МИНИСТЕРСТВО НАУКИИ ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Специальные функции математической физики»

Кафедра дифференциальных уравнений и функционального анализафакультета математики и компьютерных наук

Образовательная программа: 01.04.01 Математика

Профиль подготовки: *«Дифференциальные уравнения»*

Уровень высшего образования: <u>магистратура</u>

Форма обучения: Очная

Статус дисциплины: <u>вариативная</u>

Махачкала 2019

Рабочая программа дисциплины «Специальные функции математической физики» составлена в 2019 году в соответствии с требованиями ФГОС ВО по направлению подготовки 01.04.01 Математика (уровень магистратуры) от 17.08.2015 г. № 827.

Разработчики: <u>кафедра дифференциальных уравнений и функционального</u> <u>анализа</u>, Сиражудинов М.М., д. ф.-м.н., профессор, Ризаев М.К., к.ф-м.н., доцент

Рабочая программа дисциплины одобрена: на заседании кафедры $\underline{\mathcal{I}}\underline{\mathcal{Y}}$ и $\underline{\Phi}\underline{\mathbf{A}}$ от 31.05.2019 г., протокол № 10

Зав. кафедрой ____ Сиражудинов М.М.

на заседании Методической комиссии факультета <u>М и КН</u> от 27.06.2019г., протокол № 6

Председатель Сиш Бейбалаев В.Д.

Рабочая программа дисциплины согласована с учебно-методическим управлением

«_29_» <u>июня</u> 2019 г. ______ Гасангаджиева А.Г.

Аннотация рабочей программы дисциплины

Дисциплина «Специальные функции математической физики» входит в вариативную часть образовательной программы магистратура по направлению 01.04.01 Математика.

Дисциплина реализуется на факультете математики и компьютерных наук кафедрой «Дифференциальные уравнения и функциональный анализ».

Содержание дисциплины охватывает круг вопросов, связанных с применениями специальных функций в различных вопросах математической физики и других естественных наук. Дисциплина предполагает знание основных понятий и методов дифференциальных уравнений и комплексного анализа, профессиональных знаний университетских курсов математического анализа, уравнений в частных производных, функционального анализа.

Дисциплина нацелена на формирование следующих компетенций выпускника:

- способностью строить и анализировать математические модели в современном естествознании, технике, экономике и управлении (ОПК-2);
- способностью к интенсивной научно-исследовательской работе (ПК-1). Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия и самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме: *контрольной работы, коллоквиума, экзамена*.

Объем дисциплины 3 зачетных единиц, в том числе в академических часах по видам учебных занятий

		Форма											
		промежуточной											
дта	Контактная работа обучающихся с преподавателем СРС, в								аттестации				
Семестр	0		из них				TOM	(зачет,					
Ce	сег	всег	всег	всег	всего	Лекц	Лаборат	Практич	КСР	консуль	числе	дифференцирова	
) B				ğ	ğ	Ä	BC6	ии	орные	еские		тации
				занятия	занятия			Н	экзамен				
1	108	36	18	-	18	_	-	72	Экзамен				

1. Цели освоения дисциплины

Целями освоения дисциплины «Специальные функции математической физики» являются: расширение представления о специальных функциях; применение специальных функций в уравнениях математической физики.

2.Место дисциплины в структуре ОПОП магистратуры

Дисциплина «Специальные функции математической физики» входит в вариативную часть образовательной программы магистратуры, по направлению 01.04.01 Математика.

