МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Точно решаемые модели в статистической физике

Кафедра Общей и теоретической физики, физического факультета

Образовательная программа

03.04.02 Физика

Профиль подготовки Теоретическая и математическая физика

> Уровень высшего образования *Магистратура*

> > Форма обучения *очная*

Статус дисциплины: вариативная обязательная

Рабочая программа дисциплины «Точно решаемые модели в статистической физике» составлена в 2020 году в соответствии с требованиями ФГОС ВО по направлению подготовки $\underline{03.04.02- «Физика»}$ (уровень магистратура) от « 28 » августа 2015г. № 913 .

Разработчик: <u>кафедра общей и теоретической физики</u> Абдулвагабов Мизафрудин Шахович, к.ф.-м.н., доцент,_____

Рабочая программа дисциплины одобрена:

на заседании кафедры теоретической и математической физики от «21» января 2020г., протокол №5.

Зав. кафедрой

Муртазаев А.К.

на заседании Методической комиссии физического факультета от «27» февраля 2020г., протокол №6

.

Председатель

Мурлиева Ж.Х.

Рабочая программа дисциплины согласована с учебнометодическим управлением «26» марта 2020г.

Ahr

Начальник УМУ

Гасангаджиева А.Г

Аннотация рабочей программы дисциплины

Дисциплина <u>«Точно решаемые модели в статистической физике»</u> входит в вариативную часть обязательные дсциплины образовательной программы магистратуры по направлению 03.04.02 - «Физика» (профиль – Теоретическая и математическая физика).

Дисциплина реализуется на физическом факультете кафедрой общей и теоретической физики.

Содержание дисциплины охватывает круг вопросов, связанных с изучением двумерных решеточных моделей в статистической физике, допускающих аналитическое решение и их приложения к современным задачам.

Дисциплина нацелена на формирование следующих компетенций вып**убиценту**фессиональных - ОПК-6;

профессиональных - ПК-1, ПК-2.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: <u>лекции, практические занятия, самостоятельную работу.</u>

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме <u>текущий контроль в форме опросов и контрольной работы</u> и промежуточный контроль в форме <u>экзамена</u>.

Объем дисциплины 4 зачетные единицы, в том числе в академических часах по видам учебных занятий

Семе			Форма						
стр									промежуточной
		аттестации (зачет,							
	Ъ	Контактная работа обучающихся с преподавателем СРС, в							дифференцированн ый зачет, экзамен
	Всего	Всего			том числе				
			Лекции	Лабораторн	Практичес	КСР	консульта	экзаме	
				ые занятия	кие		ции	Н	
					занятия				
1	144	34	16	-	18	-	-	110	Экзамен

1. Цели освоения дисциплины

Целями освоения дисциплины «Точно решаемые модели в статистической механике» являются изучение двумерных решеточных моделей в статистической физике, допускающих аналитическое решение и их приложения к современным задачам.

2. Место дисциплины в структуре ОПОП магистратуры

Дисциплина входит в вариативную часть образовательной программы магистратуры по направлению 03.04.02 - «Физика» (профиль – Теоретическая и математическая физика).

Студенты, проходящие специализацию по кафедре общей и теоретической физики должны иметь базовые знания о точно решаемых методах в теоретической физике. Для освоения дисциплины необходимы знания дисциплин: математический дифференциальные уравнения, анализ, дифференциальная геометрия и топология, электродинамика и квантовая теория, статистическая физика. Освоение дисциплины позволит в дальнейшем изучать курсы естественнонаучного цикла, спецкурсы по выбору студента. Данная дисциплина призвана выработать профессиональные компетенции, связанные со способностью использовать теоретические знания в области квантовой механики, статистической физики, теория поля, классической электродинамики решения конкретных точно решаемых задач статистической физики.

