МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Водородная энергетика

Кафедра <u>«Инженерная физика»</u> факультета <u>физического</u>_

Образовательная программа 13.03.02 «Электроэнергетика и электротехника»

Профиль подготовки _«Нетрадиционные и возобновляемые источники энергии»

Рабочая программа дисциплины составлена в $_2020$ _ году в соответствии с требованиями ФГОС ВО по направлению подготовки (специальности) $_13.03.02$ «Электроэнергетика и электротехника» (уровень $_бакалавриата$) от « $_03$ _» $_09$ 2015 г. № $_955$
Разработчики: - <u>Ниналалов С.А., к. фм. н., доцент кафедры «Инженерная физика»;</u> - <u>Абдулагатова З.З., к.т.н., ст. препод. каф. «Инженерная физика»</u>
Рабочая программа дисциплины одобрена: на заседании кафедры <u>Инженерная физика</u> от «_17» _02 2020 г., протокол № _6 Зав. кафедрой Садыков С.А.
на заседании Методической комиссии _физического_ факультета от «_28_» _022020 г., протокол № _6 Председатель
Рабочая программа дисциплины согласована с учебно-методическим управлением « 02 » 03 2020 г. (подпись)

Аннотация рабочей программы дисциплины

Дисциплина <u>Водородная энергетика</u> входит в <u>вариативную по выбору</u> часть образовательной программы <u>бакалавриата</u> по направлению (специальности) <u>13.03.02 «Электроэнергетика и электротехника»</u>.

Дисциплина реализуется на <u>физическом</u> факультете кафедрой <u>Инженерная</u> физика_.

Содержание дисциплины охватывает круг вопросов, связанных с <u>изучением во-дородных технологий; физических методов извлечения водорода из водородосо-держащих смесей (свойства, хранение, транспортирование); устройств для использования водорода (топливные элементы)</u>.

Дисциплина нацелена на формирование следующих компетенций выпускника: общепрофессиональных - $\underline{O\Pi K-1}$, профессиональных - $\underline{\Pi K-2}$, $\underline{\Pi K-3}$, $\underline{\Pi K-4}$ _.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: <u>лекции, практические занятия, самостоятельная работа студентов</u>.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме_*коллоквиума*_ и промежуточный контроль в форме <u>зачета</u>.

Объем дисциплины $_{2}$ зачетные единицы, в том числе в академических часах по видам учебных занятий

			Форма промежу-						
			точной аттестации						
тр			СРС, в	(зачет, дифферен-					
Семестр	o				из них			том	цированный зачет,
Ce	cer	5 2 Лек- Лабора- Практиче- КСР консуль-						числе	экзамен
	ВС	всег	ции	торные	ские заня-	экза-			
				занятия	мен				
5	72	56	18		38			16	зачет

1. Цели освоения дисциплины

Целями освоения дисциплины (модуля) <u>Водородная энегетика</u> являются изучение водородных технологий и их успехов как одного из направлений развития научно-технического прогресса; физических методов извлечения водорода из водородосодержащих смесей (свойства, хранение, транспортирование); устройств для использования водорода (топливные элементы).

2.Место дисциплины в структуре ОПОП бакалавриата

Дисциплина <u>Водородная энергетика</u> входит в <u>вариативную по выбору</u> часть образовательной программы <u>бакалавриата</u> по направлению (специальности) <u>13.03.02</u> «Электроэнергетика и электротехника».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

плины (переч	ень планируемых результатов	ооучения).
Код компе-	Наименование компетенции	Планируемые результаты обуче-
тенции из	из ФГОС ВО	ния
ΦΓΟС ΒΟ		
ОПК-1	Способность осуществлять	Знает: почему водородной энер-
	поиск, хранение, обработку и	гетике и технологии получения
	анализ информации из различ-	водорода уделяется огромное
	ных источников и баз данных,	внимание; свойства, производ-
	представлять ее в требуемом	ство, хранение (газообразного,
	формате с использованием	жидкого) и транспортировка, ме-
	информационных, компью-	тоды получения водорода.
	терных и сетевых технологий	Умеет : анализировать необхо-
ПК-2	Способность обрабатывать	димую информацию, полученную
	результаты экспериментов	с измерительных приборов, тех-
ПК-3	Способность принимать уча-	нические данные средств измере-
	стие в проектировании объек-	ний.
	тов профессиональной дея-	Владеет: навыками для проведе-
	тельности в соответствии с	ния необходимых расчетов на
	техническим заданием и нор-	установке ЛДК-1 (солнечно-
	мативно-технической доку-	водородная энергетика) по полу-
	ментацией, соблюдая различ-	чению водорода методом элек-
	ные технические, энергоэф-	тролиза из воды.
	фективные и экологические	
	требования	
ПК-4	Способность поводить обос-	
	нование проектных решений	

4. Объем, структура и содержание дисциплины.

