

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Методы статистического моделирования Кафедра прикладной математики

Образовательная программа 01.03.02-Прикладная математика и информатика

Профиль подготовки Математическое моделирование и вычислительная математика

> Уровень высшего образования *Бакалавриат*

> > Форма обучения *Очная*

Статус дисциплины: Вариативная

Махачкала, 2018

Рабочая программа дисциплины «Методы статистического моделирования» составлена в 2018 году в соответствии с требованиями ФГОС ВО по направлению подготовки 01.03.02-Прикладная математика и информатика (уровень бакалавриата) от «12» марта 2015 г. №228.

Разработчик: кафедра прикладной математики, Назаралиев М.А., д. ф.-м. н., профессор.

Рабочая программа одобрена: на заседании кафедры прикладной математики от «14» июня 2018 г., протокол №10 И. о. зав. кафедрой ______ Кадиев Р.И.

На заседании методического совета факультета математики и компьютерных наук от «27» июня 2017 г., протокол $N_{2}6$ Председатель Бейбалаев В.Г.

Рабочая программа согласована с учебно-методическим управлением «Ду» <u>06</u> 2018 г.

Рабочая программа дисциплины «Методы статистического моделирования» составлена в 2018 году в соответствии с требованиями ФГОС ВО по направлению подготовки 01.03.02-Прикладная математика и информатика (уровень бакалавриата) от «12» марта 2015 г. №228.

.

Разработчик: *кафедра прикладной математики, Назаралиев М.А., д. ф.-м. н., профессор.*

Рабочая программа одобро на заседании кафедры при	ена: икладной математики от «14» июня 2018 г., про-
та засевании кафеоры при токол №10	menonou mamemamuna om «11» aloisi 2010 e., upo
И. о. зав. кафедрой	Кадиев Р.И.
На заседании методическ терных наук от «27» июн Председатель	. 1
1 1	ована с учебно-методическим управлением 2018 г.

Аннотация рабочей программы дисциплины

Дисциплина Методы статистического моделирования входит в <u>вариатив-</u> <u>ную</u> часть образовательной программы *бакалавриата* по направлению подготовки 01.03.02 - Прикладная математика и информатика.

Дисциплина реализуется на факультете <u>М и КН</u> кафедрой <u>ПМ</u>.

Содержание дисциплины охватывает круг вопросов, связанных с моделированием случайных величин, изложением основ метода Монте – Карло и его использованием при решении различных прикладных задач.

Дисциплина нацелена на формирование следующих компетенций выпускника: профессиональных – ОПК-3, ПК-1.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: <u>лекции, лабораторные занятия, самостоятельная работа).</u>

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости: <u>индивидуальный опрос, тестирование, контроль текущей успеваемости – контрольная работа, коллоквиум, и промежуточный контроль в форме зачета и экзамена.</u>

Объем дисциплины по учебному плану составляет $\underline{6}$ зачетных единиц (216 часов), в том числе по видам учебных занятий

Ce-				Форма проме-				
местр				жуточной атте-				
	Bce-	Контакт	гная работа	обучающи	хся с п	реподава-	CPC,	стации (зачет,
	го			телем			в том	дифференциро-
				из них			числе	ванный зачет,
		Лекции	Лекции Лабора- Практи- КСР консуль-					экзамен
			торные	ческие		тации	мен	
			занятия	занятия				
7	108	18 18					72	Зачет
8	108	28 28					52	Экзамен
Итого	216	46	46				124	

1. Цели освоения дисциплины

• овладение студентами основами одного из современных универсальных численных методов решения сложных задач математической физики, техники, экономики и др., и методами моделирования случайных величин и процессов.

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина «Методы статистического моделирования» читается на 4-ом курсе после изучения дисциплин «Теория вероятностей», «Математиче-

ская статистика», «Теория случайных процессов» и других общематематических дисциплин и является, таким образом, логическим продолжением в изучении вероятностных законов и их роли на практике.

В результате изучения курса студент должен овладеть теоретическими основами методов моделирования случайных величин и процессов, основами Метода Монте-Карло для решения дифференциальных и интегральных уравнений, больших систем алгебраических уравнений, для моделирования систем массового обслуживания, решения простых задач теории переноса и др.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

		2
	Способность к разработ-	Знает методы математического
	ке алгоритмических и	моделирования различных при-
l l	программных решений в	кладных задач, основы методов
	области системного и	оптимизации, математической
	прикладного ресурсов	статистики и др.
	глобальных сетей, обра-	Умеет осуществлять постановку
	зовательного контента,	задач и выполнять эксперименты
	прикладных баз данных,	по проверке их корректности и
	тестов и средств тестиро-	эффективности разработанных
	вания систем и средств	Методов
	на соответствие стандар-	Владеет способностью разраба-
	там и исходным требова-	тывать алгоритмы и программы
	ниям.	решений в области системного и
		прикладного ресурсов глобаль-
		ных сетей, образовательного кон-
		тента, прикладных баз данных,
		тестов и средств тестирования
		систем и средств на соответствие
		стандартам и исходным требова-
		ниям.
ПК -1	Способность собирать,	Знает современные методы по-
	обрабатывать и интер-	лучения и обработки информа-
	претировать данные со-	ции.
	временных научных ис-	Умеет использовать возможно-
	следований, необходи-	сти интернет ресурсов и пакетов
	мые для формирования	прикладных программ для реше-
	выводов по соответству-	ния научных и прикладных за-
	ющим научным исследо-	дач.
	ваниям.	Владеет способностью собирать,
		обрабатывать и интерпретировать
		данные современных научных ис-
		следований, необходимые для

	формирования	выводов	по соот-
	ветствующим	научным	исследо-
	ваниям.		