Для освоения обучающийся должен владеть математическим анализом, комплексным анализом, дифференциальными уравнениями, уравнениями в частных производных в объеме программ, утвержденных для бакалавров.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Код и	Код и наименование	Планируемые результаты обучения
наименование	индикатора достижения	
компетенции из	компетенций (в	
ФГОС ВО	соответствии с ПООП (при	
	наличии))	
ОПК-2. Способен	ОПК-2.1. Знает основные	Знает: общие вопросы теории
строить и	принципы	специальных функций
анализировать	математического	математической физики, их
математические	моделирования, методы	непосредственные связи с смежными
модели в	построения и анализа	разделами математики,
современном	математических	математической физики и
естествознании,	моделей.	теоретической физики.
технике,	ОПК-2.2. Умеет	Умеет: осуществлять критический и
экономике и	модифицировать,	сравнительный анализ решений задач
управлении	анализировать и	самой математики и естествознания,
	реализовывать	выражаемые через аппарат
	математические модели в	специальных функций
	задачах	математической физики. При решении
	естествознания, техники,	прикладных задач на основе
	экономики и управления.	системного анализа среди множества
		решений умеет выбирать
		оптимальные и имеющие прикладной
		физический смысл.
		Владеет: навыками подбора
		подходящих специальных функций
		математической физики для
		адекватного применения в
		комплексных исследованиях по
		математике или другим дисциплинам,
		выработки нового вектора стратегии
		действий в проблемных ситуациях.
ПК-1.		Знает: основные понятия и методы
Способен к		специальных функций, природу и
интенсивной		физическую суть математических
научно-		моделей, дифференциальных
исследовательской		уравнений, решениями которых
работе		являются рассматриваемые
		специальные функции.
		Владеет: основными методами
		специальных функций, вопросами
		приложений их к задачам физики
		твердо тела, квантовой механики,
		теории упругости, теоретической
		механики.
		Умеет: применять методы

специальных функций к конкретным
уравнениям математической физики,
возникающих в профессиональной
деятельности при рассмотрении
различных задач не только самой
математики, но и естествознания
с учетом их специфики

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет зачетных единиц 4, академических часов 144.

4.2. Структура дисциплины.

4.2. Структура дисциплин Названия разделов и тем дисциплины		местра	Аудиторные занятия, в том числе				. работа	Формы текущего контроля успеваемости (<i>no</i>
	Семестр	Неделя семестра	лекции	практ. занятия	лабор. работы	Контр. сам. раб.	Самостоят, работа	неделям семестра) Форма промежуточной аттестации (по семестрам)
Мод	уль 1.	Основ	зные к	лассы сі	пециал	ьных ф	рункці	ий.
1. Гамма-функции и Бета-функции.	1		2	2			2	Контрольная работа
2. Уравнение Бесселя и функции Бесселя и Ханкеля.	1		2	2			4	коллоквиум
3 Краевые задачи для уравнения Бесселя.	1		2	2			4	
4. Сферические функции.	1		2	2			4	
5. Гармонические функции и их свойства.	1		2	2			2	Контрольная работа
Всего по модулю 1	36		10	10			16	
Модуль 2. Классические ортогональные многочлены.								
6.Ортогональные многочлены с весом и их свойства.	1		2	2			12	коллоквиум
7. Ряды Фурье по ортонормированным системам функций.	1		2	2				

8. Полиномы Лежандра	1						
и их свойства.							
9. Многочлены	1						
Чебышева и их							
свойства.							
Всего по модулю 2	36		8	8		20	
Модуль 3. Промежуточная аттестация							
Экзамен						36	Экзамен
ИТОГО за семестр 1	108		18	18		36	

4.3. Содержание дисциплины, структурированное по темам (разделам)

4.3.1. Содержание лекционных занятий по дисциплине.

Модуль 1.Основные классы специальных функций.

Тема №1.Гамма-функция и Бета-функция.

Бета-функция и ее свойства. Гамма-функция и ее свойства. Функциональная характеристика гамма-функции. Однозначное определение гамма-функции ее свойства. Приложения эйлеровых функций...

Тема № 2. Уравнение Бесселя и функции Бесселя и Ханкеля.

Уравнение Бесселя и его частные случаи. Функции Бесселя как решение уравнения Бесселя. Простейшие свойства функций Бесселя. Функции Ханкеля и Неймана..

Тема №3..Краевые задачи для функций Бесселя.

Свойство ортогональности функций Бесселя. Корни функций Бесселя. Краевые задачи на собственные значения для уравнения Бесселя. Полнота системы функций Бесселя.

Тема№4. Сферические функции.