- 4.1. Объем дисциплины составляет $_2$ зачетных единиц, $_72$ академических часов.
- 4.2. Структура дисциплины.

№ п/п	Разделы и темы дисциплины	стр	местра	вк ну	лючая с ю работ	бной раб амостоя у студен ость (в ч	ітель- ітов и	ыая работа	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)
		Семестр	Неделя семестра	Лекции	Практические занятия	Лаборатор- ные занятия	Контроль са- мост. раб.	Самостоятельная работа	1 /
	Модуль І. Соврем транспортирование				яние	энерго	етики.	Пол	иучение, свойства и
1	Введение. Современное состояние энергетики	5		1	3			2	Текущий контроль: коллоквиум (5 семестр)
2	Свойства водорода. Потенциал применения водорода	5		1	3			2	Промежуточная аттестация: зачет (5 семестр)
3	Хранение жидко- го и газообразно- го водорода	5		1	3			2	
4	Получение ато-марного водорода	5		1	4			1	
5	Физические методы извлечения водорода из водорода из водородосодержащих смесей: а) низкотемпературная конденсация и фракционирование; б) адсорбционное выделение; в) адсорбционное выделение водорода при помощи жидких растворителей; г) получение водорода электролизом	5		1	4			1	
6	Транспортирова-	5		1	4			1	

	HILA DOTOROTO P								
	ние водорода в								
	химически свя-								
	Занном состоянии			6	21			9	
	Итого по модулю 1:			U	<i>L</i> 1			9	
		ОПИТ	ропі	r L	Ганоп) MIJOTI	те мат	enua	<u> </u>
	энергетики. Наноте								
7	Электролиз воды	5		2	<u>2</u>	ДПОИ ·		1 1	·•
'	с использованием	3		2				1	
	протонных мем-								
	бран для элек-								
	тролизеров (по-								
	лучение водорода								
	и кислорода на								
	установке ЛДК-1								
	«Солнечно-								
	водородная энер-								
	гетика», зарядка								
	топливного эле-								
	мента)								
8	Нанопористые	5		1	2			1	
	материалы для								
	водородной энер-								
	гетики								
9	Портативные	5		1	1			1	
	топливные эле-								
	менты								
10	Производство во-	5		1	2			1	
	дорода								
11	Применение во-	5		1	2			1	
	дорода								
12	Концепция водо-	5		2	2			1	
	родной цивили-								
	зации (три взаи-								
	мозависимых и								
	взаимообуслов-								
	ленных состав-								
	ляющих)				_				
13	Нанотехнологии			1	2				
	в водородной								
	энергетике								
14	Энергия ядерного	5		1	2				
	синтеза для водо-								
	родной энергети-								

	КИ						
15	Солнечные эле-	5	2	2		1	
	менты для водо-						
	родной энергети-						
	ки						
	Итого по модулю		12	17		7	
	2:						
	ИТОГО:		18	38		16	

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине. Основные разделы

Современное состояние энергетики. Свойства водорода. Потенциал применения водорода. Хранение жидкого и газообразного водорода. Получение атомарного водорода. Физические методы извлечения водорода из водородосодержащих смесей (низкотемпературная конденсация и фракционирование; адсорбционное выделение водорода при помощи жидких растворителей; получение водорода электролизом). Транспортирование водорода в химически связанном состоянии. Электролиз воды с использованием протонных мембран для электролизеров (получение водорода и кислорода на установке ЛДК-1 «Солнечно-водородная энергетика», зарядка топливного элемента). Нанопористые материалы для водородной энергетики. Портативные топливные элементы. Производство водорода. Применение водорода. Концепция водородной цивилизации (три взаимозависимых и взаимообусловленных составляющих). Нанотехнологии в водородной энергетике. Энергия ядерного синтеза для водородной энергетики. Солнечные элементы для водородной энергетики.

