МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение

высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет математики и компьютерных наук

рабочая программа дисциплины **МЕРА, ИНТЕГРАЛ И ПРОИЗВОДНАЯ**

Кафедра: дифференциальных уравнений и функционального анализа

Факультете: математики и компьютерных наук

Образовательная программа 01.04.01 Математика

Профили подготовки:

<u>Математический анализ</u>

<u>Дифференциальные уравнения</u>

Уровень высшего образования _магистратура_

> Форма обучения <u>очная</u>

Статус дисциплины: <u>базовая</u>

Рабочая программа дисциплины «Мера, интеграл и производная» составлена в 2018 году в соответствии с требованиями ФГОС ВО по направлению подготовки

01.04.01 Математика (уровень магистратуры) от 17 августа 2015 г. № 827

Разработчик: <u>кафедра дифференциальных уравнений и функционального анализа</u>, Рагимханов В.Р., к. ф.-м.н., доцент

Рабочая программа дисциплины одобрена:
на заседании кафедры <u>ДУ и ФА</u> от 31.05.2018 г., протокол № 10
Зав. кафедрой Сиражудинов М.М. (подпись)
на заседании Методической комиссии факультета МиКН от 27.06.2018г., протокол № 6.
Председатель <u>Филу</u> Бейбалаев В.Д. (подпись)
Рабочая программа дисциплины согласована с учебно-методическим управлением
«_29_» <u>июня</u> 2018гГасангаджиева А.Г.

Аннотация рабочей программы

Дисциплина *«Мера, интеграл и производная»* входит в базовую часть образовательной программы магистратуры по направлению 01.04.01 *Математика*.

Дисциплина реализуется на факультете математики и компьютерных наук кафедрой дифференциальные уравнения и функциональный анализ.

К основным задачам данного курса относятся изучение основных свойств аддитивной, счетно-аддитивной функции множества и конструирование мер Стилтьеса, Стилтьеса-Бореля и Стилтьеса-Лебега на прямой с помощью функций ограниченной вариации.

Дисциплина нацелена на формирование следующих компетенций выпускника: $oбщепрофессиональных - O\Pi K-1$, $npoфессиональных - \Pi K-1$.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия и самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме: *контрольной работа и коллоквиума, промежуточный контроль в форме экзамена*.

Объем дисциплины 5 зачетных единиц, в том числе в академических часах по видам учебных занятий

Семестр			Форма					
				промежуточной				
	K	онтактн	ая работа обуч	CPC,	аттестации (зачет,			
	Всег			в том	дифференцирован			
	O	Лекц	Лабораторн	числе	ный зачет,			
		ИИ						экзамен
				ен				
6	180	16		52	4		108	Экзамен

1. Цели освоения дисциплины

Целями освоения дисциплины <u>мера, интеграл и производная</u> является научить слушателей понимать основные положения абстрактной теории аддитивной, счетно-аддитивной функции множества и связь мер Стилтьеса, Бореля-Стилтьеса и Стилтьеса-Лебега функциями ограниченной вариации вещественного аргумента. Понятие и факты курса составляют фундамент многих разделов современного анализа.

2.Место дисциплины в структуре ООП магистратуры

Дисциплина *мера*, *интеграл* и *производная* входит в базовую часть образовательной программы по направлению 01.04.01 Математика

Знания по данному курсу необходимы при работе над диссертацией и в дальнейшей научно-исследовательской работе по выбранному направлению.

Предполагает знание основных понятий и методов математического анализа и общей топологии в рамках первых двух курсов математического факультета, а также знаний свойств функций основных классов функций действительного переменного.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения.

IC	Т.	П
Компетенции	Формулировка компетенции из	Планируемые результаты обучения
	ΦΓΟС ΒΟ	(показатели достижения заданного
		уровня освоения компетенций)
ОПК-1	способностью находить,	Знает: различные
	формулировать и решать	естественнонаучные модели, где
	актуальные и значимые	возникают аддитивные функции
	проблемы фундаментальной и прикладной математики	множества и интегралы по ним.
		Умеет: создавать модели явлений,
		процессов и конструкций с
		использованием теории меры и
		интеграла.
		1
		Владеет: методами моделирования
		естественнонаучных задач на языке
		теории меры и интеграла.
		reopini mepsi n mirerpanai
ПК-1	способностью к интенсивной	Знает: определения и важнейшие
	научно-исследовательской	свойства основных классов множеств,
	работе	применяемых в современном анализе.
	pacore	примениемых в современном инализе.
		Умеет: анализировать свойства
		основных классов множеств,
		применять их в прикладных задачах.
		r
		Владеет: современными методами
		теории меры.