- 4. Объем, структура и содержание дисциплины.
- 4.1. Объем дисциплины составляет 6 зачетных единиц, 216 академических часов.

4.2. Структура дисциплины

№ п/п	Разделы и темы дисциплины	Семестр	Неделя семестра	вк тель:	лючая ную р и труд	Лаборатор- ч самос ч самос н	тоя- туден-	Самостоятельная рабо-	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)
	Модуль 1. Моделиро	рани <i>е</i>	- СПХ	٠, ١				COB	
1.1	Случайные величины и их распределения	7	City	2	JIA DCS		процес	6	Индивидуальный фронтальный опрос
1.2	Моделирование дис- кретных случайных величин.	7		4		6		18	Проверочная работа
	Итого по модулю 1:			6		6		24	
	Модуль 2. Моделиро	вание	е нег	реры	вных	случай	ных вел	ичин	I
2.1	Стандартный метод моделирования непрерывных случайных величин.	7		2		2		12	Индивидуальный фронтальный опрос
2.2	Специальные методы моделирования непрерывных случайных величин.	7		4		4		12	Контрольная работа
	Итого по модулю 2:			6		6		24	
	Модуль 3. Основы м	етода	Mo		арло.				
3.1	Предельные теоремы теории вероят- ностей	7		2				4	Индивидуальный фронтальный опрос
3.2	Статистическое оценивание параметров распределений. Общая схема метода Монте-Карло	7		4		6		20	Индивидуальный фронтальный опрос Коллоквиум
	Итого по модулю 3:			6		6		24	
	ИТОГО по 1 сем.:			<i>18</i>		18		<i>64</i>	
4	Модуль 4. Вычислен нений.	іие оі	тред	еленн	ых ин	теграл	ов. Реш	ение	интегральных урав-

4.1	Оценка интегралов методом Монте-	8	6	8	3	Индивидуальный фронтальный опрос
4.2	Карло Оценки функционалов от решения интегральных уравнений	8	4	2	3	Индивидуальный фронтальный опрос
4.3	Решение систем ал- гебраических урав- нений	8	4	4	2	Контрольная работа
	Итого по модулю 4:		14	14	8	
5	Модуль 5. Моделиро					
	Монте-Карло. Модел			массового о	бслуживані	ия.
5.1	Общие сведения из теории переноса излучений.	8		2	2	Индивидуальный фронтальный опрос
5.2	Прямое моделирование процесса переноса излучений	8	4	4	2	Устный опрос
5.3	Интегральное уравнение переноса. Оптимизация алгоритмов при решении задач переноса излучений	8	4	6	2	Индивидуальный фронтальный опрос
5.4	Моделирование систем массового обслуживания	8	4	4	2	Коллоквиум
	Итого по модулю 5:		14	14	8	
	Модуль 6	8			36	
	Подготовка к экза-					
	мену					
	ИТОГО за II сем:		28	28	52	
	ИТОГО:		46	46	124	

4.3. Содержание дисциплины, структурированное по темам (разделам).

Модуль 1. Моделирование случайных величин и процессов.

Тема 1. Случайные величины и их распределения.

1.1лк. Случайные величины и их распределения. Дискретные и непрерывные случайные величины. Функция распределения, плотность распределения числовые характеристики.

Равномерное в (0,1) распределение вероятностей и его роль в моделировании других случайных величин. Методы получения случайных величин, распределенных равномерно в (0,1).

Тема 2. Моделирование дискретных случайных величин.

1.2. лк. Стандартный метод моделирования дискретных случайных величин. Примеры моделирования: биномиальное распределение, распределение Пуассона, геометрическое и гипергеометрическое распределения.

1.3лк. Эффективность стандартного алгоритма. Нестандартные методы в моделировании ДСВ. Специальные методы моделирования основных ДСВ.

Модуль 2. Моделирование непрерывных случайных величин.

- Teмa 1. Стандартный метод моделирования непрерывных случайных величин.
- 2.1лк. Моделирование непрерывных случайных величин (HCB). Стандартный метод. Примеры моделирования некоторых распределений: равномерное распределение, показательные распределения; моделирование распределений, с таблично заданной плотностью распределений.
 - Тема 2. Специальные методы моделирования НСВ.
- 2.2лк. Метод суперпозиции и метод исключения для моделирования HCB. Моделирование изотропного вектора на плоскости и в пространстве. Примеры моделирования.
- 2.3лк. Моделирование γ и β распределений. Моделирование стандартной нормальной случайной величины. Приближенное моделирование нормальной случайной величины на основе центральной предельной теоремы.