4.3.2. Содержание лабораторно-практических занятий по дисциплине. Темы практических и/или семинарских занятий

Модуль I. Современное состояние энергетики. Получение, свойства и транспортирование водорода

- Тема 1. Хранение жидкого и газообразного водорода (форма проведения практическое занятие, семинар)
- Тема 2. Получение атомарного водорода (форма проведения практическое занятие, семинар)
- Тема 3. Физические методы извлечения водорода из водородосодержащих смесей (форма проведения практическое занятие, семинар)
- Тема 4. Транспортирование водорода в химически связанном состоянии (форма проведения практическое занятие, семинар)
- Модуль II. Электролиз воды. Нанопористые материалы для водородной энергетики. Нанотехнологии в водородной энергетике
- Тема 5. Электролиз воды с использованием протонных мембран для электролизеров (получение водорода и кислорода на установке ЛДК-1 «Солнечно-

водородная энергетика», зарядка топливного элемента) (форма проведения – практическое занятие, семинар)

- Тема 6. Портативные топливные элементы (форма проведения практическое занятие, семинар)
- Тема 7. Применение водорода (форма проведения практическое занятие, семинар)
- Тема 8. Нанотехнологии в водородной энергетике (форма проведения практическое занятие, семинар)
- Тема 9. Солнечные элементы для водородной энергетики (форма проведения практическое занятие, семинар)

5. Образовательные технологии

При проведении занятий используются компьютерные классы, оснащенные современной компьютерной техникой. При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа проекционным оборудованием и интерактивной доской.

Применяются активные и интерактивные формы проведения занятий (компьютерные симуляции, разбор конкретных ситуаций).

По всему лекционному материалу подготовлен конспект лекций в электронной форме и на бумажном носителе, большая часть теоретического материала излагается с применением слайдов (презентаций) в программе **Power Point**, а также с использованием интерактивных досок.

Учебно-методический комплекс по дисциплине (модулю) размещен на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов реализуется в виде:

- подготовки к контрольным работам;
- подготовки к семинарским занятиям;
- выполнения индивидуальных заданий по основным темам дисциплины;
- написание рефератов по проблемам водородной энергетики.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

Код и наименова-	Код и наиме-	Планируемые резуль-	Процедура освоения
ние компетенции из	нование ин-	таты обучения	
ФГОС ВО	дикатора до-		

	стижения		
	компетенций		
ОПК-1	ROMITOTOTIQUE	Знает: почему водо-	Устный опрос
Способность осу-		родной энергетике и	
ществлять поиск,		технологии получе-	
хранение, обработку		ния водорода уделя-	
и анализ информа-		ется огромное внима-	
ции из различных		ние; свойства, произ-	
источников и баз		водство, хранение	
данных, представ-		(газообразного, жид-	
лять ее в требуемом		кого) и транспорти-	
формате с исполь-		ровка, методы полу-	
зованием информа-		чения водорода.	
ционных, компью-		Умеет : анализиро-	
терных и сетевых		вать необходимую	
технологий		информацию, полу-	
		ченную с измери-	
		тельных приборов,	
		технические данные	
		средств измерений.	
		Владеет: навыками	
		для проведения необ-	
		ходимых расчетов на	
		установке ЛДК-1	
		(солнечно-	
		водородная энергети-ка) по получению во-	
		дорода методом элек-	
		тролиза из воды.	
ПК-2		Знает: почему водо-	Письменный опрос
Способность обра-		родной энергетике и	тиевменный опрос
батывать результа-		технологии получе-	
ты экспериментов		ния водорода уделя-	
		ется огромное внима-	
		ние; свойства, произ-	
		водство, хранение	
		(газообразного, жид-	
		кого) и транспорти-	
		ровка, методы полу-	
		чения водорода.	
		Умеет : анализиро-	
		вать необходимую	
		информацию, полу-	
		ченную с измери-	
		тельных приборов,	

