МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Химический факультет Кафедра неорганической химии

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Молекулярная спектроскопия координационных соединений

Образовательная программа **04.04.01 Химия**

Профиль подготовки **Неорганическая химия**

Уровень высшего образования <u>Магистратура</u>

> Форма обучения **Очная**

Статус дисциплины **вариативная по выбору**

Рабочая программа дисциплины «Молекулярная спектроскопия координационных соединений» составлена в 2018 году в соответствии с требованиями ФГОС ВО по направлению подготовки 04.04.01 Химия (уровень магистратуры) от «23» сентября 2015 г. №1042.

Разработчик: кафедра неорганической химии, доктор химических наук, профессор Магомедбеков У.Г.

Рабочая программа дисциплины одобрена: на заседании кафедры неорганической химии от « В Мил 2018 г., протокол № 9.

Зав. кафедрой У.Г.;

На заседании методической комиссии химического факультета от « Д. У Систе 2018 г., протокол № 10.

Председатель Устану Гасангаджиева У.Г.

Рабочая программа дисциплины согласована с учебно-методическим управлением

« Д. У Систе 2018 г. Гасангаджиева А.Г.

Аннотация рабочей программы дисциплины

Дисциплина «Молекулярная спектроскопия координационных соединений» входит в вариативную часть образовательной программы направления 04.04.01 Химия (уровень магистратуры, профиль Неорганическая химия).

Дисциплина реализуется на химическом факультете Дагестанского государственного университета кафедрой неорганической химии.

Содержание дисциплины охватывает круг вопросов, связанных с использованием таких современных методов, как электронная vльтрафиолетовой(УФ-) областях). (ИК-) И видимой инфракрасная комбинационного (KPспектроскопия, И спектроскопия рассеяния спектроскопия), ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) для исследования электронного строения, стереохимии и свойств координационных соединений.

Дисциплина нацелена на формирование следующих компетенций выпускника: профессиональных –**ПК-2**, **ПК-3**.

Преподавание дисциплины предусматривает проведение лекционных, лабораторных занятий и организацию самостоятельной работы студентов.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля: текущей успеваемости — в форме собеседования, устного опроса, тестирования, проведения контрольных работ и коллоквиумов, промежуточной аттестации — в форме зачета.

Объем дисциплины составляет **3** зачетных единицы, в том числе в**108** академических часах по видам учебных занятий:

	Ко	в том числе Контактная работа обучающихся с СРС				
		преподавателем				
	Всего		Из них			
		Лекции	Лабор. занятия	Консуль		
				тации		
2	108	16	18		74	зачет

1. Цели и задачи освоения дисциплины

Цель дисциплины: рассмотрение возможностей основных методов молекулярной спектроскопии при изучении электронного строения, стереохимии и свойств координационных соединений.

Основной **задачей**, решаемой в процессе изучения курса, является приобретение обучающимися четких представлений о возможностях основных спектроскопических методов, используемых при исследовании координационных соединений.

2. Место дисциплины в структуре ООП магистратуры

Дисциплина «Электронное строение координационных соединений» входит в вариативную часть образовательной программы магистратуры по направлению **04.04.01 Химия**, профиль **Неорганическая химия**.

Курс строится на базе знаний по химическим и физическим дисциплинам, а также высшей математике, объём которых определяется программами химического образования в высшей школе.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Vormanary,	Формулирория иомирований	Птомурующий поружу поту			
Компетенции	Формулировка компетенции	Планируемые результаты обучения			
	из ФГОС	(показатели достижения заданного			
		уровня освоения компетенций)			
ПК-2	владением теорией и навыками	1 Знать:			
	практической работы в	в методы проведения научных исследований в			
	избранной области химии	избранной области химии			
		Уметь:			
		проводить научные исследования в			
		избранной области химии и получать новые			
		научные результаты.			
		Владеть:			
		теорией и навыками практической работы в			
		избранной области химии			
ПК-3	готовностью использовать	Знать:			
	современную аппаратуру при	принципы работы применяемой для			
	проведении научных	исследований аппаратуры.			
	исследований	Уметь:			
		использовать современную аппаратуру при			
		проведении научных исследований.			
		Владеть:			
		навыками практической работы на			
		современной аппаратуре при проведении			
		научных исследований.			