Дифференциальное уравнение для сферических функций. Определение сферических функций, основные свойства. Шаровые функции и их свойства.

Тема №5. Гармонические функции и их свойства.

Формула Грина. Распространение формул Грина. Теорема о среднем арифметическом. Принцип максимума и следствия из него. Стирание особенностей гармонических функций. Обобщенно-гармонические функции.

Модуль 2. Классические ортогональные многочлены.

Тема № 6. Ортогональные многочлены с весом и их свойства.

Ортогональные системы многочленов, простые свойства. Существование и единственность ортонормированных систем многочленов. Алгебраические свойства ортогональных многочленов. Ортонормированные системы многочленов. Представление ортогональных многочленов через моменты весовой функции.

Тема №7. Ряды Фурье по ортонормированным системам многочленов.

Ряды Фурье по ортогональным многочленам. Неравенство Бесселя. Условия сходимости ряда Фурье. Неравенство Лебега. Ряды Фурье по тригонометрической системе функций.

Тема №8 Полиномы Лежандра и их свойства и приложения.

Основные понятия о многочленах Лежандра. Производящая функция многочленов Лежандра. Алгебраические свойства многочленов Лежандра. Приложение производящей функции к исследованию свойств многочленов Лежандра. Интегральные представления многочленов Лежандра. Ряды Фурье по системе многочленов Лежандра.

Тема №9. Многочлены Чебышева и их свойства.

Многочлены Чебышева первого рода и их свойства. Асимптотические и экстремальные свойства многочленов Чебышева. Ряды Фурье по многочленам Чебышева. Примеры разложений функций в ряды Фурье-Чебышева. Многочлены Чебышева второго рода.

4.3.2. Содержание практических занятий по дисциплине.

Модуль 1.Основные классы специальных функций.

Тема №1.Гамма-функция и Бета-функция.

Бета-функция и гамма-функция и их свойства. Приложения эйлеровых функций к вычислению несобственных интегралов, сумм рядов. Решение примеров и задач.

Тема № 2. Уравнение Бесселя и функции Бесселя и Ханкеля.

Уравнение Бесселя и его частные случаи. Простейшие свойства функций Бесселя. Решение примеров и задач на использование свойств функций Бесселя.

Тема №3..Краевые задачи для функций Бесселя.

Свойство ортогональности функций Бесселя. Корни функций Бесселя. Краевые задачи на собственные значения для уравнения Бесселя. Решение краевых задач в некоторых частных случаях.

Тема№4. Сферические функции.

Дифференциальное уравнение для сферических функций. Определение сферических функций, основные свойства. Решение примеров и задач на приложения сферических функций.

Тема №5. Гармонические функции и их свойства.

Формула Грина. Распространение формул Грина. Теорема о среднем арифметическом. Принцип максимума и следствия из него. Решение простейших задач для уравнений Лапласа и Пуассона.

Модуль 2. Классические ортогональные многочлены.

Тема № 6. Ортогональные многочлены с весом и их свойства.

. Алгебраические свойства ортогональных многочленов. Ортонормированные системы многочленов. Решение различных задач на алгебраические свойства ортогональных систем многочленов.

Тема №7. Ряды Фурье по ортонормированным системам многочленов.

Ряды Фурье по ортогональным многочленам. Неравенство Бесселя. Условия сходимости ряда Фурье. Решение задач на разложение функций в ряды Фурье по тригонометрической системе функций.

Тема №8 Полиномы Лежандра и их свойства и приложения.

Основные понятия о многочленах Лежандра. Алгебраические свойства многочленов Лежандра. Ряды Фурье по системе многочленов Лежандра, решение задач.

Тема №9. Многочлены Чебышева и их свойства.

Многочлены Чебышева первого рода и их свойства. Асимптотические и экстремальные свойства многочленов Чебышева. Ряды Фурье по многочленам Чебышева. Примеры разложений функций в ряды Фурье-Чебышева.

5. Образовательные технологии

В основе преподавания курса «Специальные функции математической физики» лежит лекционно-семинарская система обучения, что связано с необходимостью активного продумывания теоретического материала, содержащего глубокие и абстрактные понятия. Индивидуальные особенности обучающихся учитываются подбором заданий разного уровня сложности для самостоятельной работы студентов.