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет зачетных единиц 5, академических часов 180.

4.2. Структура дисциплины.

Названия разделов и тем дисциплины	стр	семестра	Ауді	торные том ч		ия, в	. работа	Формы текущего контроля успеваемости <i>(по</i>
a rom guezanionius	Семе	Неделя се	лекции	практ. занятия	лабор. работы	Контр. сам. раб.	Самостоят	неделям семестра) Форма промежуточной аттестации (по семестрам)
Модуль 1. Основные классы множеств, их свойства и структура								
Всего по модулю 1	11		4	12			20	контрольная работа

1. Основные классы			2	6			10	
множеств								
2. Порожденные			2	6			10	
классы множеств								
Модуль 2. Конечно и с	четно	о-аддип	пивные	е функці	ии мноз	жеств	a u ux	свойства
Всего по модулю 2	11		4	12		2	18	коллоквиум,
								контрольная работа
1. Функции множества.			2	6			9	
Меры.								
2. Продолжение меры			2	6			9	
Модуль 3. Теория фун	кций с	огранич	енной	вариаці	ии веще	ествен	ного ар	эгумента
Всего по модулю 3	11		4	14			18	контрольная работа
1. Функции			2	6			9	
вещественной								
переменной с								
ограниченной								
вариации								
2. Вещественны			2	8			9	
функции вещественной								
переменной с								
ограниченной								
вариации								
Модуль 4. Теория мер	ы на	прямої	ĭ					,
Всего по модулю 4	11		4	14		2	16	коллоквиум
1. Мера Стилтьеса и			2	7			8	
Бореля-Стилтьеса								
2. Мера Стилтьеса-			2	7			8	
Лебега								
Модуль 5. Промежуточная аттестация								
Подготовка к экзамену							36	экзамен
ИТОГО за 9 семестр			16	52		4	108	

4.3. Содержание дисциплины, структурированное по темам (разделам)

4.3.1. Содержание лекционных занятий по дисциплине

Модуль 1. Основные классы множеств, их свойства и структура

Тема 1. Основные классы множеств

Нижний и верхний предел множеств, предел множеств. Кольцо, полукольцо и алгебра множеств. Сигма-кольцо и сигма-алгебра множеств. Монотонные классы.

Измеримое пространство и измеримые функции.

Тема 2. Порожденные классы множеств

Минимальное кольцо, минимальная алгебра, минимальное сигма-кольцо, минимальная сигма-алгебра, минимальный монотонный класс содержащий данное семейство множеств. Теоремы о монотонном и сигма-кольце, порожденных кольцом. Борелевские множества и борелевская сигма-алгебра топологического пространства.

Модуль 2. Конечно и счетно-аддитивные функции множества и их свойства Тема 1. Функции множества. Меры.

Функция множества. Конечные функции множества, сигма-конечные функции множества, конечно-аддитивные функции множества, сигма-аддитивные функции

множества (= счетно-аддитивные функции множества), конечно-полуаддитивные функции множества, сигма-полуаддитивные функции множества (= счетно-полуаддитивные функции множества), неотрицательные функции множества, монотонные функции множества, непрерывные сверху и снизу функции множества, непрерывные функции множества. Меры.

Общие свойства аддитивных функций множества. Свойства аддитивных функций множества, заданных на полукольце и кольце.

Тема 2. Продолжение меры

Продолжение меры с полукольца на порожденное полукольцом кольцо. Внешняя мера. Измеримые по Каратеодори множества. Теорема Каратеодори. Полные меры. Измеримость множеств исходного кольца. Единственность продолжения. Теорема о приближении. Измеримое пространство, пространство с мерой, вероятностное пространство.

Модуль 3. *Теория функций ограниченной вариации вещественного аргумента Тема 1. Функции вещественной переменной с ограниченной вариации* Определение функции ограниченной вариации вещественного аргумента со значениями в метрическом пространстве. Свойства отображений ограниченной вариации.

Тема 2. Вещественны функции вещественной переменной с ограниченной вариации Монотонные функции. Дифференцируемость монотонной функции. Абсолютно непрерывные функции. Вещественные функции ограниченной вариации вещественного аргумента. Критерий ограниченности полной вариации. Функции скачков и ее свойства. Дифференцирование и интеграл. Принцип выбора Хелли.

Модуль 4. Теория меры на прямой

Тема 1. Мера Стилтьеса и Бореля-Стилтьеса

Мера Стилтьеса. Мера Бореля-Стилтьеса.

