МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Химический факультет

Кафедра неорганической химии

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Физико-химические основы нанотехнологий

Образовательная программа

Направление

<u>04.04.01. – Химия</u>

Профиль подготовки

Неорганическая химия

Уровень высшего образования

Магистратура

Форма обучения

очная

Статус дисциплины: вариативная

Махачкала 2018

Рабочая программа дисциплины «<u>Физико-химические основы</u> нанотехнологий » составлена в 2018 году в соответствии с требованиями ФГОС ВО по направлению подготовки <u>04.04.01 Химия</u> (уровень магистратура)

от «23» сентября 2015 г. №1042

Разработчик: кафедра неорганической химии, к.х.н., доц. Вердиев Н.Н.

Рабочая программа дисциплины одобрена: на заседании кафедры неорганической химии от « $\cancel{\mathbb{S}}$ » $\cancel{\mathbb{M}}$ 2018 г., протокол № $\cancel{\mathbb{G}}$.

Зав. кафедрой Увал Магомедбеков У.Г.;

Председатель <u>Уасац</u> Гасангаджиева У.Г.

Рабочая программа дисциплины согласована с учебно-методическим управлением

«<u>Дв</u>» <u>06</u> 2018 г. <u>Пр</u> Гасангаджиева А.Г.

Аннотация рабочей программы дисциплины

Дисциплина «Физико-химические основы нанотехнологий» входит в перечень дисциплин по выбору вариативной части образовательной программы по направлению **04.04.01**. Химия (уровень Магистратура).

Дисциплина реализуется на химическом факультете Дагестанского государственного университета кафедрой неорганической химии.

Содержание дисциплины охватывает круг вопросов, связанных с технологией нанесения и удаления покрытий на поверхности различных материалов, получение заданной конфигурации технологических структурных элементов микросхем, в том числе полупроводниковая технология, пленочная технология, технология их изготовления. Подготовка поверхности деталей. Характеристики типовых загрязнений. Обезжиривание в щелочных растворах и органических растворителях. Контроль качества очистки.

Дисциплина нацелена на формирование следующих компетенций выпускника: общекультурных – профессиональных – <u>ПК-1, ПК-2, ПК-3</u>.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: *лекции, лабораторные занятия, самостоятельная работа.*

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме *контрольная работа, коллоквиум* промежуточный контроль в форме *зачета*.

Объем дисциплины составляет **3** зачетных единицы, в том числе в 108 академических часах по видам учебных занятий:

Семестр	Учебные занятия			Форма		
					промежуточной	
					аттестации	
	в том числе					
	Ко	Контактная работа обучающихся с			CPC	
		преподавателем				
	Всего	Из них				
		Лекции	Лабор. занятия /	Консуль		
			практич. занятия	тации		
3	108	14	28		66	зачет

1. Цель освоения дисциплины

Цель дисциплины: раскрытие природы и свойств наноматериалов, технологий их получения, разработка способов исследования для наиболее эффективного использования их в различных областях науки и техники, изучение технологий получения и свойств наноматериалов.

Основной **задачей**, решаемой в процессе изучения курса, является приобретение обучающимися четких представлений о возможностях

2. Место дисциплины в структуре ОПОП специалитета

Дисциплина **«Физико-химические основы нанотехнологий»** входит в перечень курсов по выбору вариативной части образовательной программы специальности **04.04.01**— **Химия**, профиль подготовки **Неорганическая химия**.

Курс строится на базе знаний по химическим и физическим дисциплинам, а также высшей математике, объём которых определяется программами химического образования в высшей школе.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Компетенции	Формулировка компетенции	Планируемые результаты обучения		
компетенции	из ФГОС	(показатели достижения заданного		
	ns \$100	уровня освоения компетенций)		
ПК-1	способностью проводить	Знает:		
1117-1	1			
	научные исследования по	методы проведения научных		
	сформулированной тематике	1 1 7 1		
	и получать новые научные и	тематике и получения новых научных и		
	прикладные результаты	прикладных результатов.		
		Умеет:		
		проводить научные исследования по		
		сформулированной тематике и получать		
		новые научные и прикладные результаты.		
		Владеет:		
		навыками проведения научных		
		исследований по сформулированной		
		тематике и получения новых научных и		
		прикладных результатов.		
ПК-2	владением навыками			
	использования современной	принципы работы применяемой для		
	аппаратуры при проведении	исследований аппаратуры.		
	научных исследований	Умеет:		
		использовать современную аппаратуру		
		при проведении научных исследований.		
		Владеет:		
		навыками практической работы на		
		современной аппаратуре при проведении		
		научных исследований.		
ПК-3	готовность использовать	Знает:		
	современную аппаратуру при	принципы работы применяемой для		
	проведении научных	исследований аппаратуры.		
	исследований	Умеет:		
	-71	использовать современную аппаратуру		
		при проведении научных исследований.		