Данная дисциплина является одной из основных в подготовке студентов по направлению «Физика» и по профилю «Теоретическая и математическая физика».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

КОД компетенции из ФГОС ВО	Наименование компетенции из ФГОС ВО	Планируемые результаты обучения
----------------------------------	-------------------------------------	---------------------------------

ОПК-6	способность использовать знания современных проблем и новейших достижений физики в научно-исследовательской работе.	 Знать: новейшие достижения науки и техники и существующие проблемы в науке. Уметь: грамотно решать практически и теоретически важные, актуальные задачи, в том числе возникающие на стыках различных научных направлений. Владеть: навыками решения и исследования конкретных физических задач с использованием высшей математики и методами теоретической физики.
ПК-1	способность самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего отечественного и зарубежного опыта.	 физические явления и основные законы природы рассматриваемых задач научных исследований назначений и принципы действия важнейших современных приборов для решений этих задач. Уметь: объяснять наблюдаемые природные явления и решать с помощью информационных технологий; использовать методы адекватного физического и математического моделирования. Владеть навыками: использования основных общефизических законов и принципов в важнейших практических приложениях; применения основных методов физикоматематического анализа для решения естественнонаучных задач; правильной эксплуатации основных приборов и оборудования современной физической лабораторий; использования методов физического моделирования в инженерной практике.

	способности	3нать:
ПК-2	способность свободно владеть разделами физики, необходимыми для решения научно- инновационных задач, и применять результаты научных исследований в инновационной деятельности.	природы для решения научно- инновационных задач. Уметь: • применять результаты научных исследований в инновационной деятельности. Владеть навыками: • использования основных общефизических законов и принципов в инновационной деятельности; • применения основных методов физикоматематического анализа для решения научно-инновационных задач.

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет 4 зачетные единицы, 144 академических часа.

4.2. Структура дисциплины.

п/1		Семестр	семестра	работ самос работ и труд	ы учебы, вкл тоятел ту студо цоемко часах)	юча выну енто	ая /ю ОВ	г. работа	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточно й аттестации (по семестрам)		
№ п/п	Раздел дисциплины		Неделя с	Лекции	Практические занятия	Лабораторны	Контроль	Самостоят.	Форма промежуточно й аттестации (по		
	Модуль 1. Основ	ы	стат	гистиче	ской м	exai	ІИКИ	ī.			
1.	Статистическое распределение. Статистическая независимость. Теорема Лиувиля. Статистическая матрица.	1		2	2			12	опрос		
2.	Распределение Гиббса. Распределение Максвелла.			2	4			14	опрос		

	Распределение вероятностей для осциллятора. Свободная энергия в распределении Гиббса.							
	Итого по модулю 1			4	6		26	контрольная работа
	Модуль 2. Од	(HO	мері	ная мод	ель Из	инга.		
1.	Обобщенная модель Изинга. Модель Изинга с взаимодействием между ближайшими соседями.			2	2		8	опрос
2.	Свободная энергия и намагниченность. Корреляция. Критическое поведение вблизи T=0	1		2	2		8	опрос
3.	Модель среднего поля. Термодинамические свойства. Фазовый переход. Свойства при H=0 и критические показатели			2	2		8	опрос
Итого по модулю 2				6	6		24	контрольная работа
	Модуль 3. Модуль Изинга на	a pe	еше	гке Бет	е и на к	вадрат	гной реш	етке.
1.	Решетка Бете. Рекуррентные соотношения для намагниченности в центральной точке. Сферическая модель. Формулировка модели. Свободная энергия в сферической модели.	1		2	2		8	опрос
2.	Уравнение состояния и внутренняя энергия.			2	2		8	опрос
3.	Трансфер-матрицы V,W. Два важных свойства матриц V и W. Соотношения симметрии.			2	2		8	опрос
	Итого по модулю 3			6	6		24	коллоквиум
N	Иодуль 4. Подготовка к экзамену		36	4.5	40		-	экзамен
	ОТОТИ			16	18		74	

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине.

Модуль 1. Основы статистической механики.

Статистическое распределение. Статистическая независимость. Теорема Лиувиля. Распределение вероятности для осциллятора. Метод средних значений. Свободная энергия и термодинамический потенциал. Распределение Гиббса. Свободная энергия в распределении Гиббса. Статистическая сумма. Статистическая матрица

Модуль 2. Одномерная модель Изинга.

Обобщенная модель Изинга. Модель Изинга с взаимодействием между ближайшими соседями. Обобщенная модель Изинга. Модель Изинга с взаимодействием между ближайшими соседями. Модель среднего поля. Термодинамические свойства. Фазовый переход. Свойства при H=0 и критические показатели. Фазовый переход и критические точки. Универсальность. Гипотеза подобия (скейлинга).

Модуль 3. Модели Изинга на решетке Бете на квадратной решетке.