Тема 2. Мера Стилтьеса-Лебега

Мера Лебега. Мера Лебега-Стилтьеса.

4.3.2. Содержание лабораторно-практических занятий по дисциплине

Модуль 1. Основные классы множеств, их свойства и структура

Тема 1. Основные классы множеств

Нижний и верхний предел множеств, предел множеств. Кольцо, полукольцо и алгебра множеств. Сигма-кольцо и сигма-алгебра множеств. Монотонные классы.

Измеримое пространство и измеримые функции.

Тема 2. Порожденные классы множеств

Минимальное кольцо, минимальная алгебра, минимальное сигма-кольцо, минимальная сигма-алгебра, минимальный монотонный класс содержащий данное семейство множеств. Теоремы о монотонном и сигма-кольце, порожденных кольцом. Борелевские множества и борелевская сигма-алгебра топологического пространства.

Модуль 2. Конечно и счетно-аддитивные функции множества и их свойства Тема 1. Функции множества. Меры.

Функции множества. Конечные функции множества, сигма-конечные функции множества, конечно-аддитивные функции множества, сигма-аддитивные функции множества), конечно-полуаддитивные функции множества (= счетно-функции множества (= счетно-

полуаддитивные функции множества), неотрицательные функции множества, монотонные функции множества, непрерывные сверху и снизу функции множества, непрерывные функции множества. Меры.

Общие свойства аддитивных функций множества. Свойства аддитивных функций множества, заданных на полукольце и кольце.

Тема 2. Продолжение меры

Продолжение меры с полукольца на порожденное полукольцом кольцо. Внешняя мера. Измеримые по Каратеодори множества. Теорема Каратеодори. Полные меры. Измеримость множеств исходного кольца. Единственность продолжения. Теорема о приближении. Измеримое пространство, пространство с мерой, вероятностное пространство.

Модуль 3. *Теория функций ограниченной вариации вещественного аргумента Тема 1. Функции вещественной переменной с ограниченной вариации* Определение функции ограниченной вариации вещественного аргумента со значениями в метрическом пространстве. Свойства отображений ограниченной вариации.

Тема 2. Вещественны функции вещественной переменной с ограниченной вариации Монотонные функции. Дифференцируемость монотонной функции. Абсолютно непрерывные функции. Вещественные функции ограниченной вариации вещественного аргумента. Критерий ограниченности полной вариации. Функции скачков и ее свойства. Дифференцирование и интеграл. Принцип выбора Хелли.

Модуль 4. Теория меры на прямой

Тема 1. Мера Стилтьеса и Бореля-Стилтьеса Мера Стилтьеса. Мера Бореля-Стилтьеса. Тема 2. Мера Стилтьеса-Лебега Мера Лебега. Мера Лебега-Стилтьеса.

5. Образовательные технологии

В основе преподавания дисциплины мера, интеграл и производная лежит лекционносеминарская система обучения, что связано с необходимостью активного продумывания теоретического материала, содержащего глубокие и абстрактные понятия. Индивидуальные особенности обучающихся учитываются подбором заданий разного уровня сложности для самостоятельной работы студентов.

По данной дисциплине учебным планом предусмотрено также проведение занятий в интерактивных формах. Лекции проводятся в аудиториях, оснащенных видеопроекторами. В университете функционирует Центр современных образовательных технологий, в котором предусматриваются мастер-классы специалистов.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Для обеспечения самостоятельной работы магистров использовать учебное пособие

- 1) Рагимханов Р.К., Рамазанов А.-Р.К., Рагимханов В.Р. Лекции по теории меры и интеграла. Учебное пособие Махачкала: Изд. ДГУ, 2016.
- 2) Рагимханов Р.К., Рамазанов А.-Р.К., Рагимханов В.Р. Аддитивные функции множества и смежные вопросы. Учебное пособие Махачкала: Изд. ДГУ, 2012.
- 3) Рагимханов Р.К., Сиражудинов М.М. Функции с ограниченной вариацией. Интеграл Стилтьеса и его приложения. Мах-ла: ИПЦ ДГУ, 2008.
- 4) Магомедов Г.А., Рагимханов Р.К., Сиражудинов М.М. *Основы теории меры*. Махла: ИПЦ ДГУ, 1997.