По данной дисциплине учебным планом предусмотрено также проведение занятий в интерактивных формах. Лекции проводятся в аудиториях, оснащенных видеопроекторами. В университете функционирует Центр современных образовательных технологий, в котором предусматриваются мастер-классы специалистов.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Основная литература

- 1. Арсенин В.Я. Методы математической физики и специальные функции, М:Наука, 1984
- 2. Никифоров А.Ф., Уваров В.Р. Специальные функции математической физики. М: Наука, 1984.

Дополнительная литература

3. Кошлаков Н.С. Уравнения в частных производных математической физики, 1970.

Задания для самостоятельной работы

Вопросы для самопроверки

- 1. Гамма-функции и Бета-функции.
- 2. Гамма-функции комплексного аргумента
- 3. Свойства гамма-функции
- 4. Основные понятия Бета-функции.
- 5. Интегральное представление Гамма-функции.
- 6. Разложение Гамма-функции в ряд Лорана.
- 7. Логарифмическая производная Гамма-функции.
- 8. Основные задачи математической физики, приводящие к специальным функциям.
- 9. Метода решения смешанной задачи колебания конечной струны
- 10. Общая схема метода Фурье
- 11. Понятие о спектре операторов.
- 12. Характер спектра. Дискретность, непрерывность и существенность спектра.
- 13. Спектры операторов, возникающих при решении задачи Штурма- Лиувилля.
- 14\ Свойства собственных функций операторов, краевых задач..
- 15. Тригонометрическая система функций.
- 16. Основные свойства тригонометрической системы (ортогональность, полнота и замкнутость, неравенство и тождество Бесселя).
- 17. Тригонометрический ряд Фурье, проблемы сходимости.
- 18. Дифференциальное уравнение Бесселя, его приложения.
- 19. Краевая задача на собственные значения для уравнения Бесселя.
- 20. Неоднородная краевая задача для уравнения Бесселя.
- 21. Функции Ханкеля и их свойства.
- 22. Функции Неймана и их свойства.
- 23. Полнота системы функций Бесселя.

- 24. Дифференциальное уравнение для сферических функций.
- 25. Полнота и ортогональность системы сферических функций.
- 26. Интегральное представление сферических функций, формула Лапласа.
- 27. Дифференциальное уравнение Лапласа, шаровые функции, их свойства.
- 28. Уравнение Лапласа, гармоническая функция.
- 29. Теорема о среднем для гармонических функций.
- 30. Принцип максимума гармонических функций.
- 31. Следствия из принципа максимума гармонических функций.
- 32. Обобщенно-гармонические функции.
- 33. Поведение гармонической функции на бесконечности.
- 34. Дифференциальное уравнение Пирсона.
- 35. Дифференциальное уравнение для классических ортогональных многочленов.
- 36. Ряды Фурье по ортогональным системам многочленов.
- 37. Исследование достаточных условий сходимости рядов Фурье.
- 38. Свойство нулей ортогональных многочленов.
- 39. Дифференциальное уравнение Лежандра и его решение.
- 40. Свойства полиномов Лежандра.
- 41. Ряды Фурье по многочленам Лежандра.
- 42. Теорема о равносходимости для рядов Фурье-Лежандра.
- 43. Примеры разложений функций в ряды Фурье-Лежандра.
- 44. Дифференциальное уравнение Чебышева и его решение.
- 45. Многочлены Чебышева первого рода и их свойства.
- 46. Ряды Фурье по многочленам Чебышева.
- 47. Многочлены Чебышева второго рода и их свойства.
- 48. Многочлены Чебышева-Эрмита и их свойства.
- 49. Многочлены Чебышева- Лагерра и их свойства.
- 50. Многочлены Чебышева- Якоби и их свойства.

