МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Квантовая теория твердого тела

Кафедра Общей и теоретической физики, физического факультета

Образовательная программа

03.04.02 Физика

Профиль подготовки Теоретическая и математическая физика

> Уровень высшего образования *Магистратура*

> > Форма обучения *очная*

Статус дисциплины: вариативная по выбору

Рабочая программа дисциплины «Квантовая теория твердого тела» составлена в 2020 году в соответствии с требованиями ФГОС ВО по направлению подготовки 03.04.02 — «Физика» (уровень магистратура) 28 августа 2015г. № 913 .

Разработчик: <u>кафедра общей и теоретической физики</u> Абдулвагабов Мизафрудин Шахович, к.ф.-м.н., доцент,_____

Рабочая программа дисциплины одобрена:

на заседании кафедры теоретической и математической физики от (21) января (2020)г., протокол (21)5.

Зав. кафедрой

Муртазаев А.К.

на заседании Методической комиссии физического факультета от «28» февраля 2020г., протокол №6

.

Председатель

Мурлиева Ж.Х.

Рабочая программа дисциплины согласована с учебнометодическим управлением « 26» марта 2020г.

Ahr

Начальник УМУ

Гасангалжиева А.Г

Аннотация рабочей программы дисциплины

Дисциплина «Квантовая теория твердого тела» входит в вариативную часть по выбору образовательной программы магистратуры по направлению 03.04.02 — «Физика» (профиль — Теоретическая и математическая физика), и является дисциплиной по выбору.

Дисциплина реализуется на физическом факультете кафедрой общей и теоретической физики.

Содержание дисциплины охватывает круг вопросов, связанных с изучением двумерных решеточных моделей в статистической физике, допускающих аналитическое решение и их приложения к современным задачам.

Дисциплина нацелена на формирование следующих компетенций выпускника:

```
общекультурных - ОК-3;
общепрофессиональных - ОПК-6;
профессиональных - ПК-2, ПК-3
```

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: *лекции, практические занятия, самостоятельную работу.*

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме <u>текущий контроль в форме опросов и</u> контрольной работы и промежуточный контроль в форме экзамена.

Объем дисциплины 2 зачетные единицы, в том числе в академических часах по видам учебных занятий

Семе		Форма промежуточной аттестации (зачет,									
		в том числе									
	Всего	Контактная работа обучающихся с преподавателем СР							ый зачет, экзамен		
	Beero	Всего из них						числе			
			Лекции	Лабораторн ые занятия	Практичес кие	КСР	консульта ции	экзаме н			
				ыс запития	занятия		ции				
1	72	18	8	-	10	-	-	54	зачет		

1. Цели освоения дисциплины

Целями освоения дисциплины «Квантовая теория твердого тела» являются изучение двумерных решеточных моделей в статистической физике, допускающих аналитическое решение и их приложения к современным задачам.

2. Место дисциплины в структуре ОПОП магистратуры

Дисциплина входит в вариативную часть образовательной программы магистратуры по направлению 03.04.02 - «Физика» (профиль – Теоретическая и математическая физика) и является дисциплиной по выбору.

Студенты, проходящие специализацию по кафедре теоретической математической физики должны иметь базовые знания о точно решаемых методах в теоретической физике. Для освоения дисциплины необходимы знания математический анализ, дифференциальные дифференциальная геометрия и топология, электродинамика и квантовая теория, статистическая физика. Освоение дисциплины позволит в дальнейшем изучать курсы естественнонаучного цикла, спецкурсы по выбору студента. Данная дисциплина призвана выработать профессиональные компетенции, связанные со способностью использовать теоретические знания в области квантовой механики, статистической физики, теория поля, классической конкретных электродинамики решения точно решаемых задач статистической физики.

Данная дисциплина является одной из основных в подготовке студентов по направлению «Физика» и по профилю «Теоретическая и математическая физика».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

КОД компетенции из ФГОС ВО	Наименование компетенции из ФГОС ВО	Планируемые результаты обучения
ОК-3	готовность к саморазвитию, самореализации, использованию творческого потенциала.	 Знать: комплекс знаний умений и жизненный опыт, необходимый для решения задач. Уметь: использовать и интерпретировать всю сумму жизненных и профессиональных знаний, которые формулируют стандарты общекультурной эрудированности человека в определенной среде. Владеть: системой знаний, понятий и представлений о человеке как представители этнического общества.
ОПК-6	способность использовать знания современных проблем и новейших достижений физики в научно- исследовательской работе.	 Знать: новейшие достижения науки и техники и существующие проблемы в науке. Уметь: грамотно решать практически и теоретически важные, актуальные задачи, в том числе возникающие на стыках различных научных направлений. Владеть: навыками решения и исследования конкретных физических задач с использованием высшей математики и методами теоретической физики.