Задания для самостоятельной работы

- 1. Структуры и свойства минимальных классов, порожденных полукольцом.
- 2. Произведение систем множеств. Кольцо, σ кольцо в произведении множеств.
- 3. Нижний и верхний пределы последовательности множеств. Предел последовательности множеств и его свойства.
- 4. Борелевская σ алгебра множеств.
- 5. Определения конечно аддитивной функции множества и ее полной вариации.
- 6. Свойства аддитивной функции множества.
- 7. Свойства полной вариации а.ф.м..
- 8. Определения верхней (= положительной) и нижней (= отрицательной) вариации аддитивной функции множества (а.ф.м.). Теорема Жордана о разложении ограниченной а.ф.м..
- 9. Введение понятия нуль-множества и его использование в анализе.
- 10. Свойства положительной а.ф.м..
- 11. Определение счетно-аддитивной функции множества (=меры = заряда). Пространства с мерой.
- 12. Свойства σ- а.ф.м..
- 13. Свойства полной вариации, верхней и нижней вариации для конечной меры.
- 14. Непрерывность конечной положительной меры.
- 15. Теорема Хана о разложении вещественной меры.
- 16. Понятия абсолютной непрерывности, сингулярности а.ф.м. относительно другой а.ф.м. и соответствующие утверждения.
- 17. Теорема Лебега о разложении σ- а.ф.м..
- 18.Определение внешней меры и теорема Каратеодори.
- 19. Лебеговский метод продолжения меры.
- 20. Терема Хана о продолжении.
- 21. Теорема Александрова о продолжении регулярной меры.
- 22. Мера Бореля.
- 23. Определение функции ограниченной вариации и простейшие свойства полной вариации.
- 24. Свойства функции ограниченной вариации
- 25. Неопределенная полная вариация функции и ее свойства.
- 26. Критерий непрерывности и односторонней непрерывности неопределенной полной вариации.
- 27. Критерий функции ограниченной вариации.
- 28. Неопределенные положительная и отрицательная вариации и их свойства.

- 29. Определение функции скачков и их свойства.
- 30. Дифференциальные свойства функции ограниченной вариации.
- 31. Свойства производной неопределенной полной вариации.
- 32. Абсолютно непрерывные функции и их полные вариации.
- 33. Критерий абсолютной непрерывности функции (= теорема Лебега).
- 34. Разложение функции ограниченной вариации на сумму трех компонент.
- 35.Полнота пространства функций ограниченной вариации.
- 36.Сходимость в пространстве функций ограниченной вариации.

Рефераты, доклады и задания по темам для самостоятельной работы

Разделы и темы для самостоятельного изучения	Виды и содержание самостоятельной работы
Раздел 1. Основные классы множеств, их с	войства и структура
1. Основные классы множеств	Доклад на тему: Пи-классы и ламбда-классы множеств
2. Порожденные классы множеств	Доклад на тему: Приложения теоремы о монотонном
	классе
Раздел 2. Конечно и счетно-аддитивные фу	нкции множества и их свойства
1. Функции множества. Меры.	Реферат на тему: Основные свойства функций множества.
2. Продолжение мер.	Доклад на тему: Измеримость по Каратеодори
Раздел 3. Теория функций ограниченной	й вариации вещественного аргумента
1. Функции вещественной переменной с ограниченной вариации	Доклад на тему: функция скачков.
2. Вещественны функции вещественной	Доклад на тему: Теорема Хелли
переменной с ограниченной вариации	
Раздел 4. Теория меры на прямой	
1. Меры Стилтьеса и Бореля-Стилтьеса	Реферат на тему: Построение меры Лебега в R ¹
2. Мера Стилтьеса-Лебега	Доклады на темы:
	1. Борелевские множества на прямой.
	2. Суслинские множества на прямой.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

Компетенция	Знания, умения, навыки	Процедура
		оценивания
ОПК-1	Знает: различные естественнонаучные модели, где возникают аддитивные функции множества и интегралы по ним.	Коллоквиум, контрольная работа, экзамен
	Умеет: создавать модели явлений, процессов и конструкций с использованием теории меры и интеграла. Владеет: методами моделирования	

	естественнонаучных задач на языке теории меры и интеграла.	
ПК-1	Знает: определения и важнейшие свойства основных классов множеств, применяемых в современном анализе.	Коллоквиум, контрольная работа, экзамен
	Умеет: анализировать свойства основных классов множеств, применять их в прикладных задачах. Владеет: современными методами теории меры.	