Вопросы и задания к коллоквиуму и экзамену

- 1. Анализ метода решения смешанной задачи колебания конечной струны
- 2. Задачи колебания прямоугольной и круглой мембраны
- 3. Общая схема метода Фурье
- 4. Понятие о спектре операторов. Характер спектра. Спектры операторов возникающих при решении задачи Штурма- Лиувилля. Свойства собственных функций

- 5. Тригонометрическая система функций и её основные свойства (ортогональность, полнота и замкнутость, неравенство и тождество Бесселя)
- 6. Тригонометрический ряд Фурье, проблемы сходимости.
- 7. Классическая ортогональная система тригонометрических функций
- 8. Уравнение Бесселя и функции Бесселя и Ханкеля.
- 9. Уравнение Бесселя и его частные случаи.
- 10. Функции Бесселя как решение уравнения Бесселя и их свойства.
- 11. Функции Ханкеля и Бесселя.
- 12. Полиномы Лежандра и ортогональные многочлены, дифференциальное уравнение Лежандра и его решение
- 13. Свойства полиномов Лежандра
- 14. Многочлены Чебышева-Эрмита, Чебышева –Лагерра и Якоби.
- 15. Гамма-функции и Бета-функции.
- 16. Гамма-функции вещественного комплексного аргумента и их свойства.
- 17. Бета-функции и ее основные свойства и связь с гамма-функцией
- 18. Сферические функции. Сферические функции и их основные свойства
- 19. Различные способы, порождающие специальные функции
- 20. Основные классы специальных функций.

Примерная тематика докладов, рефератов по дисциплине

- 1. Основные задачи математической физики, приводящих к специальным функциям
- 2. Методы решения смешанной задачи колебания конечной струны
- 3. Общая схема метода Фурье
- 4. Понятие о спектре операторов.
- 5. Характер спектра.
- 6. Спектры операторов возникающих при решении задачи Штурма- Лиувилля.
- 7. Свойства собственных функций
- 8. Гамма-функции и Бета-функции.
- 9. Гамма-функции вещественного комплексного аргумента и их свойства.
- 10. Бета-функции и ее основные свойства и связь с гамма-функцией

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

Код и	Код и	Планируемые	Процедура
код и наименование	наименование	результаты обучения	освоения
компетенции из	индикатора	pesysibilation doy territy	освосии
ΦΓΟС ΒΟ	достижения		
41 0 C D O	компетенций (в		
	соответствии с		
	ПООП (при		
	наличии))		
ОПК-2. Способен	ОПК-2.1. Знает	Знает: общие вопросы	Устный опрос,
строить и	основные	теории	письменный опрос
анализировать	принципы	специальных функций	Three members on pee
математические	математического	математической физики,	
модели в	моделирования,	их непосредственные	
современном	методы	связи с смежными	
естествознании,	построения и	разделами математики,	
технике,	анализа	математической физики и	
экономике и	математических	теоретической физики.	
управлении	моделей.	Умеет: осуществлять	
	ОПК-2.2. Умеет	критический и	
	модифицировать,	сравнительный анализ	
	анализировать и	решений задач самой	
	реализовывать	математики и	
	математические	естествознания,	
	модели в задачах	выражаемые через	
	естествознания,	аппарат	
	техники,	специальных функций	
	экономики и	математической физики.	
	управления.	При решении	
		прикладных задач на	
		основе системного	
		анализа среди множества	
		решений умеет выбирать	
		оптимальные и имеющие	
		прикладной физический	
		смысл.	
		Владеет: навыками	
		подбора	
		подходящих	
		специальных функций	
		математической физики	
		для адекватного	
		применения в	
		комплексных	
		исследованиях по математике или другим	
		дисциплинам, выработки	
		нового вектора стратегии	
		действий в проблемных	
		ситуациях.	
ПК-1.		Знает: основные понятия	Письменный опрос
Способен к		и методы специальных	тисьменный опрос
интенсивной		функций, природу и	
интенсивнои		функции, природу и	