ПК-2	способность свободно владеть разделами физики, необходимыми для решения научно-инновационных задач, и применять результаты научных исследований в инновационной деятельности.	 Энать: физические явления и основные законы природы для решения научно-инновационных задач. Уметь: применять результаты научных исследований в инновационной деятельности. Владеть навыками: использования основных общефизических законов и принципов в инновационной деятельности; применения основных методов физикоматематического анализа для решения научно-инновационных задач.
ПК-3	способностью принимать участие в разработке новых методов и методических подходов в научно-инновационных исследованиях и инженернотехнологической деятельности	 Знать: Основные законы и методики, различные подходы в научно-инновационных исследованиях. Уметь: Принимать участие в разработкеновых методов и методических подходов в научно-инновационных исследованиях. Владеть навыками: Применение новых методов и методических подходов в научно-инновационных исследованиях и методических подходов в научно-инновационных исследованиях и инженерно-технологической деятельности.

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет 2 зачетные единицы,72 академических часа.

4.2. Структура дисциплины.

№ п/п	Раздел дисциплины	Семестр	неделя	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в	Замостоят. работа	Формы текущего контроля успеваемости (по неделям
7		C		и трудоемкость (в часах)	Can	(по неделям семестра)

				Лекции	Практические занятия	Лабораторны	Контроль		Форма промежуточно й аттестации (по семестрам)
	Модуль 1. Теория провод	ЦИ	MO	сти ме	еталл	OB.	П	ериоди	ические
	С	тр	ук	гуры.			1		
1.	Теория проводимости металлов. Основные предположения модели. Столкновения и времена релаксации. Статистическая электропроводность. Высокочастотная теплопроводность.	1		2	2			14	опрос
2.	Трансляционная симметрия. Периодические функции. Кристаллические решетки. Решетка Бравэ. Примитивная ячейка. Ячейка Вигнера – Зейтда. Теорема Блоха.			2	2			14	опрос
	Итого по модулю 1			4	4			28	
	Модуль 2. Обратная ре	ш	етн	са. Эле	ектро	НН	ые	состо	яния.
1.	Обратная решетка как решетка Бравэ. Привидение к зоне Бриллюэна. Граничные условия. Подсчет состояний. Колебания решетки. Свойства колебаний решетки. Удельная теплоемкость решетки.	1		2	2			12	опрос
2.	Свободные электроны. Образование энергетических зон. Дифракция валентных электронов. Модель почти свободных электронов. Метод сильной связи.			2	4			14	опрос
	Ишага на мадита 2			4	6			26	221161
	Итого по модулю 2			4	O			۷٥	зачет

ИТОГО	8	10		54	

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине.

Модуль 1. Теория проводимости металлов. Периодические структуры. Основные предположения модели. Столкновения и времена релаксации. Статистическая электропроводность. Высокочастотная теплопроводность. Теплопроводность. Трансляционная симметрия. Периодические функции. Кристаллические решетки. Решетка Бравэ. Примитивная ячейка. Ячейка Вигнера — Зейтда. Теорема Блоха.

Модуль 2. Обратная решетка. Электронные состояния. Обратная решетка как решетка Бравэ. Привидение к зоне Бриллюэна. Граничные условия. Подсчет состояний. Колебания решетки. Свойства колебаний решетки. Удельная теплоемкость решетки. Свободные электроны. Образование энергетических зон. Дифракция валентных электронов. Модель почти свободных электронов. Метод сильной связи.

4.3.2. Содержание лабораторно-практических занятий по дисциплине.