	Владеет:
	навыками практической работы на
	современной аппаратуре при проведении
	научных исследований

4. Объем, структура и содержание дисциплины

4.1. Объем дисциплины составляет **3** зачетные единицы, **108** академических часа.

4.2. Структура дисциплины

),c	ъ	D		ے ں		Ф.	
<u>No</u>	Разделы и темы Виды учебной работы,			Формы			
п/п	дисциплины	включая СРС и трудоемкость			текущего		
		(в час)			контроля		
		Всего	Лек	Лаб	CPC	и промеж.	
						аттестации	
	Модуль 1- основы нанотехнологий						
1.	Физико-химические основы	18	2	6	10	Опрос	
	нанотехнологий, роль в						
	современной отрасли знаний и						
	промышленности.						
2.	Источники нанотехнологий,	18	2	6	10	Опрос	
	особенности становления и						
	миниатюризация окружающего						
	мира с помощью нанотехнологий						
	Всего за І модуль	36	4	12	20		
	•						
	Модуль II – наноматериалы в э	электрон	но-вычи	слитель	ной тех	нике.	
3.	Наноматериалы в электронно-	18	2	6	10	Контр. работа	
	вычислительной технике.						
4.	Молекулы и молекулярные	18	4	6	8		
	ансамбли, и естественный предел						
	миниатюризации.						
	•						
	Всего за III модуль	36	6	12	18		
	Модуль III. Молекулы и молек	улярные	ансамб.	ли, и ест	гественн	ный предел	
	миниа	атюризац	ции			•	
5.	Перспективные материалы и	18	2	2	14	Опрос	
	среды: управление свойствами					1	
	материала направленным						
	изменением микроструктуры						
6		10	2	2	14	Voumnouve	
6.	Неорганические наноструктурные	18	2		14	Контрольная	
	материалы.	26		4	20	работа	
<u> </u>	Всего по модулю 3	36	4	4	28	Коллоквиум	
	Итого за семестр	108	14	28	66	зачет	

4.3. Содержание дисциплины, структурированное по темам, разделам и модулям.

4.3.1. Содержание лекционных занятий по дисциплине.

Модуль 1. Основы нанотехнологий

1. Введение в физико-химические основы нанотехнологий

Возникновение и развития нанотехнологий. Наночастицы и наноматериалы. Области использования нанотехнологий в современной промышленности. Наноструктуры. Композитные материалы для наноструктур их характеристики и классификация. Методологическая база необходимая при изучении и исследовании наноматериалов. Спектроскопия. Динамические контактные методы. Электронная микроскопия. Метод постоянного тока. Сканирующая туннельная микроскопия. Метод отображения плотности состояний. Контактные, полуконтактные, бесконтактные и многопроходные методы.

2. Источники нанотехнологий, особенности становления миниатюризация окружающего мира c помощью нанотехнологий. как продукт высоких технологий. Способы получения Наноматериалы металлических наноматериалов. Физические и химические методы получения наноматериалов. Семейства наноматериалов практически c свойствами. Слоистые и волокнистые композиты. Эрозионно-взрывные нанотехнологии новые наноматериалы.

Модуль 2. Наноматериалы в электронно-вычислительной технике.

3. Современные наноразмерные электронные лампы. Вакуумные электронные лампы, транзисторы. Чипы в вычислительной технике. Бимолекулярные векторы, переносящие генетическую информацию, для производства трансгенных организмов.