Модуль 3. Основы метода Монте – Карло.

- Тема 1. Предельные теоремы теории вероятностей.
- 3.1лк. Неравенство Чебышева. Правило «3-х сигм». Закон боьших чисел: Теоремы Чебышева, Бернулли, Пуассона, Хинчина. Центральная предельная теорема теории вероятностей.
- Тема 2. Статистическое оценивание параметров распределений. Общая схема метода Монте-Карло.
- 3.2лк. Статистическая оценка параметров распределений. Точечные и интервальные оценки, свойства оценок. Статистические оценки для математического ожидания, дисперсии, коэффициента корреляции и др.
- 3.3лк. Общая схема метода Монте Карло (М-К) для оценки неизвестного математического ожидания. Погрешность метода М-К. Сведение задачи об определении некоторой величины к вычислению средних значений. Задачи метода Монте Карло. Примеры вычисления площади сложной фигуры и определенного интеграла, вероятности вылета элементарной частицы через плоскую пластику.

Модуль 4. Вычисление определенных интегралов. Решение интегральных уравнений.

- Тема 1. Оценка интегралов методом Монте-Карло.
- 4.1лк. Вычисление многократных интегралов методом М-К. вычисление интеграла, как площади. Вычисление интеграла, как среднего значения. Оценка погрешности, построение доверительного интервала.
- 4.2.лк. Методы понижения дисперсии оценок при вычислении интегралов. Метод существенной выборки (выборки по важности). Алгоритм с нулевой дисперсией.
- 4.3лк. Выделение «главной» части интегрируемой функции. Метод математических ожиданий и метод расщепления. Сравнение дисперсий оценок интеграла разными способами.
 - Тема 2. Оценки функционалов от решения интегральных уравнений.

- 4.4лк. Решение интегральных уравнений методом М-К. Некоторые сведения из теории интегральных уравнений. Интегральное уравнение 2- го рода. Сопряженное пространство и сопряженное уравнение. Функционалы от решения интегрального уравнения. Ряд Неймана, условия сходимости.
- 4.5лк. Цепи Маркова. Однородные цепи Маркова. Переходная плотность. Связь цепей Маркова с решением интегральных уравнений методом М-К. Основная оценка функционала от решения интегрального уравнения, её несмещенность. Дисперсия основной оценки.
 - *Тема 3.* Решение систем алгебраических уравнений.
- 4.6лк. Системы линейных алгебраических уравнений (СЛАУ). Точные и итерационные методы решения СЛАУ. Условия сходимости. Связь с интегральными уравнениями.
- 4.7лк. Построение цепи Маркова для решения СЛАУ методом М-К. Описание алгоритма метода М-К для решения СЛАУ. Возможность оценки отдельно выделенных компонентов решения. Преимущества и недостатки.

Модуль 5. Моделирование задач переноса изучений. Моделирование систем массового обслуживания.

Тема 1. Общие сведения из теории переноса излучений.

- 5.1 лк. Общие сведения из теории переноса излучений. Физические величины, участвующие в описании процесса переноса (коэффициенты рассеяния и поглощения, индикатриса и матрица рассеяния, функция пропускания, альбедо и др. Интегро дифференциальное уравнение переноса. Характеристики поля излучения (поток, плотность, интенсивность и др.).
 - Тема 2. Прямое моделирование процесса переноса излучений.
- 5.2 лк. Процесс переноса, как Марковская цепь траекторий движения частиц излучения. Распределения вероятностей элементов траекторий. Моделирование элементов траекторий. Прямое моделирование процесса переноса.
- 5.3 лк. Общая схема моделирования процесса переноса методом М-К. Различные способы моделирования длины пробега в сложных областях: сферическая геометрия, геометрия ядерного реактора, взаимопересекающиеся эллипсоиды и др. Методы максимального сечения и минимальных длин моделирования длины пробега. Использование специального метода моделирования показательного закона.
- Тема 3. Интегральное уравнение переноса. Оптимизация алгоритмов при решении задач переноса излучений.
- 5.4 лк. Интегральное уравнение переноса. Сопряженное уравнение переноса. Локальные по направлению оценки для плоского слоя. Оценки сопряженных блужданий.
- 5.5 лк. Оптимизация методов М-К в задачах переноса излучений. Весовые методы. Модификации моделирования длины пробега. Методы зависимых испытаний и подобных траекторий. Оценка функции ценности и их использование в оптимизации методов М-К.
 - Тема 4. Моделирование систем массового обслуживания.

- 5.6 лк. Системы массового обслуживания (СМО). Классификация систем массового обслуживания. Показатели работы СМО. Потоки заявок и его характеристики. Пуассоновский поток.
- 5.7 лк. Методы расчета СМО. Граф состояний. Задание основных параметров системы. Моделирование СМО методом М-К. Моделирование потока заявок. Моделирование времени обслуживания. Вычисление основных характеристик эффективности работы СМО.

5. Образовательные технологии

Лекции проводятся с использованием меловой доски и мела.