<i>Модуль 1</i> . Теория проводимости металлов. Периодические структуры.						
Название темы	Содержание темы	Объем в часах				
Статистическая и высокочастотная электропроводности металла.	Теория Друде. Статистическая электропроводность металла. Столкновения и времена релаксации. Высокочастотная электропроводность.	2				
Кристаллические решетки.	Решетка Бравэ и основные векторы. Кубические решетки. Примитивная ячейка. Ячейки Вигнера – Зейтца и условная решетка.	2				
Модуль 2	. Обратная решетка. Электронные состояния.					
Удельная теплоемкость решетки.	Колебания решетки. Удельная теплоемкость решетки. Температура Дебая. Закон Дюлонга и Пти. Модель Эйнштейна.	2				
Уровни электрона в периодическом	Периодический потенциал и теорема Блоха. Электроны в слабом периодическом потенциале.	2				
потенциале.	Метод сильной связи.	2				

5. Образовательные технологии

В течение семестра студенты посещают лекции, решают задачи, указанные преподавателем, к каждому семинару. В семестре проводятся контрольные работы (на семинарах). Аттестация проводится после решения всех задач контрольных работ, выполнения домашних и самостоятельных работ.

При проведении занятий используются компьютерные классы, оснащенные современной компьютерной техникой. При изложении теоретического материала используется лекционный зал, оснащенный мультимедиа проекционным оборудованием и интерактивной доской.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

В рамках учебного процесса предусмотрено приглашение для чтения лекций ведущих ученых из центральных вузов и академических институтов России.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов:

- проработка учебного материала (по конспектам лекций учебной и научной литературе) и подготовка докладов на семинарах и практических занятиях;
 - написание рефератов;
 - работа с тестами и вопросами для самопроверки;
 - решение некоторых задач с применением компьютера.

Разделы и темы для самостоятельного	Виды и содержание самостоятельной работы
теория проводимости металлов.	Основные предположения модели. Столкновения и времена релаксации. Теплопроводность.
Кристаллические решетки.	Трансляционная симметрия. Периодические функции. Кристаллические решетки. Простая, объемно-центрированная и гранецентрированная кубические решетки.
Обратная решетка.	Определения и примеры. Первая зона Бриллюэна. Атомные плоскости и индексы Миллера. Колебания решетки. Свойства колебаний решетки.

Теория энергетических	Образование энергетических зон. Свободны
зон электронов.	электроны. Дифракция валентных электронов
зон электронов.	Модель почти свободных электронов.

Результаты самостоятельной работы учитываются при аттестации магистранта (экзамен). При этом проводятся: тестирование, опрос на практических занятиях, заслушиваются доклады, проверка контрольных работ и т.д.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

Код и наименование компетенции из ФГОС ВО	Код и наименование индикатора достижения компетенций (в соответствии с ПООП (при наличии))	Планируемые результаты обучения	Процедура освоения
OK-3	готовность к саморазвитию, самореализации, использованию творческого потенциала.	 Знать: комплекс знаний умений и жизненный опыт, необходимый для решения задач. Уметь: использовать и интерпретировать всю сумму жизненных и профессиональных знаний, которые формулируют стандарты общекультурной эрудированности человека в определенной среде. Владеть: системой знаний, понятий и представлений о 	Устный опрос, письменный опрос, разноуровневые задачи и задания.

		человеке как	
		представители	
		этнического общества.	
		Знать:	
ОПК-6	способность использовать знания современных проблем и новейших достижений физики в научно-исследовательской работе.	 • новейшие достижения науки и техники и существующие проблемы в науке. Уметь: • грамотно решать практически и теоретически важные, актуальные задачи, в том числе возникающие на стыках различных научных направлений. Владеть: • навыками решения и исследования конкретных физических задач с использованием высшей математики и методами теоретической физики. 	Устный опрос, письменный опрос, разноуровневые задачи и задания.
ПК-2	способность свободно владеть разделами физики, необходимыми для решения научно- инновационных задач, и применять результаты научных исследований в инновационной деятельности.	 Энать: физические явления и основные законы природы для решения научно-инновационных задач. Уметь: применять результаты научных исследований в инновационной деятельности. Владеть навыки: использования основных общефизических законов и принципов в инновационной деятельности; применения основных методов физикоматематического 	письменный опрос, доклад, мини-конференция.