Модуль 3. Молекулы и молекулярные ансамбли, и естественный предел миниатюризации

4. Миниатюризация окружающего мира с помощью нанотехнологий. Молекулярно-кинетические свойства нанодисперсных систем. Роль самоорганизации в наномире. Структурные скелеты и надмолекулярное состояние вещества. Химические связи в неорганических, органических и элементоорганических соединениях. Фундаментальные и прикладные аспекты наномедицины и нанобиологии. Перспективные материалы и среды, управление свойствами материала направленным изменением микроструктуры

- Синтез полимеров контролируемой структуры. Микрофазное расслоение блок-сополимеров. Агрегатные и фазовые состояния полимеров. Полимерно-неорганические Нанопористые полимерные материалы. материалы. Комбинированные нанокомпозиты. Сверхпрочные полимонокристаллические нити с полимерными матрицами.
- 6. Неорганические Прозрачные наноструктурные материалы. на базе наноматериалов. светозащитные покрытия Невидимый спектр поглощения для полимерной матрицы с частицами оксида металла. Спектры поглощения, в пределах от ультрафиолетового до видимого светового излучения. Производство наночастиц при помощи процесса распыления («нисходящего») и процесса самосборки («восходящего»). Поверхностные наночастиц. Неподвижные неорганические наночастицы изменяющие свойства органических матриц. Научные принципы, лежащие в основе получения важнейших свойств наноматериалов. Металлические многослойные материалы. Чередование уровней мягких и твердых металлов.

4.4. Темы лабораторных занятий (лабораторный практикум)

Модуль 1. Основы нанотехнологий

- 1. Методологическая база необходимая при изучении и исследовании наноматериалов. Композитные материалы для наноструктур их характеристики и классификация. Ознакомление с электронной микроскопией. Метод отображения плотности состояний. Контактные, полуконтактные, бесконтактные и многопроходные методы.
- **2.** Способы получения металлических наноматериалов. Физические и химические методы получения наноматериалов. Эрозионно-взрывные нанотехнологии новые наноматериалы.

Модуль 2. Наноматериалы в электронно-вычислительной технике.

3. Фундаментальные и прикладные аспекты наномедицины и нанобиологии. Молекулярно-кинетические свойства нанодисперсных систем. Полимерно-неорганические нанокомпозиты. Сверхпрочные материалы.

Модуль 3. Молекулы и молекулярные ансамбли, и естественный предел миниатюризации

4. Производство наночастиц при помощи процесса распыления («нисходящего») и процесса самосборки («восходящего»). Поверхностные наночастиц. Неподвижные неорганические наночастицы изменяющие свойства органических матриц.

5. Образовательные технологии

В соответствии с требованиями ФГОС ВО реализация компетентностного подхода предусматривает широкое использование при проведении занятий по неорганической химии инновационных (объяснительно-иллюстративное обучение, предметно-ориентированное обучение, профессиональноориентированное обучение, проектная методология обучения, организация самостоятельного обучения, интерактивные методы обучения) и традиционных (лекция-визуализация, лекция-презентация, компьютерные симуляции, лабораторная работа) технологий обучения. работа, самостоятельная Удельный вес занятий, проводимых в интерактивных формах составляет менее 30 % аудиторных занятий. Предполагается встреча с ведущими учеными республики.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов имеет основную цель – обеспечить качество подготовки выпускаемых специалистов в соответствии с требованиями ФГОС ВО.

Формы и виды самостоятельной работы студентов по дисциплине устанавливаются следующие:

- проработка дополнительных тем, не вошедших в лекционный материал, но обязательных согласно учебной программе дисциплины;
- проработка пройденных лекционных материалов по конспекту лекций, учебникам и пособиям на основании вопросов, подготовленных преподавателем;
- подготовка к лабораторным занятиям;
- подготовка к промежуточному и рубежному контролю;
- подготовка научных докладов и творческих работ.

Контроль результатов самостоятельной работы осуществляется преподавателем в течение всего семестра в виде:

- устного опроса (фронтального и индивидуального);
- тестирования;
- проведения письменной (контрольной) работы;
- проведения коллоквиума.

Виды и порядок выполнения самостоятельной работы

№	Вид самостоятельной работы	Вид контроля	Учебно-методическое обеспечение		
1	Теоретическая подготовка. Проработка учебного материала.	Устный опрос, тестирование	Лекции, рекомендованная литература, интернет ресурсы. См. разделы 4.3; 8; 9. данного документа		
2	Подготовка к отчетам по лабораторным работам	Проверка выполнения расчетов, оформления работы в лабораторном журнале и проработки вопросов к текущей теме по рекомендованной литературе	См. разделы: 4.4.; 8; 9. данного документа		
3	Подготовка к коллоквиуму	Промежуточная аттестация в форме контрольной работы	См. разделы 4.3, 7.3; 8-10 данного документа		
4	Подготовка к зачету	Устный опрос	См. разделы 7.2; 7.2.2; 8-10 данного документа		