Параллельно материал транслируется на экран с помощью мультимедийного проектора. Для проведения лекционных занятий необходима аудитория, оснащенная мульмедиа-проектором, экраном, доской, ноутбуком (с программным обеспечением для демонстрации слайд-презентаций). В процессе преподавания дисциплины при чтении лекций применяются такие виды лекций, как вводная обзорная лекция, проблемная лекция, лекция визуализация с использованием компьютерной презентационной техники. Для этого на факультете математики и компьютерных наук имеются специальные, оснащенные такой техникой, лекционные аудитории.

При выполнении лабораторных работ используются интернет ресурсы, пакеты прикладных программ СТАТИСТИКА, MathCAD и Matlab. Для проведения таких занятий используется имеющиеся на факультете 4 компьютерных класса.

На кафедре имеются методические указания к выполнению лабораторных работ, в библиотеке ДГУ есть необходимая литература, имеются методические разработки, размещенные в Интернет сайте ДГУ.

При кафедре прикладной математики функционирует студенческая научно-исследовательская лаборатория «Математическое моделирование, оснащенная 5 новыми ПК, презентационной и оргтехникой.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Ряд учебных и учебно-методических изданий, которые могут быть использованы при самостоятельной работе студентов приведены в разделах 8 и 9 настоящей Программы.

Подробное описание содержания и требований к выполнению лабораторных заданий, в частности, тем для домашнего выполнения содержатся в разделе 7.3.5 настоящей Программы.

Кроме этого при выполнении самостоятельной работы рекомендуются:

1. Назаралиев М.А., Гаджиева Т.В., Фаталиев Н.А. Теория вероятностей и математическая статистика. Часть 1: Теория вероятностей: учебное пособие. — Махачкала: Изд-во ДГУ, 2014. — 192 с.; Часть ІІ. Математическая статистика. — Махачкала: Изд-во ДГУ, 2015. — 155 с.

2. Назаралиев М.А., Магомедов И.И. Лабораторные задания по математической статистике: методическое пособие. Махачкала: Изд. ДГУ, 2013. — 32 с.

6.1 Задачи и примеры для самостоятельного решения

- 1. Найти моделирующую формулу для случайной величины с плотностью распределения $f(x) = c(1+x), \ 0 < x \le 1.$
- 2. Написать алгоритм моделирования 5 значений случайной величины ξ числа очков при бросании игральной кости.
- 3. Написать алгоритм моделирования 4 значений случайной величины, распределенной по закону Пуассона с параметром $\lambda = 2$.
- 4. Получить моделирующую формулу стандартного метода для случайной величины ξ с плотностью распределения $f(x) = ce^{-3/2x}, \ 0 \le x < \infty.$
- 5. Получить формулу моделирования стандартного метода для случайной величины с плотностью распределения $f(x) = ce^{-5x}$, $0 \le x \le l$.
- 6. Написать формулу моделирования для случайной величины с плотностью распределения $f(x) = c |\sin x|, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$.
- 7. Написать алгоритм метода исключения для случайной величины с плотностью распределения $f(x) = cx^{5/3}e^{-x}$, 0 < x.
- 8. Написать формулу моделирования для случайной величины с плотностью распределения $f(x) = c/(1+2x)^2$, $0 \le x \le 1$.
- 9. Методом суперпозиции найти моделирующие формулы для случайной величины с плотностью распределения

$$f(x) = 1 - \frac{1}{3}(2e^{-2x} + e^{-3x}), \ 0 < x < \infty.$$

10. Двумерная дискретная случайная величина задана законом распределения

τ	ξ						
	$x_1 = 0,1$	$x_2 = 0.4$	$x_3 = 0.7$				
1	0,2	0,3	0,1				
2	0,16	0,18	0,06				

Найти условные законы распределения $P(\tau_j/x_i)$. Написать алгоритм моделирования значений двумерного вектора (ξ, τ) .

11. Получить формулы моделирования двумерного случайного вектора (ξ, τ) с плотностью совместного распределения

$$f(x, y) = c\sqrt{x^2 + y^2}, \ 0 \le x, \ y \le 1.$$

- 12.Найти формулы моделирования двумерного случайного вектора с плотностью распределения $f(x, y) = cx \cdot y^2$, в области, ограниченной прямыми: x = 0, y = 0, x = 1, y = 2.
- 13.Получить формулы моделирования двумерной случайной величины (ξ, τ) с плотностью распределения f(x, y) = cy в области ограниченной прямыми y = 0, y = x, x = 1.
- 14. Написать алгоритм и программу получения псевдослучайных чисел методом серединных квадратов Неймана. Получить 10 значений таких псевдослучайных чисел.
- 15. Вычислить методом Монте Карло интеграл

$$I = \int_{0}^{\pi/2} \sin x dx$$

- а) как площади; б)используя в качестве плотности распределения f(x) плотность равномерного распределения в интервале $(0, \frac{\pi}{2})$; в) при f(x) = cx (сначала определить постоянную c).
- 16. Оценка интеграла из примера (15) при условии пункта б) имеет вид $I^* = \pi/2 \cdot \sum_{i=1}^n \sin \xi_i / n \ ,$ где ξ_i - случайные числа, равномерно распреде-

ленные в интервале $(0,\frac{\pi}{2})$. Найти минимальное число испытаний, при котором верхняя граница ошибки $\delta=0,05$.