		анализа для решения	
		*	
		научно-	
		инновационных задач.	
		Знать:	
		• Основные законы и	
		методики, различные	
		подходы в научно-	
	способностью	инновационных	
		исследованиях.	
	принимать	Уметь:	
	участие в	• Принимать участие в	
	разработке новых	разработкеновых	
	методов и	методов и	Устный опрос,
	методических	методических	письменный
		подходов в научно-	
ПК-3	подходов в	инновационных	опрос,
	научно-	исследованиях.	разноуровневые
	инновационных	Владеть навыками:	задачи и задания.
	исследованиях и	Применение новых	
	инженерно-	методов и	
	•	методических	
	технологической	подходов в научно-	
	деятельности	инновационных	
		исследованиях и	
		инженерно-	
		технологической	
		деятельности.	

7.2. Типовые контрольные задания

7.2.1. <u>Перечень примерных контрольных тестов для текущего и</u> итогового контроля подготовленности студентов по курсу.

- **1.** Приближение почти свободных электронов дает более или менее удовлетворительной результат зонной структуры для:
 - 1) полупроводников,
- 3) для аморфных проводников,

- 2) диэлектриков,
- 4) металлов.
- 2. Блоховская функция имеет вид:
- 1) $\psi_k(r) = U_k(r)e^{ikr}$, 2) $\psi(r) = c_n e^{ikr}$, 3) $\psi(r) = \sum_{k} (c_n + 1)e^{ikr}$, 4) $\psi(r) = U_k(r)\sin kr$.
- **3.** Решетка Бравэ образованна всеми точками с радиусами- векторами \vec{R} вида $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$, где $\vec{a}_1, \vec{a}_2, \vec{a}_3$ любые три вектора, не лежащие все в одной плоскости, а $n_1 n_2 n_3$ -
 - 1) все возможные четные числа
 - 2) все возможные целые числа

- 3) сумма n_i обязательно четная
- 4) все возможные нечетные числа.
- **4.** Какие ИЗ энергетических зонных структур нарисованы ДЛЯ полупроводников и диэлектриков?
 - 1) зона проводимости валентная зона
- 2) свободная зона полузаполненная зона валентная зона
- 3) <u>зона проводимости</u> <u>4) валентная зона</u> <u>запрещенная зона</u> <u>запрещенная зона</u> свободная зона валентная зона

5. Сколько разрешенных состояний в k пространстве на единицу объема.

1)
$$\left(\frac{k^2}{2\pi}\right)$$
, 2) $\left(\frac{k_x + k_y + k_z}{2\pi}\right)$, 3) $\left(\frac{k}{2\pi}\right)^3$, 4) $\left(\frac{2\pi}{k^3}\right)$.

6. Для одномерной решетки с переходом от значения волнового вектора в призвольной точке задаются выражением:

1)
$$k = \frac{\pi}{d} + \frac{2\pi}{d}n$$
, $n = 0, \pm 1, \pm 2$.

$$3) \quad k = \frac{d}{2\pi} \, .$$

2)
$$k = \frac{\pi}{d}(n+1)$$
, $n = 0,\pm 1,\pm 2$.

2)
$$k = \frac{\pi}{d}(n+1)$$
, $n = 0,\pm 1,\pm 2$. 4) $k = \frac{d}{2\pi} + \frac{d}{2\pi}n$, $n = 0,\pm 1,\pm 2$.

7. В одномерной решетке с периодом d границы зон соответствуют следующим значениям волнового вектора k.

$$1) \quad k = \frac{\pi}{d}$$

$$3) \quad k = \pm \frac{\pi}{d}, \quad \pm \frac{2\pi}{d} \dots$$

$$2) k = \frac{\pi}{d} + d$$

4)
$$k = \pm \frac{d}{\pi}, \pm \frac{2d}{\pi} \dots$$

8. Среднее расстояние между соседними уровнями энергии в разрешенной $a = 0.4 \kappa M$, в кристалле с объемом $n = 1 c M^3$, зоне с параметром решетки при ширине зоны 1эв.:

1)
$$\Delta E = 10^6$$
 9B, 2) $\Delta E = 1$ M9B, 3) $\Delta E = 10^{-22}$ 9B, 4) $\Delta E = 10^{-25}$ 9B.