Решетка Бете. Размерность. Рекуррентные соотношения для намагниченности в центральной точке. Сферическая модель. Формулировка модели. Свободная энергия в сферической модели. Уравнение состояния и внутренняя энергия. Соотношение дуальности для модели Изинга на свободной решетке. Взаимная дуальность шестиугольной и треугольной решеток. Соотношение звездатреугольник. Трансфер-матрицы V,W. Два важных свойства матриц V и W.

4.3.2. Содержание лабораторно-практических занятий по дисциплине.

Модуль 1. Основы статистической механики.						
Название темы	Содержание темы	Объем в часах				
	Статистическое распределение. Статистическая независимость.	2				
Основные принципы	Свободная энергия и термодинамический потенциал. Статистическая сумма.	2				
статистики.	Среднее термодинамическое значение. Соотношения между производными термодинамических величин.	2				
	Модуль 2. Одномерная модель Изинга.					
Точно решаемые	Приближенные методы. Точно решаемые модели.	2				
модели	Фазовые переходы и критические точки. Гипотеза подобия (скейлинга)	2				
Обобщенная модель Изинга.	Свободная энергия и теплоемкость. Средняя квадратичная флуктуация. Намагниченность Корреляции.	2				
Модуль 3. Модели Изинга на решетке Бете на квадратной реше						
Одномерная модель Изинга.	Свободная энергия и намагниченность. Трансфер - матрицы, свойства. Корреляции. Термодинамические свойства в модели	2				

		среднего поля			
		Решетка Бете. Своб	ансфер -	2	
Модель Изинга	на	матрицы V,W.	222712112111	779	
решетке Бете		Рекуррентные	соотношения	для	_
pemerne zere		намагниченности	центральной	точки.	2
		Формулировка сфер			

5. Образовательные технологии

В течение семестра студенты посещают лекции, решают задачи, указанные преподавателем, к каждому семинару. В семестре проводятся контрольные работы (на семинарах). Аттестация проводится после решения всех задач контрольных работ, выполнения домашних и самостоятельных работ.

При проведении занятий используются компьютерные классы, оснащенные современной компьютерной техникой. При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа проекционным оборудованием и интерактивной доской.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

В рамках учебного процесса предусмотрено приглашение для чтения лекций ведущих ученых из центральных вузов и академических институтов России.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов:

- проработка учебного материала (по конспектам лекций учебной и научной литературе) и подготовка докладов на семинарах и практических занятиях:
 - написание рефератов;
 - работа с тестами и вопросами для самопроверки;
 - решение некоторых задач с применением компьютера.

Разделы и темы для самостоятельного	Виды и содержание самостоятельной работы			
Статистическое распределение	Статистическое распределение. Статистическая матрица. Метод средних значений. Проблема N-частиц. Квантовое распределение вероятности.			
Фазовые переходы и критические точки	Фазовые переходы и критические точки. Намагниченность. Магнитная восприимчивость.			

Обобщенная модель Изинга	Решеточный газ. Уравнение Ван- Дер Вальса и классические показатели .Критическое уравнение состояния. Модель среднего поля для решеточного газа.
Дуальность и преобразования звездатреугольник плоских моделей Изинга.	Соотношение дуальности для модели Изинга на квадратной решетке. Взаимная дуальность шестиугольной и треугольной решеток. Соотношение звезда-треугольник. Самодуальность треугольной решетки. Соотношения симметрии

Результаты самостоятельной работы учитываются при аттестации магистранта (экзамен). При этом проводятся: тестирование, опрос на практических занятиях, заслушиваются доклады, проверка контрольных работ и т.д.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

Код и наименование компетенции из ФГОС ВО	Наименование компетенции из ФГОС	Планируемые результаты обучения	Процедура освоения
ОПК-6	способность использовать знания современных проблем и новейших достижений физики в научно-исследовательс кой работе.	 Знать: новейшие достижения науки и техники и существующие проблемы в науке. Уметь: грамотно решать практически и теоретически важные, актуальные задачи, в том числе возникающие на стыках различных направлений. Владеть: навыками решения и 	Письменн ый опрос, разноуров невые задачи и задания

ПК-1	способность самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использование м новейшего отечественного и зарубежного опыта.	математики и методами теоретической физики. Знать: физические явления и основные законы природы рассматриваемых задач научных исследований назначений и принципы действия важнейших современных приборов для решений этих задач. Уметь: объяснять наблюдаемые природные явления и решать с помощью информационных технологий; использовать методы адекватного физического и математического моделирования. Владеть навыками: использования основных общефизических законов и принципов в важнейших практических приложениях; применения основных методов физикоматематического анализа для решения естественнонаучных задач; правильной эксплуатации основных приборов и оборудования современной физического моделирования в инженерной практике. Знать:	Письменн ый опрос, разноуров невые задачи и задания, круглый стол
1 11K-2	способность свободно	Знать: • физические явления и	Письменн ый опрос,