4. Объем, структура и содержание дисциплины

4.1. Объем дисциплины составляет **3** зачетных единицы, **108** академических часов.

4.2. Структура дисциплины

№	Разделы и темы	Неделя	Виды учебной работы, Формы			Формы	
Π/Π	дисциплины	семест	включая СРС и трудоемкость			текущего	
		pa	(в час)		контроля		
			Всего	Лек	Лаб	CPC	и промеж.
							аттестации
		M	одуль 1				
1.	Введение в						Опрос
	молекулярную						
	спектроскопию	I-II	6	2	0	4	
2.	Электронная						
	спектроскопия	III-VI	12	2	4	10	Опрос
	Итого по модулю 1			4			Коллоквиум
		M	одуль 2				
3.	Колебательная	VII -					
	спектроскопия	IX	12	2	6	10	Контр. работа
4.	Электронный						
	парамагнитный резонанс	X - XII	15	4	4	8	Контр. работа
	Итого по модулю 1		36	6	10	20	Коллоквиум
	Модуль 3						
5.	Ядерный магнитный	XIII-					
	резонанс	XV	15	4	4	8	Контр. работа
	Итого по модулю 2		36	8	8	20	Коллоквиум
	Всего за семестр		108	16	18	74	Зачет

4.3. Содержание дисциплины, структурированное по темам разделам и модулям.

а) Лекционные занятия.

Модуль 1

4.3.1. Введение в молекулярную спектроскопию.

Предмет и метод молекулярной спектроскопии. Сущность взаимодействия излучения с веществом. Природа электромагнитного излучения, различные типы его взаимодействия с веществом. Электронные, колебательные, вращательные, спиновые и ядерные переходы как результат различных типов внутриатомных или внутримолекулярных взаимодействий,

определяющих спектральную область. Физический смысл параметров спектров поглощения.

4.3.2. Электронная спектроскопия.

Спектры поглощения. Электронное состояние молекул. Условия возникновения спектра. Правила отбора. Классификация электронных переходов.

Многоэлектронные атомы (ионы). Атомные термы. Теория кристаллического поля. Закономерности расщепления АО в кристаллических полях разной симметрии и силы. Электронные спектры комплексов d-элементов. Диаграммы Оргела, Танабе-Сугано. Слабые и сильные поля. Спектрохимический ряд. Теория поля лигандов. Полосы переноса заряда.

Применение электронных спектров поглощения в качественном, структурном и количественном анализах, исследование процесса комплексообразования, определения состава комплексов и их констант образования, изучения кинетики химических реакций.

Модуль 2

4.3.3. Колебательная спектроскопия

Колебания многоатомных молекул. Условия появления инфракрасных (ИК) спектров и спектров комбинационного рассеяния (КР). Симметрия нормальных колебаний и правила отбора. Классификация колебательных полос.

Характеристичность колебаний и структурно-групповой анализ.

Особенности колебательных спектров неорганических молекул и ионов, координационных соединений.

4.3.4. Электронный парамагнитный резонанс

Физические основы метода. Условия возникновения резонанса. Правила отбора. Релаксация. Представление спектра ЭПР, физический смысл параметров спектра ЭПР. Положение, интенсивность, ширина и форма линий. Анизотропия g-фактора.

Спектры ЭПР радикалов с одним неспаренным электроном. Спектры ЭПР катионов переходных металлов. Комплексы с различными конфигурациями центрального атома. Тонкая структура спектров ЭПР. Природа сверхтонкого взаимодействия (СТВ). Константы СТВ. Применение ЭПР в координационной химии.

Модуль 3

4.3.5. Ядерный магнитный резонанс

Физические основы явления ядерного магнитного резонанса. Условие ядерного магнитного резонанса. Заселенность уровней энергии, насыщение, релаксационные процессы и ширина сигнала. Характеристика атомов по ядерным спинам. Взаимодействие ядерного спина с внешним магнитным

полем. ЯМР различных ядер. Химический сдвиг. Шкалы химических сдвигов. Внутримолекулярные факторы, влияющие на химический сдвиг.

Спин-спиновое взаимодействие (ССВ): число компонентов, константы ССВ, относительная интенсивность компонентов мультиплета. Двойной резонанс.

Особенности ЯМР на ядрах ¹³C, ¹⁹F, ³¹P, ⁵⁹Co, ¹⁹⁵Pt.