T		
	технические данные	
	средств измерений.	
	Владеть : навыками	
	для проведения необ-	
	ходимых расчетов на	
	установке ЛДК-1	
	(солнечно-	
	водородная энергети-	
	ка) по получению во-	
	дорода методом элек-	
	тролиза из воды.	
ПК-3	<i>Знает</i> : почему водо-	Устный опрос
Способность при-	родной энергетике и	
нимать участие в	технологии получе-	
проектировании	ния водорода уделя-	
объектов профес-	ется огромное внима-	
сиональной дея-	ние; свойства, произ-	
тельности в соот-	водство, хранение	
ветствии с техниче-	(газообразного, жид-	
ским заданием и	кого) и транспорти-	
нормативно-	ровка, методы полу-	
технической доку-	чения водорода.	
ментацией, соблю-	Умеет : анализиро-	
дая различные тех-	вать необходимую	
нические, энер-	информацию, полу-	
гоэффективные и	ченную с измери-	
экологические тре-	тельных приборов,	
бования	технические данные	
	средств измерений.	
	В ладеет: навыками	
	для проведения необ-	
	ходимых расчетов на	
	установке ЛДК-1	
	(солнечно-	
	водородная энергети-	
	ка) по получению во-	
	дорода методом элек-	
	тролиза из воды.	
ПК-4	Знает: почему водо-	Письменный опрос
Способность пово-	родной энергетике и	•
дить обоснование	технологии получе-	
проектных реше-	ния водорода уделя-	
ний	ется огромное внима-	
	ние; свойства, произ-	
	водство, хранение	
<u> </u>	1 /1 / 1	1

(газообразного, жидкого) и транспортировка, методы получения водорода. Умеет: анализиронеобходимую вать информацию, полученную с измериприборов, тельных технические данные средств измерений. Владеет: навыками для проведения необходимых расчетов на установке ЛДК-1 (солнечноводородная энергетика) по получению водорода методом электролиза из воды.

7.2. Типовые контрольные задания

Контрольные вопросы к модулю І

- 1. Какие свойства водорода?
- 2. Каков потенциал применения водорода?
- 3. Как хранить жидкий водород?
- 4. Как хранить газообразный водород?
- 5. Как получить атомарный водород?
- 6. Что такое низкотемпературная конденсация и фракционирование?
- 7. Как осуществляется процесс адсорбционное выделение?
- 8. Получение водорода электролизом воды?
- 9. Нарисуйте схему получения водорода методом электролиза.
- 10. Получение водорода из дешевой растительной биомассы.
- 11. Адсорбционное выделение водорода при помощи жидких растворителей.

Контрольные вопросы к модулю II

- 1. Какую роль играют протонные мембраны для электролизера?
- 2. Какие нанопористые материалы используются для водородной энергетики?
- 3. Где применяется водород?
- 4. Какие существуют концепции водородной цивилизации?

- 5. Можно ли использовать солнечные элементы для водородной энергетики и почему?
- 6. Как используется энергия ядерного синтеза для водородной энергетики?
- 7. Транспортирование водорода в химически связанном состоянии.
- 7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - $_{50}$ % и промежуточного контроля - $_{50}$ %.

Текущий контроль по дисциплине включает:

- посещение занятий _20 баллов,
- участие на практических занятиях _60 баллов,
- выполнение лабораторных заданий баллов,
- выполнение домашних (аудиторных) контрольных работ <u>20</u> баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос <u>_60</u> баллов,
- письменная контрольная работа _30 баллов,
- тестирование <u>10</u> баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

- а) основная литература:
 - 1. Кузык, Б.Н. На пути к водородной энергетике [Текст]: доклад / Б. Н. Кузык; Б. Н. Кузык, В. И. Кушлин, Ю. В. Яковец; Рос. акад. наук. М.: Институт экономических стратегий, 2005. 160 с.
 - 2. Фортов, Владимир Евгеньевич. Энергетика в современном мире [Текст]/ Фортов, Владимир Евгеньевич, О. С. Попель. Долгопрудный : Интеллект, 2011. 167 с.
 - 3. Радченко Р.В. Водород в энергетике [Электронный ресурс] : учебное пособие / Р.В. Радченко, А.С. Мокрушин, В.В. Тюльпа. Электрон. текстовые данные. Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2014. 232 с. 978-5-7996-1316-7. Режим доступа: http://www.iprbookshop.ru/68323.html (дата обращения: 03.10.2018)
- б) дополнительная литература:
 - 1. да Роза, Альдо В. Возобновляемые источники энергии [Текст]: Физикотехнические основы : [учеб. пособие] / да Роза, Альдо В. ; пер. с англ. под ред. С.П.Малышенко, О.С.Попеля. Долгопрудный; М. : Интеллект; ИД МЭИ, 2010. 702 с.
 - 2. Родионов, В.Г. Энергетика [Текст]: проблемы настоящего и возможности будущего / В. Г. Родионов ; Родионов В. Г. М. : ЭНАС, 2010. 344 с.
 - 3. Белоглазов С.М. Электрохимический водород и металлы. Поведение, борьба с охрупчиванием [Электронный ресурс] : монография / С.М. Белоглазов. Электрон. текстовые данные. Калининград: Калининград-

