) $C_V \sim \exp-hv/k_B T$; 5) $C_V \sim (T/T_2)^2$.

7. Теплосопротивление - это:

- 1) Величина, обратная теплопроводности.
- 2) Произведение электросопротивления на температуру.
- 3) Относительное изменение размеров тела при изменении температуры.
- 4) Скорость распространения изотермических поверхностей по кристаллу.
- 5) Величина, численно равная перепаду температур на концах образца.

1. Чему равен импульс фонона?

1) $P = \hbar k$; 2)P = hv; 3)P = KT; 4) $P = 2\pi/\lambda$; 5) $P = \omega/K$.

2. Частота колебаний одноатомной цепочки сверху ограниченна значением:

1)
$$\omega = 2\sqrt{\frac{\beta}{m}} \sin \frac{k\alpha}{2}$$
; 2) $\omega = 2\sqrt{\frac{\beta}{m}} \sin k\alpha$; 3) $\omega = 2\sqrt{\frac{\beta}{m}}$;

4)
$$\omega = 2\sqrt{\frac{\beta}{m+M}}$$
; 5) $\omega = \alpha \left(\sqrt{\frac{\beta}{m}}\right)k$

3. В каком интервале расположены все физически значимые волновые вектора:

- 1) от π /Lдо + π /L; 2) от π /Lдо 0; 3) от 0 до π /L; 4) от π /Lдо π / α ;
- 5) от $-\pi/\alpha$ до $+\pi/\alpha$. Где α межатомное расстояние, L- длина образца.

4. Физический смысл постоянной Больцмана в том, что это

- 1) Количество теплоты, необходимое для нагревания 1 кг вещества на 1 К.
- 2) Количество теплоты, необходимое для изменения температуры 1 моля вещества на 1К.
- 3) Количество теплоты, необходимое для изменения температуры 1 м³ вещества на 1 К.
- 4) Теплоемкость, приходящая на 1 атом.
- 5) Количество тепловой энергии, приходящееся на 1 степень свободы атома при изменении температуры системы на 1 К.

5. Из микроскопической теории теплового расширения следует, что

- 1) $\beta \sim T^2$ во всем интервале температур; 2) β не зависит от температуры;
- 3) $\beta \sim T^{-1}$; 4) $\beta \sim T^{3}$; 5) $\beta \sim \exp T$.

6. Что означает тот факт, что в длинноволновом пределе массы 2-х атомов заменяются их среднеарифметическим значением?

- 1) Решетка обладает свойствами сплошного тела при распространении длинных волн.
- 2) Массы атомов мало отличаются друг от друга.
- 3) Частота колебаний не зависит от номера атома.
- 4) Отсутствие оптических мод колебаний.
- 5) Центр масс атомов неподвижен.

7. Решеточная теплопроводность в области низких температур пропорциональна:

1)
$$\lambda \sim T^2$$
; 2) $\lambda \sim T^{-1}$; 3) $\lambda \sim T^3$; 4) $\lambda \sim T$; 5) $\lambda \sim T^3 \exp{-T_D/T}$.

Правильные ответы на тестовые вопросы по теме «Энергетический спектр фононов и тепловые свойства».

Вопрос	1	2	3	4	5	6	7
вариант							
1	2	1	1	2	4	5	3
2	2	5	3	1	2	3	3
3	2	4	3	1	3	1	2
4	4	2	5	4	1	4	1
5	1	3	5	5	2	1	5

7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Примерная оценка по 100 бальной шкале форм текущего и промежуточного контроля

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Лекции - Текущий контроль включает:

•	посещение занятий	10 бал.
•	активное участие на лекциях	15бал.
•	устный опрос, тестирование, коллоквиум	60бал.
•	и др. (доклады, рефераты)	15 бал.

Практика (р/з) - Текущий контроль включает:

	(от 51 и выше	- зачет)
•	посещение занятий	10 бал.
•	активное участие на практических занятиях	15 бал.
•	выполнение домашних работ	15 бал.
•	выполнение самостоятельных работ	20 бал.
•	выполнение контрольных работ	40бал.

Эти критерии носят в основном ориентировочный характер. Если в билете имеются задачи, они могут быть более четкими.