7.2. Типовые контрольные задания

Примерный перечень вопросов к коллоквиуму

- 1. Нижний и верхний пределы последовательности множеств. Предел последовательности множеств и его свойства.
- 2. Борелевская σ алгебра множеств.
- 3. Определения конечно аддитивной функции множества и ее полной вариации.
- 4. Свойства аддитивной функции множества.
- 5. Свойства полной вариации а.ф.м..
- 6. Определения верхней (= положительной) и нижней (= отрицательной) вариации аддитивной функции множества (а.ф.м.). Теорема Жордана о разложении ограниченной а.ф.м..
- 7. Введение понятия нуль-множества и его использование в анализе.
- 8. Свойства положительной а.ф.м..
- 9. Определение счетно-аддитивной функции множества (=меры = заряда). Пространства с мерой .
- 10. Свойства σ- а.ф.м..
- 11. Свойства полной вариации, верхней и нижней вариации для конечной меры.
- 12. Непрерывность конечной положительной меры.
- 13. Теорема Хана о разложении вещественной меры.
- 14. Понятия абсолютной непрерывности, сингулярности а.ф.м. относительно другой а.ф.м. и соответствующие утверждения.
- 15. Теорема Лебега о разложении σ- а.ф.м..
- 16. Определение внешней меры и теорема Каратеодори.
- 17. Лебеговский метод продолжения меры.
- 18. Терема Хана о продолжении.
- 19. Теорема Александрова о продолжении регулярной меры.
- 20. Мера Бореля.
- 21.Определение функции ограниченной вариации и простейшие свойства полной вариации.
- 22.Свойства функции ограниченной вариации
- 23. Неопределенная полная вариация функции и ее свойства.
- 24. Критерий непрерывности и односторонней непрерывности неопределенной полной вариации.

- 25. Критерий функции ограниченной вариации.
- 26. Неопределенные положительная и отрицательная вариации и их свойства.
- 27. Определение функции скачков и их свойства.
- 28. Дифференциальные свойства функции ограниченной вариации.
- 29. Свойства производной неопределенной полной вариации.
- 30. Абсолютно непрерывные функции и их полные вариации.
- 31. Критерий абсолютной непрерывности функции (= теорема Лебега).
- 32. Разложение функции ограниченной вариации на сумму трех компонент.
- 33.Полнота пространства функций ограниченной вариации.

Примерные контрольные работы

Вариант 1.

- 1. Показать, что неотрицательная, аддитивная и сигма-полуаддитивная функция множества, заданная на кольце есть мера на этом кольце.
- 2. Доказать, что система всех подмножеств произвольного фиксированного множества является сигма-алгеброй.
- 3. Найдите полную вариацию функции $y = \frac{1}{5} (4x^3 x^4)$ на отрезке [a,b].
- 4. Доказать, что система всех интервалов (включая пустой) на числовой прямой не является полукольцом.
- 5. Пусть R кольцо. Доказать, что если мы возьмём симметрическую разность в качестве сложение и пересечение в качестве умножение, то R будет коммутативным кольцом в алгебраическом смысле, причем нулем этого кольца является пустое множество.
- 6. Докажите, что функция $f(x) = \begin{cases} 1, & x \neq \frac{1}{n}, \\ -x^2, & x = \frac{1}{n} \end{cases}$ интегрируема по Лебегу на [0, 1] и

найдите
$$(L)\int_{0}^{1} f(x)dx$$
.

Вариант 2.

- 1. Доказать, что неотрицательная, аддитивная и непрерывная снизу на кольце функция множества есть мера на этом кольце.
- 2. Доказать, что система В всех конечных подмножеств заданного множества А является кольцом.
- 3. Найдите полную вариацию функции $y = \sin 2x \cos x$ на отрезке $[0,\pi]$.
- 4. Доказать, что система всех отрезков (с добавлением пустого множества) на числовой прямой не является полукольцом..
- 5. Построить систему множеств, которая замкнута относительно операций пересечения и объединения, но не является даже полукольцом.

6. Докажите, что функция
$$f(x) = \begin{cases} x^2, & x \in I \cap [1;2], \\ 2x, & x \in I \cap [0;1], \end{cases}$$
 интегрируема по Лебегу на $\sin x, & x \in Q$

$$[0,2]$$
 и найдите (L) $\int_{0}^{2} f(x)dx$.