владеть разделами физики, необходимыми для решения научно-инновационны х задач, и применять результаты научных исследований в инновационной деятельности.	основные законы природы для решения научно-инновационных задач. Уметь: • применять результаты научных исследований в инновационной деятельности. Владеть навыками: • использования основных общефизических законов и принципов в инновационной деятельности; • применения основных методов физикоматематического анализа для решения научно-инновационных задач.	разноуров невые задачи и задания
---	---	---

7.2. Типовые контрольные задания

7.2.1. Перечень работ по спецпрактикуму.

- 1. Фазовые переходы и критические точки. Гипотеза подобия (Скейлига).
- 2. Термодинамические функции. Статистическая сумма.
- 3. Модель жидкости. Решеточный газ.
- 4. Уравнение Ван Дер Вальса и классические показатели.
- 5. Одномерная модель Изинга. Свободная энергия и намагниченность.
- 6. Одномерная модель Изинга. Корреляции.
- 7. Критическое поведение вблизи абсолютного нуля корреляционной длины.
- 8. Модель среднего поля. Термодинамические свойства.
- 9. Модель среднего поля. Фазовый переход.
- 10. Свойства при нулевой напряженности магнитного поля и критические показатели. Спонтанная намагниченность.
- 11. Критическое уравнение состояния.
- 12. Модель среднего поля для решеточного газа.
- 13. Намагниченность как функция напряженности магнитного поля в модели Изинга на решетке Бете.
- 14. Расчет свободной энергии в модели Изинга на решетке Бете.

7.2.2. Тематика курсовых и контрольных работ.

- 1. Статистическое распределение.
- 2. Метод средних значений.
- 3. Статистические суммы.
- 4. Проблема п частиц.
- 5. Обобщенная модель Изинга.
- 6. Модель среднего поля.
- 7. Модель Изинга на решетке Бете.
- 8. Свободная энергия в модели Изинга на решетке Бете.
- 9. Сферическая модель.
- 10. Дуальность и преобразование звезда-треугольник плоских моделей Изинга.
- 11. Трансфер-матрицы V,W.
- 12. Модель Изинга на квадратной решетке.

7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

Лекции

•	посещение занятий	 10 баллов,
•	активное участие на лекциях	– 15 баллов,
•	устный опрос, тестирование, коллоквиум	– 60 баллов,
•	и др. (выполнение домашних работ, доклады, рефераты)	15 баллов.

Практические занятия

•	посещение занятий	– 10 баллов,
•	активное участие на практических занятиях	– 15 баллов,
•	выполнение домашних работ	– 15 баллов,
•	выполнение самостоятельных работ	20 баллов,
•	выполнение контрольных работ	– 40 баллов.

Промежуточный контроль по дисциплине включает:

• устный опрос	– 60 баллов,
• письменная контрольная работа	30 баллов,
• тестирование	10 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

а) основная литература:

- 1. Березин Ф.А. Лекции по статистической физике [Электронный ресурс] / Ф.А. Березин. Электрон. текстовые данные. Москва, Ижевск: Регулярная и хаотическая динамика, Ижевский институт компьютерных исследований, 2002. 192 с. 5-93972-193-1. Режим доступа: http://www.iprbookshop.ru/16556.html (17.10.2018)
- 2. Ландау, Л. Д., Лифшиц, Е. М. Статистическая физика. («Теоретическая физика», Т. V) Часть 1: М.: Физматлит, 2010
- 3. Бэкстер Р., «Точно решаемые модели в статистической механике», М.: Мир, 1985г.
- 4. Блохинцев Д.И. Основы квантовой механики. М: Лань, 2004 г.