ский государственный университет, 2004. — 324 с. — 5-88874-507-3. — Режим доступа: http://www.iprbookshop.ru/23960.html (дата обращения: 03.10.2018)

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. eLIBRARY.RU[Электронный ресурс]: электронная библиотека / Науч. электрон. б-ка. Москва, 1999 . Режим доступа: http://elibrary.ru/defaultx.asp (дата обращения: 01.09.2018). Яз. рус., англ.
- 2. Moodle[Электронный ресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. Махачкала, г. Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/ (датаобращения: 22.09.2018).
- 3. Электронный каталог НБ ДГУ [Электронный ресурс]: база данных содержит сведения о всех видах лит, поступающих в фонд НБ ДГУ/Дагестанский гос. унт. Махачкала, 2010 Режим доступа: http://elib.dgu.ru, свободный (дата обращения: 21.09.2018).
- 4. ЭБС IPRbooks: http://www.iprbookshop.ru/ Лицензионный договор № 2693/17от 02.10.2017 г. об оказании услуг по предоставлению доступа. Доступ отмерыт с с 02.10.2017 г. до 02.10.2018 по подписке (доступ будет продлен).
- 5. Электронно-библиотечная система «Университетская библиотека онлайн» <u>www.biblioclub.ru</u> договор № 55_02/16 от 30.03.2016 г. об оказании информационных услуг (доступ продлен до сентября 2019 года).
- 6. **Springer.**Доступ ДГУ предоставлен согласно договору № 582-13SP, подписанный Министерством образования и науки, предоставлен по контракту 2017-2018 г.г., подписанному ГПНТБ с организациями-победителями конкурса. http://link.springer.com. Доступ предоставлен на неограниченный срок.
- 7. Сайт образовательных ресурсов Даггосуниверситета http://edu.icc.dgu.ru

10. Методические указания для обучающихся по освоению дисциплины.

Методические указания студентам должны раскрывать рекомендуемый режим и характер учебной работы по изучаемому курсу и практическому применению изученного материала, по выполнению заданий для самостоятельной работы. Методические указания не должны подменять учебную литературу, а должны мотивировать студента к самостоятельной работе.

Перечень учебно-методических изданий, рекомендуемых студентам, для подготовки к занятиям представлен в разделе «Учебно-методическое обеспечение. Литература»

Лекционный курс. Лекция является основной формой обучения в ВУ-Зе. В ходе лекционного курса проводится систематическое изложение современных научных материалов.

Записи должны быть избирательными, своими словами, полностью следует записывать только определения. В конспектах рекомендуется применять сокращения слов, что ускоряет запись. В ходе изучения аккумулирования энергии особое значение имеют материалы и схемы аккумулирования, по-

этому в конспекте лекции рекомендуется делать все схемы, сделанные преподавателем на доске. Вопросы, возникающие у студентов в ходе лекции, рекомендуются задавать после окончания лекции.

Студенту необходимо активно работать с конспектом лекции: после окончания лекции рекомендуется перечитать свои записи, внести поправки и дополнения на полях. Конспекты лекций следует использовать при подготовке к экзамену, контрольным тестам, коллоквиумам, при выполнении самостоятельных заданий, подготовке к семинарским занятиям.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

- 1. Федеральный центр образовательного законодательства. http://www.lexed.ru
- 2. Федеральный портал «Российское образование» http://www.edu.ru/
- 3. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
- 4. База данных электронных библиотечных ресурсов Elsevier http://elsevierscience.ru
- 5. Информационные ресурсы издательства Springer http://www.springerlink.com/journals
- 6. Библиотека Российского фонда фундаментальных исследований (РФФИ) http://rffi.molnet.ru/rffi/ru/lib
- 7. Электронные источники научно-технической информации некоммерческого партнерства «Национальный электронно-информационный консорциум» http://www.neicon.ru
- 8. Ресурсы Университетской информационной системы Россия (УИС Россия) http://uisrussia.msu.ru
- 9. Единое окно доступа к образовательным ресурсам (ИС «Единое окно») http://window.edu.ru

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

При проведении занятий используются компьютерные классы, оснащенные современной компьютерной техникой. При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа проекционным оборудованием и интерактивной доской.