Идентификация веществ по спектрам ЯМР, определение структуры, изучение механизмов и кинетики реакций.

б) Лабораторные занятия

Модуль 1

4.3.6. Введение в молекулярную спектроскопию.

Предмет и метод молекулярной спектроскопии. Взаимодействие излучения с веществом. Электронные, колебательные, вращательные, спиновые и ядерные переходы. Физический смысл параметров спектров поглощения.

4.3.7. Электронная спектроскопия.

Спектры поглощения. Условия возникновения спектра. Правила отбора. Классификация электронных переходов.

Теория кристаллического поля. Электронные спектры комплексов dэлементов. Диаграммы Оргела, Танабе-Сугано. Слабые и сильные поля. Спектрохимический ряд. Теория поля лигандов. Полосы переноса заряда.

Применение электронных спектров поглощения в качественном, структурном и количественном анализах, исследование процесса комплексообразования.

Модуль 2

4.3.8. Колебательная спектроскопия

Условия появления колебательных (ИК и КР) спектров. Симметрия нормальных колебаний и правила отбора.

Классификация колебательных полос. Характеристичность колебаний и структурно-групповой анализ.

Колебательные спектры неорганических молекул и ионов, координационных соединений.

4.3.9.Электронный парамагнитный резонанс

Представление спектра ЭПР, физический смысл параметров спектра ЭПР. Положение, интенсивность, ширина и форма линий. Анизотропия д-фактора.

Спектры ЭПР радикалов с одним неспаренным электроном, катионов переходных металлов, комплексов с различными конфигурациями центрального атома. Применение ЭПР в координационной химии.

Модуль 3

4.3.10. Ядерный магнитный резонанс

Физические основы явления ядерного магнитного резонанса. Условие ядерного магнитного резонанса. Характеристика атомов по ядерным спинам. Взаимодействие ядерного спина с внешним магнитным полем. ЯМР различных ядер. Химический сдвиг. Шкалы химических сдвигов. Внутримолекулярные факторы, влияющие на химический сдвиг.

Особенности ЯМР на ядрах ¹³C, ¹⁹F, ³¹P, ⁵⁹Co, ¹⁹⁵Pt. Идентификация веществ по спектрам ЯМР, определение структуры, изучение механизмов и кинетики реакций.

5.Образовательные технологии

ΦΓΟC соответствии c требованиями BO реализация компетентностного подхода предусматривает широкое использование при неорганической занятий химии инновационных проведении ПО обучение, (объяснительно-иллюстративное предметно-ориентированное обучение, профессионально-ориентированное обучение, проектная организация самостоятельного методология обучения, обучения, интерактивные методы обучения) и традиционных (лекция-визуализация, лекция-презентация, компьютерные симуляции, лабораторная самостоятельная работа) технологий обучения. Удельный вес занятий, проводимых в интерактивных формах составляет менее 30 % аудиторных занятий. Предполагается встреча ведущими учеными республики.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов имеет основную цель – обеспечить качество подготовки выпускаемых специалистов в соответствии с требованиями ФГОС ВО.

Формы и виды самостоятельной работы студентов по дисциплине устанавливаются следующие:

- проработка дополнительных тем, не вошедших в лекционный материал, но обязательных согласно учебной программе дисциплины;
- проработка пройденных лекционных материалов по конспекту лекций, учебникам и пособиям на основании вопросов, подготовленных преподавателем;
- подготовка к лабораторным занятиям;
- подготовка к промежуточному и рубежному контролю;
- подготовка научных докладов и творческих работ.

Контроль результатов самостоятельной работы осуществляется преподавателем в течение всего семестра в виде:

- устного опроса (фронтального и индивидуального);
- тестирования;

- проведения письменной (контрольной) работы;
- проведения коллоквиума;
- 7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1.Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Компетенция	Знания, умения, навыки	Процедура освоения
ПК-2	Знать:	Письменный опрос,
	методы проведения научных исследований в	устный опрос,
	избранной области химии	
	Уметь:	
	проводить научные исследования в избранной	
	области химии и получать новые научные	
	результаты.	
	Владеть:	
	теорией и навыками практической работы в	
	избранной области химии	
ПК-3:	Знать:	Письменный опрос,
	принципы работы применяемой для исследований	устный опрос,
	аппаратуры.	
	Уметь:	
	использовать современную аппаратуру при	
	проведении научных исследований.	
	Владеть:	
	навыками практической работы на современной	
	аппаратуре при проведении научных исследований.	