- 9. Положение уровня Ферми в полупроводнике n- типа проходит:
 - 1) по зоне проводимости
 - 2) выше зоны проводимости
 - 3) ниже середины запрещенной зоны

- 4) выше середины запрещенной зоны.
- **10.** Для обозначения плоскостей гексагональных кристаллов пользуется четырехосной системой координат. Каждая плотность обозначается четырьмя индексами.
 - а) дополнительный индекс і ставится на 2-м месте и вычисляется через h и k: i=(h+k)
 - б) дополнительный индекс і ставится на 1-м месте и вычисляется через k и l: i=-(k+l)
 - в) дополнительный индекс і ставится на 3-м месте и вычисляется через h и 1: i=h-1
 - г) дополнительный индекс і ставится на 1-м месте и вычисляется через k и h: i=-(h+k).
- **11**. Для гексагональных кристаллов плотность базиса параллельная осям α_1 , α_2 , α_3 имеет индексы.
 - a) $(0\ 0\ 0\ 1)$, $(0\ 1\ 0\ 0)$, $(0\ 1\ 0\ 0)$, $(0\ 1\ 0\ 0)$, $(0\ 1\ 0\ 0)$.
- **12.** Плоскости отсекают на осях отрезки A=1/2, B=2, C=1/3. Плоскость обозначают так:
 - a) (4 6 1), б) (1 6 4), в) (4 1 6), г) (6 4 1).
- **13.** Плоскости, параллельные базовым граням призмы, имеют индексы типа:
 - a) $(1\ 1\ 0\ 0)$, 6) $(1\ 0\ \overline{1}\ 0)$, B) $(\overline{1}\ 0\ 1\ 0)$, Γ) $(1\ 0\ 0\ \overline{1})$.
- **14.** Каждый энергетический уровень, не вырожденной в изолированном атоме, расщепляется на:
 - a) 2N, 6) (N+1), B) 2(N+1), Γ) N.
 - близко расположенных друг от друга подуровней, образующих энергетическую зону.
- **15.** Если энергетический уровень имел в атоме $(2\ell+1)$ кратное вырождение, то соответствующая ему энергетическая зона будет состоять из:
 - а) 2N(l+1), б) 2lN, в) l(N+1), г) N(2l+1) подуровней.
- 16. С увеличением энергии электроны в атоме:
 - а) ширина разрешенных зон увеличивается, ширина запрещенных зон уменьшается.
 - б) ширина разрешенной зон остается неизменной, ширина запрещенной зоны уменьшается.

- в) ширина разрешенных зон и ширина запрещенных зон остается постоянной.
- г) ширина разрешенных зон уменьшается, ширина запрещенных зон увеличивается.
- **17.** В методе сильной связи получаем зонную структуру соответствующей S-зоны:

B)
$$E(k) = E_s + \beta + \sum \alpha(R)e^{i\vec{k}\vec{R}}$$
, Γ) $E(\kappa) = \frac{E_s + \beta - \sum \gamma(R)e^{i\vec{k}\vec{R}}}{1 + \sum \alpha(R)e^{i\vec{k}\vec{R}}}$.

18. В методе сильной связи зонная структура соответствующей S- зоны в случае г.ц.к.

a)
$$E(k) = E_s - \beta - 4\gamma \left(\cos\frac{1}{2}k_x a\cos\frac{1}{2}k_y a + \cos\frac{1}{2}k_y a\cos\frac{1}{2}k_z a + \cos\frac{1}{2}\cos k_z a\cos\frac{1}{2}k_x a\right)$$
,

6)
$$E(k) = E_s - \beta - 4\gamma \left(\cos\frac{1}{2}k_x a + \cos\frac{1}{2}k_y a + \cos\frac{1}{2}k_z a\right)$$
,

B)
$$E(k) = E_s - \beta - 4\gamma(\cos k_x a + \cos k_y a + \cos k_z a)$$
.

$$\Gamma) \quad E(k) = E_s + \beta + 12\gamma (\cos k_x a + \cos k_y a + \cos k_z a).$$

19. Ортогонализованная плоская волна Φ_k имеет вид:

a)
$$\Phi_k = \sum_c b_c \psi_k^c(k)$$
, $\Phi_k = U_k(r) e^{i\vec{k}\vec{R}}$, B) $\Phi_k = \sum_c b_c \psi_k^c(k) + U(r) e^{i\vec{k}\vec{R}}$,

$$\Gamma) \Phi_k = e^{i\vec{k}\vec{R}} + \sum_c b_c \psi_k^c(r).$$

- 20. Псевдопотенциал определяется как:
 - а) сумма реального периодического потенциала U и величины V^R ,
 - б) сумма реального периодического потенциала U .
 - в) сумма реального кристаллического потенциала.
 - г) сумма функций Ванье.
- 21. Для расчета зон с использованием МТ-потенциала широко применяются:
 - а) два метода (метод присоединенных плоских волн и метод ККР),

- б) только метод ККР,
- в) только метод присоединенных плоских волн,
- г) методы ОПВ и ППВ.