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Компетенции	Знания, умения, навыки	Процедура освоения
ПК-1	Знает:	Письменный опрос,
	основные методы проведения научных	устный опрос,
	исследований по сформулированной	тестирование.
	тематике и получения новых научных и	
	прикладных результатов.	
	Умеет:	
	проводить научные исследования по	
	сформулированной тематике и получать	
	новые научные и прикладные результаты.	
	Владеет:	
	навыками проведения научных	
	исследований по сформулированной	
	тематике и получения новых научных и	
	прикладных результатов.	

ПК-2	Знает: принципы работы применяемой для исследований аппаратуры. Умеет: использовать современную аппаратуру при проведении научных исследований. Владеет: навыками практической работы на	Письменный опрос, устный опрос, тестирование.
	современной аппаратуре при проведении научных исследований.	
ПК-3	Знает: принципы работы применяемой для исследований аппаратуры. Умеет: использовать современную аппаратуру при проведении научных исследований. Владеет: навыками практической работы на современной аппаратуре при проведении научных исследований	Письменный опрос, устный опрос, тестирование.

7.2. Типовые контрольные задания.

7.2.1. Примерные контрольные задания для проведения текущего контроля.

Модуль 1. Основы нанотехнологий

- 1. Сверхпрочные материалы. Комбинированные полимонокристаллические нити с полимерными матрицами.
 - 2. Прозрачные светозащитные покрытия на базе наноматериалов.
- 3. Невидимый спектр поглощения для полимерной матрицы с частицами оксидов металлов.

Модуль 2. Молекулы и молекулярные ансамбли, и естественный предел миниатюризации

- 4. Спектры поглощения, в пределах от ультрафиолетового до видимого светового излучения.
- 5. Производство наночастиц при помощи процесса распыления («нисходящего») и процесса самосборки («восходящего»).
 - 6. Поверхностные наночастиц.

Модуль 3. Наноматериалы в электронно-вычислительной технике.

- 7. Неподвижные неорганические наночастицы изменяющие свойства органических матриц.
- 8. Научные принципы, лежащие в основе получения важнейших свойств наноматериалов.
- 9. Металлические многослойные материалы. Чередование уровней мягких и твердых металлов.

7.2.2. Контрольные вопросы для промежуточной аттестации (сдачи зачета)

- 1. Возникновение и развития нанотехнологий. Наночастицы и наноматериалы.
- 2. Области использования нанотехнологий в современной промышленности.
- 3. Наноструктуры. Композитные материалы для наноструктур их характеристики и классификация.
- 4. Методологическая база необходимая при изучении и исследовании наноматериалов. Спектроскопия. Динамические контактные методы.
- 5. Электронная микроскопия. Метод постоянного тока. Сканирующая туннельная микроскопия. Метод отображения плотности состояний.
- 6. Контактные, полуконтактные, бесконтактные и многопроходные методы.
- 7. Наноматериалы как продукт высоких технологий. Способы получения металлических наноматериалов.
- 8. Физические и химические методы получения наноматериалов. Семейства наноматериалов с практически ценными свойствами.
- 9. Слоистые и волокнистые композиты. Эрозионно-взрывные нанотехнологии новые наноматериалы.
 - 10. Современные наноразмерные электронные лампы.
 - 11. Вакуумные электронные лампы, транзисторы.
 - 12. Чипы в вычислительной технике.
- 13. Бимолекулярные векторы, переносящие генетическую информацию, для производства трансгенных организмов.
 - 14. Миниатюризация окружающего мира с помощью нанотехнологий.
- 15. Молекулярно-кинетические свойства нанодисперсных систем. Роль самоорганизации в наномире.
 - 16. Структурные скелеты и надмолекулярное состояние вещества.
- 17. Химические связи в неорганических, органических и элементоорганических соединениях.
- 18. Фундаментальные и прикладные аспекты наномедицины и нанобиологии.
 - 19. Синтез полимеров контролируемой структуры.
 - 20. Микрофазное расслоение блок-сополимеров.
 - 21. Агрегатные и фазовые состояния полимеров.
 - 22. Нанопористые полимерные материалы.
 - 23. Полимерно-неорганические нанокомпозиты.