научно-	физическую суть
исследовательской	математических моделей,
работе	дифференциальных
	уравнений, решениями
	которых являются
	рассматриваемые
	специальные функции.
	Владеет: основными
	методами специальных
	функций, вопросами
	приложений их к задачам
	физики твердо тела,
	квантовой механики,
	теории упругости,
	теоретической механики.
	Умеет: применять
	методы специальных
	функций к конкретным
	уравнениям
	математической физики,
	возникающих в
	профессиональной
	деятельности при
	рассмотрении различных
	задач не только самой
	математики, но и
	естествознания
	с учетом их специфики

7.2. Типовые контрольные задания

- 7.2.1. Примерные контрольные вопросы к коллоквиуму (см. п. 6)
- 7.2.2. Примерные темы докладов и рефератов (см. п. 6)
- 7.2.3. Вопросы для контроля самостоятельной работы студентов(см. п. 6)
- 7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля – 50%.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях -30 баллов,
- выполнение лабораторных заданий 30 баллов,
- выполнение домашних (аудиторных) контрольных работ 30баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос -50 баллов,

- письменная контрольная работа -50 баллов,

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

Основная литература

- 1. Дунаев А.С. Специальные функции [Электронный ресурс] : учебное пособие / А.С. Дунаев, В.И. Шлычков. Электрон. текстовые данные. Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2015. 938 с. 978-5-7996-1523-9. Режим доступа: http://www.iprbookshop.ru/66596.html(29.05.2018).
- 2. Методы математической физики и специальные функции : [Учеб. пособия для втузов] / В. Я. Арсенин. М. : "Наука", 1984, 1974. 431 с. Местонахождение: Научная библиотека ДГУ
- 3. Де Брёйн Н. Г., Асимптотические методы в анализе / Де Брёйн Н. Г. Москва : Издательство иностранной литературы, 1961. 247 с. : ил. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=464100 (29.05.2018).
- 4. Бейтмен Г. и Эрдейи А.Высшие трансцендентные функции. Гипергеометрическая функция. Функции Лежандра / Бейтмен Г. и Эрдейи А.; Пер. с англ. Н.Я. Виленкина. М.: "Наука", 1965. 294 с.: с черт.; 22 см. Местонахождение: Научная библиотека ЛГУ

Дополнительная литература

- **5.** Холодова С.Е. Специальные функции в задачах математической физики [Электронный ресурс] / С.Е. Холодова, С.И. Перегудин. Электрон. текстовые данные. СПб. : Университет ИТМО, 2012. 71 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/68147.html(29.05.2018).
- **6.** Высшая математика. Том 6. Специальные функции. Основные задачи математической физики. Основы линейного программирования [Электронный ресурс] : учебник / ГосподариковА.П. [и др.]. Электрон. текстовые данные. СПб. : Санкт-Петербургский горный университет, 2015. 122 с. 978-5-94211-720-7. Режим доступа: http://www.iprbookshop.ru/71692.html(29.05.2018).

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

№	Название	Электронный адрес	Содержание
1.	Math.ru	www.math.ru	Сайт посвящён математике (и математикам. Этот сайт — для школьников, студентов, учителей и для
			всех, кто интересуется математикой. Тех, кого интересует зона роста современной науки математика.
2.	Exponenta.ru	www.exponenta. ru	Студентам: - запустить установленный у Вас математический паке выбрать в списке примеров, решенных в среде этого пакета, подходящий и решить свою задачу по аналогии

			Преподавателям:
			- использовать математические пакеты для поддержки курса лекций.
			Всем заинтересованным пользователям: 1. — можно ознакомиться с примерами применения математических пакетов в образовательном процессе. 2. — найти демо-версии популярных математических пакетов, электронные книги и свободно распространяемые программы.
3.	Математика	www.mathemati cs.ru	учебный материал по различным разделам математики – алгебра, планиметрия, стереометрия, функции, графики и другие.
4.	Российское образование.	www.edu.ru	федеральный образовательный портал: учреждения, программы, стандарты, ВУЗы, тесты ЕГЭ.
5.	Электронные каталоги Научной библиотеки ДГУ	http://elib.dgu.ru , http://edu.icc.dg u.ru	
6.	Общероссийск ий математически й портал (Math- Net. Ru)	www.mathnet.ru	Портал, предоставляет различные возможности в поиске информации о математической жизни в России Портал содержит разделы: журналы, видеотека, библиотека, персоналии, организации, конференции.