Вопросы для самостоятельной работы

- 1. Структуры и свойства минимальных классов, порожденных полукольцом.
- 2. Произведение систем множеств. Кольцо, σ кольцо в произведении множеств.
- 3. Нижний и верхний пределы последовательности множеств. Предел последовательности множеств и его свойства.
- 4. Борелевская σ алгебра множеств.
- 5. Определения конечно аддитивной функции множества и ее полной вариации.
- 6. Свойства аддитивной функции множества.
- 7. Свойства полной вариации а.ф.м..
- 8. Определения верхней (= положительной) и нижней (= отрицательной) вариации аддитивной функции множества (а.ф.м.). Теорема Жордана о разложении ограниченной а.ф.м..
- 9. Введение понятия нуль-множества и его использование в анализе.
- 10.Свойства положительной а.ф.м..
- 11. Определение счетно-аддитивной функции множества (=меры = заряда). Пространства с мерой .
- 12. Свойства о-а.ф.м..
- 13. Свойства полной вариации, верхней и нижней вариации для конечной меры.
- 14. Непрерывность конечной положительной меры.
- 15. Теорема Хана о разложении вещественной меры.
- 16. Понятия абсолютной непрерывности, сингулярности а.ф.м. относительно другой а.ф.м. и соответствующие утверждения.
- 17. Теорема Лебега о разложении σ а.ф.м..
- 18. Определение внешней меры и теорема Каратеодори.
- 19. Лебеговский метод продолжения меры.
- 20. Терема Хана о продолжении.
- 21. Теорема Александрова о продолжении регулярной меры.
- 22.Мера Бореля.
- 23. Определение функции ограниченной вариации и простейшие свойства полной вариации.
- 24.Свойства функции ограниченной вариации
- 25. Неопределенная полная вариация функции и ее свойства.
- 26. Критерий непрерывности и односторонней непрерывности неопределенной полной вариации.
- 27. Критерий функции ограниченной вариации.
- 28. Неопределенные положительная и отрицательная вариации и их свойства.
- 29. Определение функции скачков и их свойства.
- 30. Дифференциальные свойства функции ограниченной вариации.
- 31. Свойства производной неопределенной полной вариации.

- 32. Абсолютно непрерывные функции и их полные вариации.
- 33. Критерий абсолютной непрерывности функции (= теорема Лебега).
- 34. Разложение функции ограниченной вариации на сумму трех компонент.
- 35.Полнота пространства функций ограниченной вариации.
- 36.Сходимость в пространстве функций ограниченной вариации.

Вопросы к экзамену по дисциплине

- 1. Основные системы множеств. Минимальные классы множеств, содержащие данную систему множеству.
- 2. Структуры и свойства минимальных классов, порожденных полукольцом.
- 3. Произведение систем множеств. Кольцо, σ кольцо в произведении множеств.
- 4. Нижний и верхний пределы последовательности множеств. Предел последовательности множеств и его свойства.
- 5. Борелевская σ алгебра множеств.
- 6. Определения конечно аддитивной функции множества и ее полной вариации.
- 7. Свойства аддитивной функции множества.
- 8. Свойства полной вариации а.ф.м..
- 9. Определения верхней (= положительной) и нижней (= отрицательной) вариации аддитивной функции множества (а.ф.м.). Теорема Жордана о разложении ограниченной а.ф.м..
- 10. Введение понятия нуль-множества и его использование в анализе.
- 11.Свойства положительной а.ф.м..
- 12. Определение счетно-аддитивной функции множества (=меры = заряда). Пространства с мерой.
- 13. Свойства σ- а.ф.м..
- 14. Свойства полной вариации, верхней и нижней вариации для конечной меры.
- 15. Непрерывность конечной положительной меры.
- 16. Теорема Хана о разложении вещественной меры.
- 17. Понятия абсолютной непрерывности, сингулярности а.ф.м. относительно другой а.ф.м. и соответствующие утверждения.
- 18. Теорема Лебега о разложении σ- а.ф.м..
- 19. Определение внешней меры и теорема Каратеодори.
- 20. Лебеговский метод продолжения меры.
- 21. Терема Хана о продолжении.
- 22. Теорема Александрова о продолжении регулярной меры.
- 23. Мера Бореля.
- 24. Определение функции ограниченной вариации и простейшие свойства полной вариации.
- 25. Свойства функции ограниченной вариации
- 26. Неопределенная полная вариация функции и ее свойства.
- 27. Критерий непрерывности и односторонней непрерывности неопределенной полной вариации.
- 28. Критерий функции ограниченной вариации.
- 29. Неопределенные положительная и отрицательная вариации и их свойства.
- 30.Определение функции скачков и их свойства.
- 31. Дифференциальные свойства функции ограниченной вариации.
- 32.Свойства производной неопределенной полной вариации.

- 33. Абсолютно непрерывные функции и их полные вариации.
- 34. Критерий абсолютной непрерывности функции (= теорема Лебега).
- 35. Разложение функции ограниченной вариации на сумму трех компонент.
- 36.Полнота пространства функций ограниченной вариации.
- 37. Сходимость в пространстве функций ограниченной вариации.
- 38. Условия сходимости последовательности функций ограниченной вариации к функции ограниченной вариации.
- 39. Условия поточечной сходимости последовательности функций ограниченной вариации к функции ограниченной вариации.
- 40.Принцип выбора Э.Хелли.
- 41. Меры Бореля-Стилтьеса и Лебега- Стилтьеса.
- 42. Характеристика борелевских мер.