7.3. Описание показателей и критериев оценивания компетенций, описание шкал оценивания.

Формы контроля следующие: текущий контроль, рубежный контроль по модулю и итоговый контроль.

Текущий контроль успеваемости осуществляется непрерывно, на протяжении всего курса. Прежде всего, это устный опрос по ходу лабораторных занятий, выполняемый для оперативной активизации внимания студентов и оценки их уровня восприятия. Результаты устного опроса учитываются при выборе индивидуальных задач для решения.

Промежуточный контроль проводится в форме контрольной работы или коллоквиума.

Итоговый контроль проводится в форме зачета.

Оценка каждого вида деятельности проводится следующим образом:

- 1. Результаты всех видов учебной деятельности студентов оцениваются по 100 балльной шкале.
- 2. Средний балл за текущий контроль (ТК) определяется как средняя арифметическая баллов, полученных студентом за аудиторную и самостоятельную работу.
- 3. Итоговый модульный балл за текущий контроль определяется как произведение среднего балла за ТК и коэффициента весомости ТК, равный 30 %, или 0,3.
- 4. Средний балл за различные формы проведения промежуточного контроля (ПК), таких как тестирования, письменные работы (коллоквиумы), доклады, рефераты и др., определяется как их средняя величина.
- 5. Итоговый балл за ПК определяется как произведение среднего балла за ПК и коэффициента весомости ПК, равный 70 %, или 0,7.
 - 6. Итоговый балл за модуль определяется как сумма баллов за ТК и ПК.

Итоговый контроль (зачет) проводится в виде тестирования — 100 баллов. Весомость итогового контроля в оценке знаний студента составляет 50 %, а среднего балла по всем модулям также — 50 %. Шкала диапазона для перевода рейтингового балла с учетом весомости различных видов контроля в <5» — бальную систему следующая: от 51 до 100 баллов — зачет, менее 51 балла — незачет.

7.4. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля -70 % и промежуточного контроля -30 %.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- выполнение лабораторных заданий баллов,

- выполнение домашних (аудиторных) контрольных работ 25 баллов. Промежуточный контроль по дисциплине включает:
- устный опрос 25 баллов,
- письменная контрольная работа 20 баллов,
- тестирование 25 баллов.

Зачет сдают в устной или письменно-устной форме в виде ответов на задания; если понадобится, то задаются дополнительно контрольные вопросы (при необходимости уточнить оценку).

Оценка «отлично» ставится за уверенное владение материалом курса и демонстрацию способности самостоятельно анализировать вопросы применения и развития современной неорганической химии.

Оценка «хорошо» ставится при полном выполнении требований к прохождению курса и умении ориентироваться в изученном материале.

Оценка «удовлетворительно» ставится при достаточном выполнении требований к прохождению курса и владении конкретными знаниями по программе курса.

Оценка «неудовлетворительно» ставится, если требования к прохождению курса не выполнены и студент не может показать владение материалом.

Если хотя бы одна из компетенций не сформирована, то положительная оценка по дисциплине не может быть выставлена.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины:

а) основная литература:

- 1. Рамбиди, Н.Г. Физические и химические основы нанотехнологий / Н.Г. Рамбиди, А.В. Березкин. Москва Физматлит, 2009. 455 с. ISBN 978-5-9221-0988-8; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=76611
 - 2. Кларк Т. Компьютерная химия. М.: Мир, 1990. 383 с
- 3. Корольков, Д.В. Основы неорганической химии : пособие для учителей / Д. В. Корольков. М. : Просвещение, 1982. 269 с. : ил. 0-65. с. : ил. Библ. в кн. ISBN 978-5-8265-1263-0. ISBN 978-5-8265-1468-9 (ч. 2) ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=445050

б) дополнительная литература:

1. Физико-химия наночастиц, наноматериалов и наноструктур: учебное пособие / А.А. Барыбин, В.А. Бахтина, В.И. Томилин, Н.П. Томилина. - Красноярск: Сибирский федеральный университет, 2011. - 236 с. - ISBN