Шкала диапазона для перевода рейтингового балла в «5»-бальную систему:

- <0-50> баллов неудовлетворительно
- «51 65» баллов удовлетворительно
- «66 85» баллов хорошо
- «86 100» баллов отлично
- «51 и выше» баллов зачет

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

Литература

а) Основная литература

- 1. **Брандт** Н.Б., Чудинов С.М. Экспериментальные методы исследования энергетических спектров электронов и фононов в металлах.- М.: МГУ.- 1990. 330 с.
- 2. Займан Дж. Принципы теории твердого тела.- М.: Мир.- 1974.
- 3. Киттель Ч. Введение в физику твердого тела.- М.: Наука.- 1978. 769 с.
- 4. Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1985.
- 5. Кациельсон А.А. Введение в физику твердого тела.- М.: Изд-во МГУ, 1984.
- 6. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. М.: Наука, 1964. 583 с. .
- 7. Новикова С.И. Тепловое расширение твердых тел. М.: Наука, 1974.292 с.

Дополнительная литература

- 1. Палчаев Д.К., Мурлиева Ж.Х., Палчаева Х.С. Тепловые свойства твердых тел: Методическая разработка к лабораторным работам. Махачкала, 2003.
- 2. Палчаев Д.К., Мурлиева Ж.Х. Энергетический спектр фононов и тепловые свойства твердых тел. Учебное пособие. Махачкала: ИПЦ ДГУ, 2014. 81 с.
- 3. Палчаев Д.К., Мурлиева Ж.Х., Гаджимагомедов С.Х., Исхаков М.Э. Электронная структура и свойства металлических проводников/ Учебное пособие. Махачкала: ИПЦ ДГУ, 2016. 115с.
- 4. Мясникова А.Э. Электрон-фононные системы со спонтанным нарушением трансляционной симметрии [Электронный ресурс] : монография / А.Э. Мясникова. Элек-

- трон. текстовые данные. Ростов-на-Дону: Южный федеральный университет, 2010. 240 с. 978-5-9275-0741-2. Режим доступа: http://www.iprbookshop.ru/47201.html
- 5. Кудинов В.А. Теплопроводность и термоупругость в многослойных конструкциях [Электронный ресурс]: учебное пособие / В.А. Кудинов, Б.В. Аверин, Е.В. Стефанюк. Электрон. текстовые данные. М.: Высшая школа, 2008. 305 с. 978-5-06-005942-7. Режим доступа: http://www.iprbookshop.ru/21361.html
- 9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.
- 1. Международная база данных Scopus по разделу физика полупроводников http://www.scopus.com/home.url
- 2. Научные журналы и обзоры издательства Elsevier по тематике физика полупроводников http://www.sciencedirect.com/
- 3. Ресурсы Российской электронной библиотеки www.elibrary.ru, включая научные обзоры журнала Успехи физических наук www.ufn.ru
- 4. Региональный ресурсный Центр образовательных ресурсов http://rrc.dgu.ru/
- 5. Электронные ресурсы Издательства «Лань» http://e.lanbook.com/
- 6. Ресурсы МГУ <u>www.nanometer.ru</u>.
- 7. Методы получения наноразмерных материалов/ курс лекций и руководство к лабораторным занятиям. Екатеринбург. 2007.
- 8. http://www.chem.spbu.ru/chem/Programs/Bak/ultradisp_sost_SS.pdf
- 9. Федеральный портал «Российское образование» http://www.edu.ru/.
- 10. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
- 11. Теоретические сведения по физике и подробные решения демонстрационных вариантов тестовых заданий, представленных на сайте Росаккредагентства (http://www.fepo.ru/)
- 12. http://www.nanometer.ru/lecture.html?id=165151&UP=156195&TP=USER

Интернет-ресурсы

Даггосуниверситет имеет доступ к комплектам библиотечного фонда основных отечественных и зарубежных академических и отраслевых журналов по профилю подготовки магистра по направлению 03.04.02 – физика:

- 1. ЭБС IPRbooks: http://www.iprbookshop.ru/ Лицензионный договор № 2693/17от 02.10.2017г. об оказании услуг по предоставлению доступа. Доступ открыт с с 02.10.2017 г. до 02.10.2018 по подписке (доступ будет продлен)
- 2. Электронно-библиотечная сист*ема* «Университетская библиотека онлайн» <u>www.biblioclub.ru</u> договор № 55_02/16 от 30.03.2016 г. об оказании информационных услуг. (доступ продлен до сентября 2019 года).
- 3. Доступ к электронной библиотеки на http://elibrary.ru основании лицензионного соглашения между ФГБОУ ВПО ДГУ и «ООО» «Научная Электронная библиотека» от 15.10.2003. (Раз в 5 лет обновляется лицензионное соглашение).
- 4. Национальная электронная библиотека https://нэб.рф/. Договор №101/НЭБ/101/НЭБ/1597 от 1.08.2017г. Договор действует в течении 1 года с момента его подписания (доступ будет продлен).
- 5. Федеральный портал «Российское образование» http://www.edu.ru/ (единое окно доступа к образовательным ресурсам).
- 6. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/