22. МТ - потенциал совпадает:

- а) с потенциалом свободного атома,
- б) с потенциалом изолированного иона,
- в) в Кулоновским потенциалом,
- г) с псевдопотенциалом.
- 23. Геометрический структурный фактор имеет вид:

a)
$$S_k = \beta + \sum_{i=1}^n e^{i\vec{k}\vec{R}_j}$$
,

a)
$$S_k = \beta + \sum_{i=1}^n e^{i\vec{k}\vec{R}_j}$$
, 6) $S_k = \beta + \sum_{i=1}^n e^{i\vec{k}(\vec{r}+\vec{R}_j)}$, B) $S_k = \sum_{i=1}^n e^{i\vec{k}\vec{d}_j}$ Γ) $S_k = \sum_{i=1}^n e^{i\vec{k}\vec{R}_j}$.

$$\mathbf{B}) S_k = \sum_{i=1}^n e^{i\vec{k}\vec{d}_j}$$

$$\Gamma) S_k = \sum_{i=1}^n e^{i\vec{k}\vec{R}_j}$$

- 24. Первая зона Бриллюэна есть совокупность точек:
 - а) в k пространстве, которых логично достичь из начальной точки, не пересекая ни одной брэгговской плоскости,
 - б) в k пространстве, которых можно достичь, пересекая всего одну брэгговскую плоскость,
 - в) в k пространстве, удовлетворяющая условию периодичности, которых можно достичь из начальной точки,
 - Γ) в k пространстве, которых можно достичь из начальной точки путем трансляции вектора VR.
- Особенностями Ван-Хова называют, 25. формуле когда в $g_n(\varepsilon) = \int_{S_n(\varepsilon)} \frac{ds}{4\pi^3} \frac{1}{|\nabla \varepsilon_n(k)|}$ плотности уровней:
 - а) интеграл имеет максимальное значение,
 - б) в каждой элементарной ячейке $g_n(\varepsilon)$ имеет минимальное значение,
 - в) в каждой ячейке $g_n(\varepsilon)$ имеет постоянное значение,
 - г) когда градиент ε_n обращается в нуль, в подынтегральном выражении.
- 26. В k пространстве каждой частично заполненной зоне соответствует поверхность, называя поверхностью Ферми:
 - а) отделяющая занятые уровни от незанятых,
 - б) поверхность примыкающая к свободной зоне,
 - в) поверхность с максимальной энергией электронов
 - г) поверхность, образуемая в заполненной зоне.

27. Координационным числом называется – это:

- а) общее число соседей в ячейке Вигнера Зейтца,
- б) число атомов в элементарной ячейке,
- в) число решеток Бравэ в примитивной ячейке,
- г) число ближайших соседей в решетке Бравэ.

Таблица ответов к тестам.

1	2	3	4	5	6	7	8	9	10	11	12	13	14
4	1	2	3	3	1	3	3	4	4	4	1	3	4
15	16	17	18	19	20	21	22	23	24	25	26	27	
4	1	2	1	1	1	1	2	3	4	4	1	4	

7.2.2. Перечень вопросов к зачету:

- 1. Основные предположения модели Друде.
- 2. Статистическая электропроводность.
- 3. Столкновения и времена релаксации.
- 4. Высокочастотная электропроводность металлов.
- 5. Теплопроводность металла.
- 6. Решетка Бравэ и основные векторы.
- 7. Примитивная ячейка. Ячейка Вигнера Зейтца.
- 8. Обратная решетка.
- 9. Обратная решетка как решетка Бравэ.
- 10. Первая зона Бриллюэна.
- 11. Теорема Блоха.
- 12. Модель почти свободных электронов.
- 13. Метод сильной связи.
- 14. Граничное состояние Борна Кармана.
- 15. Подсчет состояний.
- 16. Поверхность Ферми.
- 17. Плотность уровней.
- 18. Свойства колебаний решетки.
- 19. Удельная теплоемкость решетки.
- 20. Температура Дебая.
- 21. Закон Дюлонга Пти.
- 22. Модель Эйнштейна.