- 978-5-7638-2396-7; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php. page=book&id=229593
- 2. Диагностика физико-механических характеристик наноматериалов : учебное пособие : в 2 ч. / И.Н. Шубин, С.В. Блинов, Т.В. Пасько и др. ; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет». Тамбов : Издательство ФГБОУ ВПО «ТГТУ», 2015. Ч. 2. 81 с. : ил. Библ. в кн. ISBN 978-5-8265-1263-0. ISBN 978-5-8265-1468-9 (ч. 2) ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=445050
- 3. Наноструктурные материалы 2014: Беларусь Россия Украина (HAHO-2014): материалы IV Международной научной конференции. Минск, 7–10 окт. 2014 г.: научное издание / Национальная академия наук Беларуси, Научно-практический центр HAH Беларуси материаловедению. - Минск: Белорусская наука, 2014. - 432 с.: ил. -**ISBN** 978-985-08-1762-4; To же [Электронный pecypc]. URL: http://biblioclub.ru/index.php?page=book&id=330567

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

Электронные учебные ресурсы:

- 1. eLIBRARY.RU [Электронный ресурс]: электронная библиотека / Науч. электрон.б-ка. Москва, 1999. Режим доступа: http://elibrary.ru/defaultx.asp (дата обращения: 20.05.2018). Яз. рус., англ.
- 2. Электронный каталог НБ ДГУ [Электронный ресурс]: база данных содержит сведения о всех видах лит, поступающих в фонд НБ ДГУ/Дагестанский гос. ун-т. Махачкала, 2010 Режим доступа: http://elib.dgu.ru, свободный (дата обращения: 22.05.2018)
- 3. Moodle [Электронный ресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. Махачкала, г. Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/ (дата обращения: 18.05.2018).
- 4. https://ibooks.ru/
- 5. www.book.ru/
- 6. Химические серверы ChemWeb, ChemExpress Online, ChemNet.com http://www.Himhelp.ru
- 7. Каталог образовательных интернет-ресурсов http://www.edu.ru/

10. Методические указания для обучающихся по освоению программы

Учебный материал по дисциплине дается на лекциях, практических занятиях и прорабатывается в ходе самостоятельной работы.

На лекциях систематически и последовательно излагается материал теоретического Основное внимание при характера. ЭТОМ рассмотрению основных (опорных) понятий теоретических основ молекулярной спектроскопии. При подготовки к лекции целесообразно прочитать материал лекции по любому из рекомендованных в списке литературы учебников. Это существенно помогает продуктивно воспринимать материал лекции и хорошо его законспектировать. После лекции студентам рекомендуется внимательно проработать написанный конспект лекции, уяснить попытаться помощью учебников. непонятые места c обучающиеся не могут самостоятельно найти ответы на возникшие вопросы, можно обратиться к лектору или преподавателю на практических занятиях.

Практические занятия позволяют развивать у студентов творческое умение самостоятельно мышление, изучать анализировать практику, и они имеют исключительно важное значение в развитии самостоятельного мышления. В процессе выполнения практических работ для систематизации основных положений рекомендуется составление конспектов. Необходимо обратить внимание обучающихся на выполнение предусмотренных программой заданий в соответствии с тематическим планом, выделение наиболее сложных и проблемных вопросов по изучаемой теме, рекомендаций разъяснений И ПО данным вопросам преподавателей, проведение самоконтроля путем ответов на вопросы текущего контроля знаний, решения представленных в учебно-методических материалах кафедры задач, тестов по отдельным вопросам изучаемой темы.

Самостоятельная работа студентов способствует более глубокому усвоению изучаемого курса, формированию навыков исследовательской работы и ориентированию студентов на умение применять теоретические знания на практике. Поэтому только постоянная, систематическая самостоятельная работа обучающихся будет способствовать нормальному усвоению знаний. Формы и виды самостоятельной работы студентов, а также формы их контроля представлены в разделе 6. Результаты самостоятельной работы студентов учитываются при аттестации студента (при сдаче зачета).

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

При проведении занятий используются:

а) технические средства:

компьютерная техника и средства связи (проектор, экран, видеокамера), проводится компьютерное тестирование, демонстрация мультимедийных материалов, информационные справочные системы, электронные версии

учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренных учебной рабочей программой.