б) дополнительная литература:

- 1. **Бэкстер, Родни.** Точно решаемые модели в статистической механике : [монография] / Бэкстер, Родни ; пер. с англ.: Е.П.Вольского, Л.И.Дайхина под ред. А.М.Бродского. М. : Мир, 1985. 486 с. Библиогр.: с. 471-478. Предм. указ.: с. 479-481. 130-00. **Местонахождение: Научная библиотека** ДГУ
- 9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.
 - 1. ЭБС IPRbooks: http://www.iprbookshop.ru/
 Лицензионный договор № 2693/17от 02.10.2017г. об оказании услуг по предоставлению доступа. Доступ открыт с с 02.10.2017 г. до 02.10.2018 по подписке (доступ будет продлен)
 - 2. Электронно-библиотечная сист*ема* «Университетская библиотека онлайн» <u>www.biblioclub.ru</u> договор № 55_02/16 от 30.03.2016 г. об оказании информационных услуг.(доступ продлен до сентября 2019 года).
 - 3. Доступ к электронной библиотеки на http://elibrary.ru основании лицензионного соглашения между ФГБОУ ВПО ДГУ и «ООО» «Научная Электронная библиотека» от 15.10.2003. (Раз в 5 лет обновляется лицензионное соглашение)

- 4. Национальная электронная библиотека https://нэб.рф/. Договор №101/НЭБ/101/НЭБ/1597 от 1.08.2017г. Договор действует в течении 1 года с момента его подписания.
- 5. Федеральный портал «Российское образование» http://www.edu.ru/ (единое окно доступа к образовательным ресурсам).
- 6. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
- 7. Российский портал «Открытого образования» http://www.openet.edu.ru
- 8. Сайт образовательных ресурсов Даггосуниверситета http://edu.icc.dgu.ru
- 9. Информационные ресурсы научной библиотеки Даггосуниверситета http://elib.dgu.ru (доступ через платформу Научной электронной библиотеки elibrary.ru).
- 10.Федеральный центр образовательного законодательства http://www.lexed.ru
- 11. http://www.phys.msu.ru/rus/library/resources-online/ электронные учебные пособия, изданные преподавателями физического факультета МГУ.
- 12. http://www.phys.spbu.ru/library/ электронные учебные пособия, изданные преподавателями физического факультета Санкт-Петербургского госуниверситета.
- 13.**Springer.** Доступ ДГУ предоставлен согласно договору № 582-13SP подписанный Министерством образования и науки предоставлен по контракту 2017-2018 г.г., подписанный ГПНТБ с организациями-победителями конкурса. http://link.springer.com. Доступ предоставлен на неограниченный срок

10. Методические указания для обучающихся по освоению дисциплины.

Перечень учебно-методических материалов, предоставляемых студентам во время занятий:

- рабочие тетради студентов;
- наглядные пособия;
- словарь терминов;
- тезисы лекций,
- раздаточный материал по тематике лекций.

Оптимальным путем освоения дисциплины является посещение всех лекций и семинаров, выполнение предлагаемых заданий в виде задач, тестов и устных вопросов.

На лекциях рекомендуется деятельность студента в форме активного слушания, т.е. предполагается возможность задавать вопросы на уточнение понимания темы и рекомендуется конспектирование лекции. На семинарских занятиях деятельность студента заключается в активном обсуждении задач, решенных другими студентами, решении задач самостоятельно, выполнении контрольных заданий. В случае, если студентом пропущено лекионное или семинарское занятие, он может освоить пропущенную тему самостоятельно с опорой на план занятия, рекомендуемую литературу и консультативные рекомендации преподавателя.

Перед проведением экзамена проводится коллективная аудиторная консультация, на которой даются советы по подготовке к экзамену. В целом рекомендуется регулярно посещать занятия и выполнять текущие задания, что обеспечит достаточный уровень готовности к сдаче экзамена.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

- Программное обеспечение для лекций: MS PowerPoint (MS PowerPoint Viewer), Adobe Acrobat Reader, средство просмотра изображений, табличный процессор.
- Программное обеспечение в компьютерный класс: MS PowerPoint (MS PowerPoint Viewer), Adobe Acrobat Reader, средство просмотра изображений, Интернет, E-mail.
- Электронная библиотека механико-математического факультета МГУ http://lib.mexmat.ru/
- Научно-образовательный центр при МИАН http://www.mi.ras.ru/

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Лекционные и практические занятия проводятся в аудиториях факультета. Технические средства обучения, используемые в учебном процессе для освоения дисциплины:

- 1. компьютерное оборудование, которое используется в ходе изложения лекционного материала;
- 2. пакет плакатов и графиков, используемых в ходе текущей работы, а также для промежуточного и итогового контроля;
- 3. электронная библиотека курса и Интернет-ресурсы для самостоятельной работы.