17. Вычислить методом Монте – Карло определенный интеграл

$$I = \int_{0}^{2} e^{x} dx$$

беря в качестве вспомогательной плотность распределения f(x) = c(1+x), $0 \le x \le 2$. Сначала определить постоянную c.

- 18. Написать алгоритм вычисления методом Монте Карло площади круга, вписанного в квадрат с вершинами (-1,-1), (-1,1), (1,1), (1,-1).
- 19. Оопределить приближенное значение числа π с помощью алгоритма задачи (18). Найти такие приближения при различных значениях числа испытаний n = 100; 10^4 ; 10^5 ; 10^6 .
- 20.~В классической задаче Бюффона на геометрические вероятности на разграфленную параллельными линиями поверхность бросается игла длины l < L, где L расстояние между параллельными линиями. Методом Монте Карло оценить вероятность пересечения иглой какой либо параллельной линии. Сравнить с точным решением при различных значениях числа испытаний n.

- 21. Имеется отрезок длины L, на которую случайно ставится две точки x и y. Оценить методом Монте Карло вероятность построения треугольника из полученных 3-х отрезков. Сравнить с точным решением при различных значениях числа испытаний n.
- 22. Игра в спортлото. Для участия в этой игре нужно было выбрать (вычеркнуть) 6 номеров из 49 (различных спортивных соревнований). Написать алгоритм случайного выбора (вычеркивания) 6 видов спорта из 49, перенумерованых от 1 до 49.
- 23. Задача Гюйгенса (Классическая задача теории вероятностей о «разорении игрока»):два игрока A и B продолжают некоторую игру до полного разорения одного из них. Оценить методом Монте Карло вероятности разорения для каждого игрока, если: 1) начальные капиталы у них соответственно равны a и b рублям, 2) вероятности выигрыша в каждой партии равны соответственно p и p ублям, 3) выигрыши в каждой партии составляет 1 руб. для одного (для другого, очевидно, проигрыш в 1 руб.).

Значения a, b, p, q выбрать разные. (Например a=100, b=200, p=0.6; q=0.4).

6.2. Темы рефератов. Распределение по модулям и разделам.

Раздел дисциплин	Тема реферата
1. Модуль 1. Моделирование слу	
1.1. Случайные величины и их	Реферат: История создания метода статистического
распределения.	моделирования.
	Реферат: Моделирование классической задачи теории
	вероятностей – задачи Банаха «о спичечных короб-
	kax».
1.2. Моделирование дискретных	Реферат: Первые работы по методу Монте-Карло,
случайных величин.	опубликованные в США и СССР.
	Реферат: Вычисление площадей фигур методом Мон-
	те-Карло. Моделирование классической задачи теории
	вероятностей – «задачи о встрече».
2. Модуль 2. Моделирование неп	
2.1. Стандартный метод модели-	Реферат: Приближенное моделирование нормального
рования непрерывных случай-	N(0,1) распределения.
ных величин.	
2.2. Специальные методы моде-	<u>Реферат</u> : Основные проблемы метода Монте-Карло. О
лирования непрерывных случай-	точности метода.
ных величин.	T0
3. Модуль 3. Основы метода Мог	
3.1. Предельные теоремы теории	Реферат: Первые работы по методу Монте-Карло,
вероятностей.	опубликованные в США и СССР.
3.2. Статистическое оценивание	Реферат: Вычисление площадей фигур методом Мон-
параметров распределений. Об-	те-Карло. Моделирование классической задачи теории
щая схема метода Монте-Карло.	вероятностей – «задачи о встрече».
	енных интегралов. Решение интегральных уравне-
ний.	Debener Osvensky unofiner was a Mayra II O
4.1. Оценка интегралов методом	Реферат: Основные проблемы метода Монте-Карло. О
Монте-Карло.	точности метода.
4.2. Оценки функционалов от	Реферат: Цепи Маркова. Перенос излучения, как мар-

решения интегральных уравнений. 4.3. Решение систем алгебраических уравнений.	ковская цепь движения частиц от столкновения к столкновению с элементами вещества среды. Реферат: Задачи теории систем массового обслуживания (СМО). Моделирование простой СМС методом Монте-Карло.
Модуль 5. Моделирование задач	ч переноса излучений методом Монте-Карло. Моде-
лирование систем массового обс.	луживания.
5.1. Прямое моделирование процесса переноса излучений.	Реферат: Цепи Маркова. Перенос излучения, как марковская цепь движения частиц от столкновения к столкновению с элементами вещества среды.
5.2. Интегральное уравнение переноса. Оптимизация алгоритмов при решении задач переноса излучений.	Реферат: Общая схема моделирования переноса излучения методов М–К.
5.3. Моделирование систем массового обслуживания.	Реферат: Основные проблемы метода Монте-Карло. О точности метода.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

Код компе- тенции из	Наименование компетенции из	Знания, умения, навыки	Процедура освоения
ФГОС ВО	ФГОС ВО		
ОПК-3	Способность к разработке алгоритмических и программных решений в области системного и прикладного ресурсов глобальных сетей, образовательного контента, прикладных базданных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям.	Знает методы математического моделирования различных прикладных задач, основы методов оптимизации, математической статистики и др. Умеет осуществлять постановку задач и выполнять эксперименты по проверке их корректности и эффективности разработанных	Лекции, практические и лабораторные занятия. Контрольные работы, коллоквиумы, тестирование. Контрольные работы.