10. Методические указания для обучающихся по освоению дисциплины.

Учебная программа по курсу «Специальные функции математической физики» распределена по темам и по часам на лекции, практические и лабораторные занятия; предусмотрена также самостоятельная учебная работа студентов. По каждой теме преподаватель указывает студентам необходимую литературу (учебники, учебные пособия, сборники задач и упражнений), а также соответствующие темам параграфы и номера упражнений и задач.

Самостоятельная работа студентов складывается из работы над лекциями, с учебниками, решения рекомендуемых задач, подготовки к защите лабораторных работ, а также из подготовки к контрольным работам, коллоквиумам и сдаче зачетов и экзаменов.

При работе с лекциями и учебниками особое внимание следует уделить изучению основных понятий и определений по данному разделу, а также особенностям примененных методов и технологий доказательства теорем. Решение достаточного количества задач по данной теме поможет творческому овладению методами доказательства математических утверждений.

После изучения каждой темы рекомендуется самостоятельно воспроизвести основные определения, формулировки и доказательства теорем. Для самопроверки рекомендуется также использовать контрольные вопросы, приводимые в учебниках после каждой темы.

Основная цель практических занятий – подготовка студентов к самостоятельной работе над теоретическим материалом и к решению задач и упражнений.

Дисциплина «Специальные функции математической физики» являются основной базой всех специальных дисциплин, изучаемых будущими бакалаврами. Специфика дисциплины состоит в том, что рассмотрение теоретических вопросов здесь тесно связано с решением практических задач.

На лекциях особенно большое значение имеет реализация следующих задач:

- 1) глубокое осмысливание ряда понятий и положений, введенных в теоретическом курсе;
- 2) раскрытие прикладного значения теоретических сведений;
- 3) развитие творческого подхода к решению практических и некоторых теоретических вопросов;
- 4) закрепление полученных знаний путем многократного практического использования;
- 5) приобретение прочных навыков типовых расчетов;
- 6) расширение кругозора, приобретение полезных сведений, касающихся технических данных реальных объектов и конкретных условий их эксплуатации.

Наряду с перечисленными выше образовательными целями, занятия преследуют и важные цели воспитательного характера, а именно:

- а) воспитание настойчивости в достижении конечной цели;
- б) воспитание дисциплины ума, аккуратности, добросовестного отношения к работе;
- в) воспитание критического отношения к своей деятельности, умения анализировать свою работу, искать оптимальный путь решения, находить свои ошибки и устранять их.

Методические рекомендации

Для подготовки к практическим занятиям нужно изучить следующие литературные источники:

- 7. Арсенин В.Я. Методы математической физики и специальные функции, М:Наука, 1984
- 8. Никифоров А.Ф., Уваров В.Р. Специальные функции математической физики. М: Наука, 1984.
- 9. Кошлаков Н.С. Уравнения в частных производных математической физики, 1970.

Для подготовки к экзамену: повторить лекционный материал, проанализировать список рекомендованной литературы, решить самостоятельно задачи и примеры из учебного пособия: Кошлаков Н.С. Уравнения в частных производных математической физики, 1970.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

При осуществлении образовательного процесса по дисциплине рекомендуются компьютерные технологии, основанные на операционных системах Windows, Ubuntu, Linux, прикладные программы Mathcad, Matlab, Mathematica, а также сайты образовательных учреждений и журналов, информационно-справочные системы, электронные учебники.

При проведении занятий рекомендуется использовать компьютеры, мультимедийные проекторы, интерактивные экраны.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Университет обладает достаточной базой аудиторий для проведения всех видов занятий, предусмотренных образовательной программой дисциплины математический анализ. Кроме того, на факультете 4 компьютерных класса и 4 учебных класса, оснащенных компьютерами с соответствующим программным обеспечением и мультимедиа-

проекторами.В университете имеется необходимый комплект лицензионного программного обеспечения.