7.2. Типовые контрольные задания

7.2.1. Примерные контрольные задания для проведения текущего контроля.

Модуль 1

- 1. Предмет и метод молекулярной спектроскопии. Взаимодействие излучения с веществом.
- 2. Электронные, колебательные, вращательные, спиновые и ядерные переходы. Физический смысл параметров спектров поглощения.
- 3. Электронная спектроскопия.Спектры поглощения. Условия возникновения спектра. Правила отбора. Классификация электронных переходов.
- 4. Теория кристаллического поля. Электронные спектры комплексов d-элементов.
- 5. Диаграммы Оргела, Танабе-Сугано. Слабые и сильные поля.

- Спектрохимический ряд.
- 6. Теория поля лигандов. Полосы переноса заряда.
- 7. Применение электронных спектров поглощения в качественном, структурном и количественном анализах, исследовании процесса комплексообразования.

Модуль 2

- 1. Колебательная спектроскопия. Условия появления колебательных (ИК и КР) спектров. Симметрия нормальных колебаний и правила отбора.
- 2. Классификация колебательных полос. Характеристичность колебаний и структурно-групповой анализ.
- 3. Колебательные спектры неорганических молекул и ионов, координационных соединений.
- 4. Электронный парамагнитный резонанс. Представление спектра ЭПР
- 5. Физический смысл параметров спектра ЭПР. Положение, интенсивность, ширина и форма линий. Анизотропия g-фактора.
- 6. Спектры ЭПР радикалов с одним неспаренным электроном, катионов переходных металлов, комплексов с различными конфигурациями центрального атома.
- 7. Применение ЭПР в координационной химии.

Модуль 3

- 1. Ядерный магнитный резонанс. Физические основы явления ядерного магнитного резонанса. Условие ядерного магнитного резонанса.
- 2. Характеристика атомов по ядерным спинам. Взаимодействие ядерного спина с внешним магнитным полем. ЯМР различных ядер.
- 3. Химический сдвиг. Шкалы химических сдвигов. Внутримолекулярные факторы, влияющие на химический сдвиг.
- 4. Особенности ЯМР на ядрах ¹³C, ¹⁹F, ³¹P, ⁵⁹Co, ¹⁹⁵Pt.
- 5. Идентификация веществ по спектрам ЯМР, определение структуры, изучение механизмов и кинетики реакций.

7.2.2.Контрольные вопросы для промежуточной аттестации (сдачи зачета)

- 1. Предмет и метод молекулярной спектроскопии. Сущность взаимодействия излучения с веществом.
- 2. Природа электромагнитного излучения, различные типы его взаимодействия с веществом. Электронные, колебательные, вращательные, спиновые и ядерные переходы.
- 3. Физический смысл параметров спектров поглощения.
- 4. Спектры поглощения. Условия возникновения спектра. Правила отбора. Классификация электронных переходов.

- 5. Многоэлектронные атомы (ионы). Атомные термы.
- 6. Теория кристаллического поля. Закономерности расщепления АО в кристаллических полях разной симметрии и силы.
- 7. Электронные спектры комплексов d-элементов. Диаграммы Оргела, Танабе-Сугано. Слабые и сильные поля.
- 8. Спектрохимический ряд. Теория поля лигандов.
- 9. Полосы переноса заряда.
- 10. Применение электронных спектров поглощения для исследования координационных соединений.
- 11. Колебания многоатомных молекул. Условия появления инфракрасных (ИК) спектров и спектров комбинационного рассеяния (КР).
- 12. Симметрия нормальных колебаний и правила отбора. Классификация колебательных полос.
- 13. Характеристичность колебаний и структурно-групповой анализ.
- 14. Особенности колебательных спектров неорганических молекул и ионов, координационных соединений.
- 15. Физические основы метода ЭПР. Условия возникновения резонанса. Правила отбора. Релаксация.
- 16. Представление спектра ЭПР, физический смысл параметров спектра ЭПР. Положение, интенсивность, ширина и форма линий. Анизотропия g-фактора.
- 17. Спектры ЭПР радикалов с одним неспаренным электроном.
- 18. Спектры ЭПР катионов переходных металлов.
- 19. Комплексы с различными конфигурациями центрального атома. Тонкая структура спектров ЭПР.
- 20. Применение ЭПР в координационной химии.
- 21. Физические основы явления ядерного магнитного резонанса.
- 22. Условие ядерного магнитного резонанса. Заселенность уровней энергии, насыщение, релаксационные процессы и ширина сигнала.
- 23. Характеристика атомов по ядерным спинам. Взаимодействие ядерного спина с внешним магнитным полем. ЯМР различных ядер.
- 24. Химический сдвиг. Шкалы химических сдвигов. Внутримолекулярные факторы, влияющие на химический сдвиг.
- 25. Спин-спиновое взаимодействие (ССВ): число компонентов, константы ССВ, относительная интенсивность компонентов мультиплета. Двойной резонанс.
- 26. Идентификация веществ по спектрам ЯМР, определение структуры,