7.2.3. Тематика контрольных работ.

1. Определение плотности состояний из спектральной зависимости коэффициента поглощения.

- 2. Спектроскопия локализованных состояний.
- 3. Энергетическая зонная структура р-зоны с сильной связью в кубических кристаллах.
- 4. Метод Гриновских функций Корринги Кона и Ростокера(К.К.Р).
- 5. Свойства волновых функций валентных зон.
- 6. Комбинированные методы расчета зонной структуры полупроводников.
- 7. Зависимость энергии электронов вдоль главных направлений симметрии в приближении сильной связи для энергий s-зоны в г.ц.к. кисталле.
- 8. Плотность уровней.
- 9. Периодические потенциалы в одномерном случае.
- 10. Электроны в слабом периодическом потенциале.

7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

Лекции

•	посещение занятий	– 10 баллов,
•	активное участие на лекциях	15 баллов,
•	устный опрос, тестирование, коллоквиум	-60 баллов,
•	и др. (выполнение домашних работ, доклады, рефераты)	15 баллов.

Практические занятия

•	посещение занятий	– 10 баллов,
•	активное участие на практических занятиях	– 15 баллов,
•	выполнение домашних работ	– 15 баллов,
•	выполнение самостоятельных работ	-20 баллов,
•	выполнение контрольных работ	40 баллов.

Промежуточный контроль по дисциплине включает:

• устный опрос	-60 баллов,
• письменная контрольная работа	30 баллов,
• тестирование	10 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

а) основная литература:

- 1. Борчердс Р.Е. Квантовая теория поля [Электронный ресурс] / Р.Е. Борчердс. Электрон. текстовые данные. Москва, Ижевск: Регулярная и хаотическая динамика, Ижевский институт компьютерных исследований, 2006. 96 с. 978-5-93972-627-6. Режим доступа: http://www.iprbookshop.ru/16540.html (17.10.2018)
- 2. Пайерлс Р. Квантовая теория твердых тел / М.: Книга по Требованию, $2012.-260~\mathrm{c.}$;
- 3. Анималу, Александр О. Е. Квантовая теория кристаллических твердых тел / А. Анималу; Пер. с англ. Е. Л. Ивченко, А. Л. Эфроса. Москва: Мир, 1981. 574 с.;
- 4. Ашкрофт Н., Мермин Н., «Физика твердого тела» / М., 1979г.;
- 5. Киттель Ч., «Введение в физику твердого тела» / М., 1978г.;
- 6. Займан Дж. «Принципы теории твердого тела» / М.,1974г.;
- 7. О.Маделунг. Физика твердого тела. Локализованные состояния / M.:"Наука" 1985г.;
- 8. Каллуэй Дж. «Теория энергетической зонной структуры» / М.: Мир, 1969г.;
- 9. Бассани, Дж. Пастори Парравичини. «Электронные состояния и оптические переходы в твердых телах» / М., 1882г.

б) дополнительная литература:

- 1. Кащенко А.П. Физика твердого тела. Физика ядра. Ядерные реакции [Электронный ресурс]: методические указания к практическим занятиям и домашним заданиям по дисциплинам: «Взаимодействие излучения с веществом», «Теоретическая физика», «Физические свойства твердых тел» / А.П. Кащенко, Г.С. Строковский, С.И. Шарапов. Электрон. текстовые данные. Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2015. Режим доступа: http://www.iprbookshop.ru/55674.html (12.10.2018)
- 2. Павлов П.В., Хохлов А.Ф. «Физика твердого тела» / М.: Высшая школа, 2000г.;
- 3. Ансельм А.И. «Введение в теорию полупроводников» / М.: Наука 1978г.;
- 4. Брич- Бруевич В.Л, Калашников С.Т. «Физика полупроводников», М., 1977г.;
- 5. Киреев П.С. «Физика полупроводников» / М.: Высшая школа, 1975г.;

- 6. Шалимова К.В. «Физика полупроводников» / М.: Энергоавтомиздат,
- 7. Харрисон У. Теория твердого тела / М.:"Мир",1972г.