б) программные системы:

операционные системы Microsoft Windows XP, Microsoft Vista;

поисковые системы Yandex, Google, Rambler, Yahoo;

специализированное программное обеспечение СДО Moodle, SunRAV Book Office Pro, Sun RAV Test OfficePro;

программное обеспечение по химии http://www/mdli.com;

химическое программное обеспечение http://www.acdlabs.com/download/; программное обеспечение по химии. Cambridge Soft (Chem Office);

модели молекул TORVS Research Team: Molecular Models; визуализация молекул (более 175000 трехмерных молекулярных моделей с возможностью поиска) online GIF/PNG creator for chemical structures;

рисование лабораторного оборудования The Glassware Gallery

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

В соответствии с требованиями ФГОС ВО кафедра имеет специально оборудованную учебные аудитории для проведения **лекционных и практических занятий**, помещения для **лабораторных работ** на группу студентов из 12 человек и **вспомогательное помещение** для хранения химических реактивов и профилактического обслуживания учебного и учебнонаучного оборудования.

Помещения для лекционных и практических занятий укомплектованы комплектами электропитания ЩЭ (220 В, 2 кВт, в комплекте с УЗО), специализированной мебелью и оргсредствами (доска аудиторная для написания мелом и фломастером, стойка-кафедра, стол лектора, стул-кресло, столы аудиторные двухместные (1 на каждых двух студентов), стул аудиторный (1 на каждого студента), а также техническими средствами обучения (экран настенный с электроприводом и дистанционным управлением, мультимедиа проектор с ноутбуком).

Лабораторные занятия проводятся В специально оборудованных лабораториях с применением необходимых средств обучения (лабораторного оборудования, образцов, нормативных и технических документов и т.п.). Помещения лабораторных практикумов укомплектованы специальной учебнолабораторной мебелью (в том числе столами с химически стойкими покрытиями), учебно-научным лабораторным оборудованием, измерительными приборами и химической посудой, в полной мере обеспечивающими выполнение требований программы по неорганической химии. Материальнолабораторного средства ДЛЯ проведения практикума технические дисциплине неорганическая химия включает в себя: специальное оборудование (комплект электропитания ЩЭ, водоснабжение), лабораторное оборудование

(лабораторные весы типа ВЛЭ 250 и ВЛЭ 1100, кондуктометр, термометры, рНметры, печи трубчатая и муфельная, сушильный шкаф, устройство для сушки посуды, дистиллятор, очки защитные, колбонагреватели, лабораторные, штативы для пробирок), Лабораторная посуда (Стаканы (100, 250 и 500 мл), колбы конические (100 мл), колбы круглодонные (250 мл) колбы плоскодонные (100, 250 и 500 мл), колбы Вюрца (250 и 100 мл), цилиндры мерные (100, 25 и 50 мл), воронки капельные, химические, воронки для хлора, воронки Мюнке, промывалки, U-образные трубки, реакционные трубки, фарфоровые чашки, тигли фарфоровые, холодильники прямой, обратный, воронки лабораторные, дефлегматоры), специальная мебель и оргсредства (доска аудиторная для написания мелом и фломастером, мультимедиа проектор ноутбуком, преподавателя, (переносной) cэкран, стол стул-кресло преподавателя, столы лабораторные прямоугольного профиля с твердым химическим и термически стойким покрытием, табуреты, вытяжные шкафы лабораторные, мойка).

При проведении занятий используется учебное И лабораторное Атомно-абсорбционный спектрометр, Contr AA-700, AnalytikJena, Германия; Спектрофотометр UV-3600 с интегрирующей сферой экспериментальный LISR-3100, UV-3600, Япония; Многоцелевой комплекс Рентген-флуоресцентный спектрометрический ЭМК, Россия; спектрометр EDX-800 HS, Япония; ИК-Фурье спектрометр Инфра ЛЮМ ФТ-02, Россия; Спектрофлуориметр F-700, Япония; Спектрофотометр, SPECORD 210 PlusBU, AnalytikJena, Германия; Спектрометрический комплекс МДР-41 в криостатом комплекте c азотным проточным OptCryo198, Микроволновая система минерализации проб под давлением, TOP waveIV, AnalytikJena, Германия; Система капиллярного электрофореза, Капель-105M, ЛЮМЕКС, Санкт-Петербург; Рентгеновский дифрактометр, Empyrean Series 2 Фирма Panalytical (Голландия); Дифференциальный сканирующий калориметр, NETZSCH STA 409 PC/PG, Германия; Лабораторная экстракционная система, SFE1000M1-2-FMC-50, Waters, США; Хромато-масс-спектрометр, Маэстро, США, Россия; Высокоэффективный жидкостной хроматограф, Agilent 1220 Infinity, США.