7.3. Описание показателей и критериев оценивания компетенций, описание шкал оценивания.

Формы контроля следующие: текущий контроль, рубежный контроль по модулю и итоговый контроль.

Текущий контроль успеваемости осуществляется непрерывно, на протяжении всего курса. Прежде всего, это устный опрос по ходу лабораторных занятий, выполняемый для оперативной активизации внимания студентов и оценки их уровня восприятия. Результаты устного опроса учитываются при выборе индивидуальных задач для решения.

Промежуточный контроль проводится в форме контрольной работы или коллоквиума.

Итоговый контроль проводится в форме зачета.

Оценка каждого вида деятельности проводится следующим образом:

- 1. Результаты всех видов учебной деятельности студентов оцениваются по 100 балльной шкале.
- 2. Средний балл за текущий контроль (ТК) определяется как средняя арифметическая баллов, полученных студентом за аудиторную и самостоятельную работу.
- 3. Итоговый модульный балл за текущий контроль определяется как произведение среднего балла за ТК и коэффициента весомости ТК, равный 30 %, или 0,3.
- 4. Средний балл за различные формы проведения промежуточного контроля (ПК), таких как тестирования, письменные работы (коллоквиумы), доклады, рефераты и др., определяется как их средняя величина.
- 5. Итоговый балл за ПК определяется как произведение среднего балла за ПК и коэффициента весомости ПК, равный 70 %, или 0,7.
- 6. Итоговый балл за модуль определяется как сумма баллов за ТК и ПК. Итоговый контроль (зачет) проводится в виде тестирования 100 баллов. Весомость итогового контроля в оценке знаний студента составляет 50 %, а среднего балла по всем модулям также 50 %. Шкала диапазона для перевода рейтингового балла с учетом весомости различных видов контроля в «5» бальную систему следующая: от 51 до 100 баллов зачет, менее 51 балла незачет.

7.4. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из

текущего контроля – 70 % и промежуточного контроля – 30 %.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- выполнение лабораторных заданий баллов,
- выполнение домашних (аудиторных) контрольных работ 25 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос 25 баллов,
- письменная контрольная работа 20 баллов,
- тестирование 25 баллов.

Зачет сдают в устной или письменно-устной форме в виде ответов на задания; если понадобится, то задаются дополнительно контрольные вопросы (при необходимости уточнить оценку).

Оценка «отлично» ставится за уверенное владение материалом курса и демонстрацию способности самостоятельно анализировать вопросы применения и развития современной неорганической химии.

Оценка «хорошо» ставится при полном выполнении требований к прохождению курса и умении ориентироваться в изученном материале.

Оценка «удовлетворительно» ставится при достаточном выполнении требований к прохождению курса и владении конкретными знаниями по программе курса.

Оценка «неудовлетворительно» ставится, если требования к прохождению курса не выполнены и студент не может показать владение материалом.

Если хотя бы одна из компетенций не сформирована, то положительная оценка по дисциплине не может быть выставлена.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины:

а) основная литература:

- 1. Киселев, Юрий Михайлович. Химия координационных соединений: учеб. пособие для вузов / Киселев, Юрий Михайлович, Н. А. Добрынина. М.: Академия, 2007. 344 с. Допущено УМО. ISBN 978-5-7695-3050-0: 385-00
- 2. Кукушкин Ю.А. Химия координационных соединений. М.: Высшая школа, 1985
- 3. КиселевЮ. М., ДобрынинаН.А. Химия координационных соединений. Москва, Изд. Центр Академия, 2007.
- 4. Костромина Н.А., Кумок В.Н., Скорик Н.А. Химия координационных соединений, М.: Высшая школа, 1990, С.433

б) дополнительная литература.