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. ЭБС IPRbooks: http://www.iprbookshop.ru/
 Лицензионный договор № 2693/17от 02.10.2017г. об оказании услуг по предоставлению доступа. Доступ открыт с с 02.10.2017 г. до 02.10.2018 по подписке (доступ будет продлен)
- 2. Электронно-библиотечная сист*ема* «Университетская библиотека онлайн» <u>www.biblioclub.ru</u> договор № 55_02/16 от 30.03.2016 г. об оказании информационных услуг.(доступ продлен до сентября 2019 года).
- 3. Доступ к электронной библиотеки на http://elibrary.ru основании лицензионного соглашения между ФГБОУ ВПО ДГУ и «ООО» «Научная Электронная библиотека» от 15.10.2003. (Раз в 5 лет обновляется лицензионное соглашение)
- 4. Национальная электронная библиотека https://нэб.рф/. Договор №101/НЭБ/101/НЭБ/1597 от 1.08.2017г. Договор действует в течении 1 года с момента его подписания.
- 5. Федеральный портал «Российское образование» http://www.edu.ru/ (единое окно доступа к образовательным ресурсам).
- 6. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
- 7. Российский портал «Открытого образования» http://www.openet.edu.ru
- 8. Сайт образовательных ресурсов Даггосуниверситета http://edu.icc.dgu.ru
- 9. Информационные ресурсы научной библиотеки Даггосуниверситета http://elib.dgu.ru (доступ через платформу Научной электронной библиотеки elibrary.ru).
- 10. Федеральный центр образовательного законодательства http://www.lexed.ru
- 11. http://www.phys.msu.ru/rus/library/resources-online/ электронные учебные пособия, изданные преподавателями физического факультета МГУ.
- 12. http://www.phys.spbu.ru/library/ электронные учебные пособия, изданные преподавателями физического факультета Санкт-Петербургского госуниверситета.
- 13.**Springer.** Доступ ДГУ предоставлен согласно договору № 582-13SP подписанный Министерством образования и науки предоставлен по контракту 2017-2018 г.г., подписанный ГПНТБ с организациями-

победителями конкурса. http://link.springer.com. Доступ предоставлен на неограниченный срок

10. Методические указания для обучающихся по освоению дисциплины.

Перечень учебно-методических материалов, предоставляемых студентам во время занятий:

- рабочие тетради студентов;
- наглядные пособия;
- словарь терминов;
- тезисы лекций,
- раздаточный материал по тематике лекций.

Оптимальным путем освоения дисциплины является посещение всех лекций и семинаров, выполнение предлагаемых заданий в виде задач, тестов и устных вопросов.

На лекциях рекомендуется деятельность студента в форме активного слушания, т.е. предполагается возможность задавать вопросы на уточнение понимания темы и рекомендуется конспектирование лекции. На семинарских занятиях деятельность студента заключается в активном обсуждении задач, решенных другими студентами, решении задач самостоятельно, выполнении контрольных заданий. В случае, если студентом пропущено лекционное или семинарское занятие, он может освоить пропущенную тему самостоятельно с опорой на план занятия, рекомендуемую литературу и консультативные рекомендации преподавателя.

Перед проведением экзамена проводится коллективная аудиторная консультация, на которой даются советы по подготовке к экзамену. В целом рекомендуется регулярно посещать занятия и выполнять текущие задания, что обеспечит достаточный уровень готовности к сдаче экзамена.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

• Программное обеспечение для лекций: MS PowerPoint (MS PowerPoint Viewer), Adobe Acrobat Reader, средство просмотра изображений, табличный процессор.

- Программное обеспечение в компьютерный класс: MS PowerPoint (MS PowerPoint Viewer), Adobe Acrobat Reader, средство просмотра изображений, Интернет, E-mail.
- Электронная библиотека механико-математического факультета МГУ http://lib.mexmat.ru/
- Научно-образовательный центр при МИАН http://www.mi.ras.ru/.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Лекционные и практические занятия проводятся в аудиториях факультета. Технические средства обучения, используемые в учебном процессе для освоения дисциплины:

- 1. компьютерное оборудование, которое используется в ходе изложения лекционного материала;
- 2. пакет плакатов и графиков, используемых в ходе текущей работы, а также для промежуточного и итогового контроля;
- 3. электронная библиотека курса и Интернет-ресурсы для самостоятельной работы.