		3.5	
ПК-1	Способность собирать, обрабатывать и интерпретировать данные современных научных исследований, необходимые для формирования выводов по соответствующим научным исследованиям.	Владеет способностью разрабатывать алгоритмы и программырешений в области системного и прикладного ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям. Знаем современные методы получения и обработки информации. Умеем использовать возможности интернет ресурсов и пакетов прикладных программ для решения научных и прикладных задач. Владеем способностью собирать, обрабатывать и интерпретировать данные современ-	Лекции, практические и лабораторные занятия. Контрольные работы, коллоквиумы, тестирование. Контрольные работы.
		Владеет способно- стью собирать, об- рабатывать и ин- терпретировать	
		следованиям.	

7.2. Типовые контрольные задания.

7.2.1. Примеры контрольных работ. Контрольная работа №1 (вариант).

- 1. Написать формулу моделирования непрерывной случайной величины, равномерно распределить в интервале (-2,4).
- 2. Получить 5 значений дискретной случайной величины, заданной законом распределения

ξ	0	1	2	3	4
P_i	0,10	0,25	0,20	0,30	0,15

Значения случайной величины α , распределенной равномерно в интервале (0,1), пусть заданы:

$$\alpha_1 = 0.13, \; \alpha_2 = 0.015, \; \alpha_3 = 0.423, \; \; \alpha_4 = 0.911, \; \; \alpha_5 = 0.722.$$

- 3. Написать алгоритм метода исключения для моделирования непрерывной случайной величины ξ с плотностью распределения $f(x) = cx^2, \ 0 \le x \le 3.$
- 4. Случайная величина ξ число появления события A в 5 независимых испытаниях с вероятностью появления события A в каждом испытании, равной 0,4.

Составить ряд распределения ξ и написать алгоритм ее моделирования.

5. Двумерный случайный вектор (ξ, τ) задан следующим законом распреления:

пределения				
τ		ξ		
	$x_0 = 0$	$x_1 = 1$	$x_2 = 2$	
1	0,02	0,14	0,28	
2	0,02	0,18	0,36	

Пусть ξ и τ – независимы.

Написать алгоритм моделирования этого случайного вектора.

Контрольная работа №2

- 1. На основе центральной предельной теоремы написать формулу приближенного моделирования нормальной случайной величины ξ с параметрами 0 и 1:N(0,1).
- 2. Для оценки некоторой величины m методом Монте Карло проведено n=100 испытаний. Найти с надежностью 0,99 оценку погрешности метода, если известно, что $\sigma^2=D\xi=0$,6, а $m=M\xi$
- 3. Плотность совместного распределения непрерывного двумерного вектора (ξ,τ) имеет вид: $f(x,y)=\frac{3}{4}xy^2$ в области D, ограниченной прямыми $x=0,\,y=0,\,x=1,\,y=2.$. Показать, что с.в. ξ и τ независи-

мы. Написать формулы стандартного метода моделирования для ξ и τ .

4. Написать общую схему вычисления интеграла, как площади:

$$I = \int_{0}^{3} x^2 dx$$

5. Найти оценку интеграла

$$I = \int_{0}^{1} e^{2x} dx$$
, как среднего значения подынтегральной функции.

7.2.2 Вопросы для самоконтроля и к зачету

- 1. Виды случайных величин. Какие случайные величины называются дискретными? Какие случайные величины называются непрерывными?
- 2. Основные дискретные случайные величины: Бернулли, биноминальное, геометрическое, гипергеометрическое, Пуассоновское распределения. Где применяются?
- 3. Функция распределения и ее свойства. Функция распределения дискретных случайных величин из п.2.
- 4. Непрерывные случайные величины. Основные распределения: равномерное в интервале (а,в), равномерное в (0,1); показательное, нормальное распределения. Применения. Функция распределения и плотность распределения.
- 5. Числовые характеристики: $M\xi \ u \ D\xi$, моменты, коэффициенты коррелянии.
- 6. Многомерные случайные величины. Независимость случайных величин.
- 7. Законы больших чисел.
- 8. Центральная предельная теорема теории вероятностей.
- 9. История возникновения метода Монте-Карло.
- 10 Общая схема метода статистических испытаний метода Монте-Карло.
- 11. Задача моделирования случайных величин. Роль равномерной в (0,1) случайной величины.
- 12. Стандартный метод моделирования дискретной случайной величины.
- 13. Специальные методы моделирования дискретно- равномерного и геометрического распределений.
- 14. Стандартный метод моделирования непрерывной случайной величины.
- 15. Алгоритм моделирования кусочно постоянной и кусочно-линейной плотностей.
- 16. Метод исключения моделирования СВ.
- 17. Метод рандомизации моделирования.
- 18. Моделирование плотности $f(x) = 3 \cdot (1 + x^2)/8$, $-1 \le x \le 1$.
- 19. Моделирование гамма и бета- распределений методом исключения.
- 20. Приближенное моделирование нормального распределения.
- 21. Моделирование нормального распределения.