- 5. Вилков, Л.В. Физические методы исследования в химии: Структурные методы и оптическая спектроскопия: [учеб. для хим. спец. вузов] / Вилков, Лев Васильевич, Ю. А. Пентин. М. :Высш. шк., 1987. 366,[1] с. : ил. ; 23 см. Библиогр.: с. 356-358. Предм. указ.: с. 359-364. 1-20.
- 6. Берсукер И.Б. Электронное строение и свойства координационных соединений. Л.: Химия, 1986.
- 7. Ливер Э. Электронная спектроскопия неорганических соединений. В 2-х частях. М.: Мир, 1987
- 8. Неёлова О.В. Химия координационных соединений [Электронный ресурс]: учебное пособие/ Неёлова О.В., Кубалова Л.М.— Электрон. текстовые данные.— Саратов: Ай Пи Эр Медиа, 2017.— 75 с.— Режим доступа: http://www.iprbookshop.ru/73347.html дата обращения 18.05.2018)

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

Электронные учебные ресурсы:

- 1. eLIBRARY.RU [Электронный ресурс]: электронная библиотека / Науч. электрон.б-ка. Москва, 1999. Режим доступа: http://elibrary.ru/defaultx.asp (дата обращения: 20.05.2018). Яз. рус., англ.
- 2. Электронный каталог НБ ДГУ [Электронный ресурс]: база данных содержит сведения овсех видах лит, поступающих в фонд НБ ДГУ/Дагестанский гос. ун-т. Махачкала, 2010 Режим доступа: http://elib.dgu.ru, свободный (дата обращения: 22.05.2018)
- 3. Moodle[Электронный ресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. Махачкала, г. Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/(дата обращения: 18.05.2018).
- 4. https://ibooks.ru/
- 5. www.book.ru/
- 6. ХимическиесерверыChemWeb, ChemExpress Online, ChemNet.com http://www.Himhelp.ru
- 7. Каталог образовательных интернет-ресурсов<u>http://www.edu.ru/</u>

10. Методические указания для обучающихся по освоению программы

Учебный материал по дисциплине дается на лекциях, практических занятиях и прорабатывается в ходе самостоятельной работы.

На лекциях систематически и последовательно излагается материал теоретического характера. Основное внимание при этом уделяется

рассмотрению основных (опорных) понятий и теоретических основ молекулярной спектроскопии. При подготовки к лекции целесообразно прочитать материал лекции по любому из рекомендованных в списке литературы учебников. Это существенно помогает продуктивно воспринимать материал лекции и хорошо его законспектировать. После лекции студентам рекомендуется внимательно проработать написанный конспект лекции, непонятые места попытаться уяснить с помощью учебников. Если обучающиеся не могут самостоятельно найти ответы на возникшие вопросы, можно обратиться к лектору или преподавателю на практических занятиях.

Практические занятия позволяют развивать у студентов творческое теоретическое мышление, умение самостоятельно изучать литературу, анализировать практику, и они имеют исключительно важное значение в развитии самостоятельного мышления. В процессе выполнения практических работ для систематизации основных положений рекомендуется составление конспектов. Необходимо обратить внимание обучающихся на выполнение предусмотренных программой заданий в соответствии с тематическим планом, выделение наиболее сложных и проблемных вопросов по изучаемой теме, получение разъяснений и рекомендаций по данным вопросам от преподавателей, проведение самоконтроля путем ответов на вопросы текущего контроля знаний, решения представленных в учебно-методических материалах кафедры задач, тестов по отдельным вопросам изучаемой темы.

Самостоятельная работа студентов способствует более глубокому усвоению изучаемого курса, формированию навыков исследовательской работы и ориентированию студентов на умение применять теоретические знания на практике. Поэтому только постоянная, систематическая самостоятельная работа обучающихся будет способствовать нормальному усвоению знаний. Формы и виды самостоятельной работы студентов, а также формы их контроля представлены в разделе 6. Результаты самостоятельной работы студентов учитываются при аттестации студента (при сдаче зачета).