- 7. Российский портал «Открытого образования» http://www.openet.edu.ru
- 8. Сайт образовательных ресурсов Даггосуниверситета http://edu.icc.dgu.ru
- 9. Информационные ресурсы научной библиотеки Даггосуниверситета http://elib.dgu.ru (доступ через платформу Научной электронной библиотеки elibrary.ru).
- 10. Федеральный центр образовательного законодательства http://www.lexed.ru
- 11. http://www.phys.msu.ru/rus/library/resources-online/ электронные учебные пособия, изданные преподавателями физического факультета МГУ.
- 12. http://www.phys.spbu.ru/library/ электронные учебные пособия, изданные преподавателями физического факультета Санкт-Петербургского госуниверситета.
- 13. Springer. Доступ ДГУ предоставлен согласно договору № 582-13SP подписанный Министерством образования и науки предоставлен по контракту 2017-2018 г.г., подписанный ГПНТБ с организациями-победителями конкурса. http://link.springer.com. Доступ предоставлен на неограниченный срок
- 14. SCOPUS https://www.scopus.com Доступ предоставлен согласно сублицензионному договору №Scopus/73 от 08 августа 2017г. подписанный Министерством образования и науки предоставлен по контракту 2017-2018 г.г., подписанный ГПНТБ с организациями-победителями конкурса. Договор действует с момента подписания по 31.12.2017г. (доступ будет продлен)
- 15. Web of Science webofknowledge.com Доступ предоставлен согласно сублицензионному договору № WoS/280 от 01 апреля 2017г. подписанный Министерством образования и науки предоставлен по контракту 2017-2018 гг., подписанный ГПНТБ с организациями-победителями конкурса Договор действует с момента подписания по 30.03.2017г. (доступ будет продлен)
- 16. «Pro Quest Dissertation Theses Global» (PQDT Global). база данных зарубежных диссертации. Доступ продлен согласно сублицензионному договору № ProQuest/73 от 01 апреля 2017 года http://search.proquest.com/. Договор действует с момента подписания по 31.12.2017г. (доступ будет продлен)
- 17. Sage мультидисциплинарная полнотекстовая база данных. Доступ продлен на основании сублицензионного договора № Sage/73 от 09.01.2017 http://online.sagepub.com/ Договор действует с момента подписания по 31.12.2017г. (доступ будет продлен)
- 18. American Chemical Society. Доступ продлен на основании сублицензионного договора №ACS/73 от 09.01.2017 г. <u>pubs.acs.org</u> Договор действует с момента подписания по 31.12.2017г. (доступ будет продлен)
- 19. Science (академическому журналу The American Association for the Advancement of Science (AAAS) http://www.sciencemag.org/. Доступ продлен на основании сублицензионного договора № 01.08.2017г. Договор действует с момента подписания по 31.12.2017г. (доступ будет продлен)

10. Методические указания для обучающихся по освоению дисциплины. Перечень учебно-методических материалов, предоставляемых студентам во время занятий:

- рабочие тетради студентов;
- наглядные пособия;
- словарь терминов по физике конденсированного состояния;
- тезисы лекций,
- раздаточный материал по тематике лекций.

Самостоятельная работа студентов:

- проработка учебного материала (по конспектам лекций учебной и научной литературе) и подготовка докладов на семинарах и практических занятиях;
- поиск и обзор научных публикаций и электронных источников по тематике дисциплины;
- выполнение курсовых работ;

- написание рефератов;
- работа с тестами и вопросами для самопроверки;

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

- 1. Программное обеспечение для лекций: MS PowerPoint (MS PowerPointViewer), AdobeAcrobatReader, средство просмотра изображений, табличный процессор.
- 2. Программное обеспечение в компьютерный класс: MS PowerPoint (MS PowerPointViewer), AdobeAcrobatReader, средство просмотра изображений, Интернет, E-mail.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Чтение лекций по спецкурсу сопровождается демонстрацией различных наглядных пособий в виде презентаций, рисунков и т.д. При проведении занятий используются компьютерный класс, оснащенный современной компьютерной техникой. Для расчетов и математической обработки результатов используется компьютер с соответствующими программами.

Закрепление теоретического материала и приобретение практических навыков использования аппаратуры для исследования кинетических и равновесных свойств проводится на сертифицированных установках и современном оборудовании отечественных и зарубежных производителей в специализированных лабораториях кафедры.