- 22. Моделирование показательного распределения.
- 23. Моделирование изотропного вектора на плоскости.
- 24. Моделирование изотропного вектора в пространстве.
- 25. Методы получения псевдослучайных чисел.
- 26. Задача статистического оценивания неизвестных параметров распределения. Точечные и интервальные оценки.
- 27. Свойства оценок.
- 28. Погрешность метода статистических испытаний.
- 29. Задача оптимизации алгоритмов метода М-К.
- 30. Общие принципы построения алгоритмов и программ решения различных задач методом М-К.

7.2.3 Вопросы для самоконтроля и к экзамену.

К вопросам п. 7.3.2 добавляются следующие:

- 1. Вычисление определенного интеграла методом М-К, как площади.
- 2. Вычисление определенного интеграла методом М-К, как среднего значения подынтегральной функции.
- 3. Методы понижения дисперсии оценок интеграла. Алгоритм с нулевой дисперсией.
- 4. Метод существенной выборки.
- 5. Метод выделения главной части.
- 6. Сравнение дисперсий оценок п.п. 1,2,3,4 при вычислении простого интеграла и при выборе в качестве вспомогательной плотности распределения плотности равномерной в (0,1) случайной величины.
- 7. Интегральное уравнение II –рода.
- 8. Интегральное уравнение переноса излучений .
- 9. Оценка функционалов от решения интегрального уравнения методом Монте-Карло (М-К).
- 10. Дисперсия оценки функционалов.
- 11. Метод зависимых испытаний.
- 12. Моделирование по «ценности».
- 13. Рандомизация оценок метода М-К.
- 14. Метод Монте-Карло и задачи переноса излучений. История.
- 15. Оптические параметры среды (коэффициенты рассеяния и поглощения, индикатриса рассеяния.
- 16. Уравнение переноса.
- 17. Процесс переноса излучения как цепь Маркова. Распределения вероятностей для элементов траекторий. Плотность столкновений; поток фотонов.
- 18. Описание моделирования процесса переноса методом Монте-Карло
- 19. Моделирование элементов траекторий частиц.
- 20. Пример: перенос излучения через плоскую среду
- 21. Методы максимального сечения и минимальных длин для моделирования длины пробега

- 22. Интегральное уравнение переноса. Сопряженное уравнение переноса.
- 23. Локальные оценки
- 24. Весовые методы. Модификации моделирования длины пробега
- 25. Моделирование сопряженных траекторий. Основные оценки. Преимущества и недостатки.
- 26. Применение метода М-К для оценки качества и надежности системы.
- 27. Описание простейшей системы массового обслуживания. Виды СМО.
- 28. Поток Пуассона. Моделирование моментов поступления заявок.
- 29. Моделирование СМО методом М-К.
- 30. Моделирование СМО с отказами и очередями.

7.2.4. Темы практических и семинарских занятий.

Практические и семинарские занятия по курсу не предусмотрены.

7.2.5. Лабораторные работы

Тема 1: Моделирование случайных величин.

Лабораторная работа №1

Моделирование дискретных случайных величин.

Лабораторная работа №2

Статистическая проверка равномерности псевдослучайных чисел (ПСЧ), получаемых с помощью датчика ПСЧ «RANDOM»

Лабораторная работа №3.

Тема 2 : Основы метода Монте- Карло. Статистическое оценивание параметров распределения.

Лабораторная работа №4

Тема 3: Вычисление определенных интегралов методом Монте – Карло.

Лабораторная работа №5

Тема 4: Решение системы линейных алгебраических уравнений методом Монте – Карло.

Лабораторная работа №6

Тема 5: Решение задач переноса излучения методом Монте – Карло (прямое моделирование и весовые модификации).

Лабораторная работа № 7

Тема 6: Система массового обслуживания.

7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

- посещение занятий -10 баллов,
- участие на практических занятиях 20 баллов,
- выполнение лабораторных заданий -<u>30</u> баллов,
- выполнение домашних (аудиторных) контрольных работ 40 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос -20 баллов,
- письменная контрольная работа 30 баллов,
- тестирование 20 баллов,
- коллоквиум 30 баллов.

Студент, получивший в результате 51 баллов и выше получает «зачет».

Экзаменационная оценка складывается из 50% баллов, полученных студентом по текущему и промежуточному контролю, и 50% баллов, полученных или на экзамене.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

- а) основная литература:
- 1. Метод Монте-Карло на графических процессорах [Электронный ресурс] : учебное пособие / К.А. Некрасов [и др.]. Электрон. текстовые данные. Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2016. 60 с. 978-5-7996-1723-3.