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Системные программные средства: MicrosoftWindowsXP, MicrosoftVista Прикладные программные средства: MicrosoftOffice 2007 Pro, FireFox Специализированное программное обеспечение: СДО Moodle, SunRAVBookOfficePro, SunRAVTestOfficePro, специализированные химические программы и др.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

В соответствии с требованиями ФГОС ВО кафедра имеет специально оборудованную учебные аудитории для проведения **лекционных и практических занятий**, помещения для **лабораторных работ** на группу студентов из 12 человек и **вспомогательное помещение** для хранения химических реактивов и профилактического обслуживания учебного и учебно-научного оборудования.

Помещения для лекционных и практических занятий укомплектованы комплектами электропитания ЩЭ (220 В, 2 кВт, в комплекте с УЗО), специализированной мебелью и оргсредствами (доска аудиторная для написания мелом и фломастером, стойка-кафедра, стол лектора, стул-кресло, столы аудиторные двухместные (1 на каждых двух студентов), стул аудиторный (1 на каждого студента), а также техническими средствами обучения (экран настенный с электроприводом и дистанционным управлением, мультимедиа проектор с ноутбуком).

Лабораторные занятия проводятся в специально оборудованных лабораториях с применением необходимых средств обучения (лабораторного оборудования, образцов, нормативных и технических документов и т.п.). лабораторных практикумов укомплектованы учебно-лабораторной мебелью (в том числе столами с химически стойкими покрытиями), учебно-научным лабораторным оборудованием, измерительными приборами и химической посудой, в полной мере обеспечивающими выполнение требований программы по неорганической химии. Материально-технические средства для проведения лабораторного практикума по дисциплине неорганическая химия включает в себя: специальное оборудование (комплект электропитания ЩЭ, водоснабжение), лабораторное оборудование (лабораторные весы типа ВЛЭ 250 и ВЛЭ 1100, кондуктометр, термометры, рН-метры, печи трубчатая и муфельная, сушильный шкаф, устройство для сушки посуды, дистиллятор, очки колбонагреватели, штативы лабораторные, зашитные. штативы пробирок), Лабораторная посуда (Стаканы (100, 250 и 500 мл), колбы конические (100 мл), колбы круглодонные (250 мл) колбы плоскодонные (100, 250 и 500 мл), колбы Вюрца (250 и 100 мл), цилиндры мерные (100, 25 и 50 мл), воронки капельные, химические, воронки для хлора, воронки Мюнке, промывалки, U-образные трубки, реакционные трубки, фарфоровые чашки, тигли фарфоровые, холодильники прямой, обратный, воронки лабораторные, дефлегматоры), специальная мебель и оргсредства (доска аудиторная для написания мелом и фломастером, мультимедиа проектор (переносной) с ноутбуком, экран, стол преподавателя, преподавателя, столы лабораторные прямоугольного профиля с твердым химическим и термически стойким покрытием, табуреты, вытяжные шкафы лабораторные, мойка).

При проведении занятий используется учебное и лабораторное оборудование: Атомно-абсорбционный спектрометр, Contr AA-700,

AnalytikJena, Германия; Спектрофотометр UV-3600 с интегрирующей сферой LISR-3100, UV-3600, Япония; Многоцелевой экспериментальный масскомплекс ЭМК, Россия; Рентген-флуоресцентный спектрометрический спектрометр EDX-800 HS, Япония; ИК-Фурье спектрометр ИнфраЛЮМ ФТ-02, Россия; Спектрофлуориметр F-700, Япония; Спектрофотометр, SPECORD 210 PlusBU, AnalytikJena, Германия; Спектрометрический комплекс МДР-41 в комплекте с азотным проточным криостатом OptCryo198, Россия; Микроволновая система минерализации проб под давлением, TOPwaveIV, AnalytikJena, Германия; Система капиллярного электрофореза, Капель-105M, ЛЮМЕКС, Санкт-Петербург; Рентгеновский дифрактометр, EmpyreanSeries 2 Фирма Panalytical (Голландия): Дифференциальный сканирующий PC/PG, STA Германия; Лабораторная калориметр, NETZSCH 409 SFE1000M1-2-FMC-50, Waters, CIIIA; Xpomatoэкстракционная система, масс-спектрометр, 7820 Маэстро, США, Россия; Высокоэффективный жидкостной хроматограф, Agilent 1220 Infinity, США.