7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях 20 баллов,
- коллоквиум 30 баллов,
- выполнение аудиторных контрольных работ 40 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос (экзамен) - 100 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

Основная литература:

Основная

- 1) Канторович Л.В. Функциональный анализ / Канторович, Леонид Витальевич. 2-е изд., перераб. М.: Наука, 1977. 741 с.: ил.; 22 см. Список лит.: с.719-730. Указ. предм.: и обозначений: с. 731-741. 3-20.
- 2) Рамазанов А. К. Лекции по теории меры и интеграла : учеб. пособие / Рамазанов А. К., Р. К. Рагимханов ; Минобрнауки России, Дагест. гос. ун-т. Махачкала : Изд-во ДГУ, 2016. 279,[2] с. 389-50.
- 3) Магомедов Г.А. Основы теории меры : учебное пособие / Магомедов Г.А., Р. К. Рагимханов, М. М. Сиражудинов. Махачкала : ИПЦ ДГУ, 1997. 149 с. 10-00.
- 4) Рамазанов А.К. Функциональный анализ : учеб. пособие для вузов. Ч.1 / Рамазанов А.К., Р. К. Рагимханов ; Минобрнауки России, Дагест. гос. ун-т. Махачкала : Изд-во ДГУ, 2013. 318,[1] с. 222-00.
- 5) Данилин А.Р. Функциональный анализ для магистрантов [Электронный ресурс]: учебное пособие/ Данилин А.Р.— Электрон. текстовые данные.— Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2013.— 192 с.— Режим доступа: http://www.iprbookshop.ru/66614.html.— ЭБС «IPRbooks» (25.05.2018)

Дополнительная

- 6) Фёдоров В.М. Курс функционального анализа: учебник / Фёдоров В. М. СПб. [и др.]: Лань, 2005. 351 с.; 20 см. (Учебники для вузов. Специальная литература). Библиогр.: с. 351. ISBN 5-8114-0589-8: 187-66.
- 7) Кириллов А. А. Теоремы и задачи функционального анализа : [учебное пособие для вузов] / Кириллов А.А., А. Д. Гвишиани. М. : Наука, 1979. 384 с. : ил. Библиогр.: с. 369-372. Предм. указ.: с. 373-377. 1-10.
- 8) Глазырина П.Ю. Функциональный анализ. Типовые задачи [Электронный ресурс]: учебное пособие/ Глазырина П.Ю., Дейкалова М.В., Коркина Л.Ф.— Электрон. текстовые данные.— Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2016.— 216 с.— Режим доступа: http://www.iprbookshop.ru/66213.html.— ЭБС «IPRbooks» (25.05.2018)

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

№	Название	Электронный адрес	Содержание		
1.	Math.ru	www.math.ru	Сайт посвящён математике (и математикам. Этот сайт — для школьников, студентов, учителей и для всех, кто интересуется математикой. Тех, кого интересует зона роста современной науки математика.		
2.	Exponenta.ru	www.exponenta.ru	Студентам: - запустить установленный у Вас математический паке выбрать в списке примеров, решенных в среде этого пакет подходящий и решить свою задачу по аналогии; Преподавателям: - использовать математические пакеты для поддержки курса лекций.		
			Всем заинтересованным пользователям: 1. — можно ознакомиться с примерами применениз математических пакетов в образовательном процессе. 2. — найти демо-версии популярных математических пакетов, электронные книги и свободно распространяемых программы.		
3.	Математика	www.mathematics. ru	учебный материал по различным разделам математики – алгебра, планиметрия, стереометрия, функции, графики и другие.		
4.	Российское образование.	www.edu.ru	федеральный образовательный портал: учреждения, программы, стандарты, ВУЗы, тесты ЕГЭ.		
5.	Электронные каталоги Научной библиотеки ДГУ	http://elib.dgu.ru, http://edu.icc.dgu.r u			
6.	Общероссийский математический портал (Math-	www.mathnet.ru	Портал, предоставляет различные возможности в поиске информации о математической жизни в России Портал содержит разделы: журналы, видеотека, библиотека,		

Net. Ru)	персоналии, организации, конференции.

10. Методические указания для обучающихся по освоению дисциплины.