Режим доступа: http://www.iprbookshop.ru/69634.html (20.06.2018)

- 2. Ермаков С.М., Михайлов Г.А. Статистическое моделирование. М., Наука, 1982.
- 3. Назаралиев М.А. Статистическое моделирование радиационных процессов в атмосфере. Новосибирск, Наука, 1991 г.
- б) дополнительная:
- 1. Марчук Г.И., Михайлов Г.А., Назаралиев М.А. и др. «Метод Монте Карло в атмосферной оптике». Новосибирск, Наука, 1976.
- 2. Михайлов Г.А. Оптимизация весовых методов Монте Карло. М., Наука, 1987.
- 3. Сенатов В.В. Центральная предельная теорема. Точность аппроксимации и асимптотические разложения. М.: Либроком, 2009 г.
- 4. Ширяев А.Н. Вероятность. Т.1,2.-М.: МЦНМО, 2004 г.

Средства обеспечения освоения дисциплины: программное обеспечение и интернет ресурсы.

- 1. Программное обеспечение PTC MatCAD 15 F000 Russian + Самоучитель (http://ewgk.com/soft/41668-matcad-15-f000-russian-samouchitee.htm).
- 2. Программное обеспечение MatLAB R2011 b (http://www.softforfree.com/programs/matlab-26810. html).
- 3. Мухин О.И. Моделирование систем. Учебник. (stratum/as/ru/textdjjks/modelir/contents/html).

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. Федеральный портал http://edu.ru
- 2. Электронные каталоги научной библиотеки ДГУ http://elib.dgu.ru; http://edu.icc. dgu. ru
- 3. Электронные версии учебников по математике http://www.padabum.com/index,php?id=26938istart==so

Имеется компьютерный класс с 10-ю современными персональными компьютерами и методические указания к выполнению лабораторных работ, в библиотеке ДГУ имеется указанная в пункте 8 литература, имеются методические разработки, размещенные в Интернет сайте ДГУ

При кафедре прикладной математики функционирует студенческая научно- исследовательская лаборатория «Математическое моделирование, оснащенная 5 новыми ПК, презентационной и оргтехникой.

10. Методические указания для обучающихся по освоению дисциплины.

Перечень учебно-методических изданий, рекомендуемых студентам, для подготовки к занятиям представлен в разделе «Учебно-методическое обеспечение. Литература».

Лекционный курс. Лекция является основной формой обучения в высшем учебном заведении. В ходе лекционного курса проводится систематическое изложение научных материалов, освещение основных понятий дисциплины и закрепление теоретического материала.

В тетради для конспектирования лекций необходимо иметь поля, где по ходу конспектирования студент делает необходимые пометки. Записи должны быть избирательными, своими словами, полностью следует записывать только определения. В конспектах рекомендуется применять сокращения слов, что ускоряет запись. В ходе изучения дисциплины Методы статистического моделирования особое значение имеют формулы, схемы и рисунки, поэтому в конспекте лекции рекомендуется делать все рисунки, сделанные преподавателем на доске. Вопросы, возникшие у студента в ходе лекции, рекомендуется записывать на полях и после окончания лекции обратиться за разъяснением к преподавателю.

Студенту необходимо активно работать с конспектом лекции: после окончания лекции рекомендуется перечитать свои записи, внести поправки и

дополнения на полях, используя указанную в разделе 8 литературу. Конспекты лекций следует использовать при подготовке к экзамену, контрольным тестам, при выполнении самостоятельных заданий.

Лабораторные занятия. Лабораторные работы по дисциплине Методы статистического моделирования имеют целью реально научить студентов решению практических задач, научить их навыкам выполнения расчетных работ с использованием современной вычислительной техники и пакетов прикладных программ, и главное научить их самих алгоритмизации, программированию и решению задач на ЭВМ. Защита и сдача всех лабораторных работ является обязательным условием допуска студента к экзамену. В случае пропуска занятий по уважительной причине пропущенное лабораторное занятие подлежит отработке.

Студент должен вести активную познавательную работу. Важно научиться включать вновь получаемую информацию в систему уже имеющихся знаний. Необходимо также анализировать численные результаты, полученные в ходе выполнения лабораторной работы, делать по ним определенные выводы и находить общие закономерности, даваемые теорией, сравнивать с другими численными результатами (напр. по аналитическим формулам), с экспериментом. Важное место в самостоятельном обучении студентов должна занимать работа в образовательной среде ИНТЕРНЕТа. Такие ресурсы указаны в разделе «Программное обеспечение и интернет ресурсы» данной Программы.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Для успешного освоения дисциплины обучающийся использует также кроме указанных выше в п. 8 программного обеспечения и интернетресурсов следующие пакеты прикладных программ: Mathcad, Matlab, Delphi, Statistica и др.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Учебные аудитории факультета для проведения лекционных и семинарских занятий, оснащенные современной презентационной техникой; компьютерные классы факультета и ИВЦ ДГУ, лабораторию «Математическое моделирование» при кафедре прикладной математики. В университете имеется комплект лицензионного программного обеспечения.