Дисциплина «Мера, интеграл и производная» является базовой частью, изучаемых будущими магистрами. Специфика дисциплинѕ состоит в том, что рассмотрение теоретических вопросов здесь тесно связано с решением практических задач.

На лекциях особенно большое значение имеет реализация следующих задач:

- 1) глубокое осмысливание ряда понятий и положений, введенных в теоретическом курсе;
- 2) раскрытие прикладного значения теоретических сведений;
- 3) развитие творческого подхода к решению практических и некоторых теоретических вопросов;
- 4) закрепление полученных знаний путем многократного практического использования;
- 5) приобретение прочных навыков типовых расчетов;
- 6) расширение кругозора, приобретение полезных сведений, касающихся технических данных реальных объектов и конкретных условий их эксплуатации.

Наряду с перечисленными выше образовательными целями, занятия преследуют и важные цели воспитательного характера, а именно:

- а) воспитание настойчивости в достижении конечной цели;
- б) воспитание дисциплины ума, аккуратности, добросовестного отношения к работе;
- в) воспитание критического отношения к своей деятельности, умения анализировать свою работу, искать оптимальный путь решения, находить свои ошибки и устранять их.

Учебная программа дисциплине *мера*, *интеграл* и *производная* распределена по темам и по часам на лекции, практические и лабораторные занятия; предусмотрена также самостоятельная учебная работа студентов. По каждой теме преподаватель указывает студентам необходимую литературу (учебники, учебные пособия, сборники задач и упражнений), а также соответствующие темам параграфы и номера упражнений и задач.

Самостоятельная работа студентов складывается из работы над лекциями, с учебниками, решения рекомендуемых задач, подготовки к защите лабораторных работ, а также из подготовки к контрольным работам, коллоквиумам и сдаче зачетов и экзаменов.

При работе с лекциями и учебниками особое внимание следует уделить изучению основных понятий и определений по данному разделу, а также особенностям примененных методов и технологий доказательства теорем. Решение достаточного количества задач по данной теме поможет творческому овладению методами доказательства математических утверждений.

После изучения каждой темы рекомендуется самостоятельно воспроизвести основные определения, формулировки и доказательства теорем. Для самопроверки рекомендуется также использовать контрольные вопросы, приводимые в учебниках после каждой темы.

Основная цель практических занятий – подготовка студентов к самостоятельной работе над теоретическим материалом и к решению задач и упражнений.

Методические рекомендации

Для подготовки к практическим занятиям нужно изучить следующие литературные источники:

- 1) Колмогоров А., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1976.
- 2) Федоров В.М. Теория функций и функционального анализа ч.1, М.: изд. МГУ, 2000.
- 3) Рагимханов Р.К., Сиражудинов М.М. Функции с ограниченной вариацией. Интеграл Стилтьеса и его приложения. Мах-ла: ИПЦ ДГУ, 2008.
- 4) Рагимханов Р.К., Рамазанов А.-Р.К., Рагимханов В.Р. Аддитивные функции множества и смежные вопросы. Учебное пособие Махачкала: Изд. ДГУ, 2012.

Решать задачи и упражнения из учебных пособий

- 1) Кириллов А.А., Гвишиани А.Д. Теоремы и задачи функционального анализа. М.: Наука, 1988.
- 2) Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П. Действительный анализ в задачах. М., 2005.
- 3) Треногин В.А., Писаревский Б.М., Соболева «Задачи и упражнения по функциональному анализу» Наука 2002

Для проверки остаточных знаний использовать тесты и вопросами для самопроверки Для подготовки к экзамену: повторить лекционный материал, проанализировать список рекомендованной литературы, решить самостоятельно задачи и примеры из учебного пособия: Кириллов А.А., Гвишиани А.Д. Теоремы и задачи функционального анализа. М.: Наука, 1988.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

При осуществлении образовательного процесса по предмету рекомендуются компьютерные технологии, основанные на операционных системах Windows, Ubuntu, Linux, прикладные программы Mathcad, Matlab, Mathematica, а также сайты образовательных учреждений и журналов, информационно-справочные системы, электронные учебники.

При проведении занятий рекомендуется использовать компьютеры, мультимедийные проекторы, интерактивные экраны.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Университет обладает достаточной базой аудиторий для проведения всех видов занятий, предусмотренных образовательной программой дисциплины математический анализ. Кроме того, на факультете 4 компьютерных класса и 4 учебных класса, оснащенных компьютерами с соответствующим программным обеспечением и мультимедиа-проекторами.

В университете имеет обеспечения.	гся необходимый	комплект лице	нзионного прогј	раммного