

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Элементная база современной микро и наноэлектроники

Кафедра инженерной физики

Образовательная программа
По направлению

11.04.04- Электроника и наноэлектроника

Профиль подготовки: **Физика полупроводников и диэлектриков**

Уровень высшего образования **Магистратура**

Форма обучения: Очная

Статус дисциплины:

Вариативная

Махачкала 2018 Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 11.04.04- Электроника и наноэлектроника, профиль подготовки: Физика полупроводников и диэлектриков (уровень: магистратуры) — Приказ Минобрнауки России от 30.10.2014 № 1407.

Разработчики: кафедра инженерной физики, Нурмагомедов Шамиль Абдулаевич, к.ф.-м.н., доцент

Рабочая программа дисциплины одобрена: на заседании кафедры <i>Инженерной физики</i> _ от «_25_» _06 20 <u>18</u> г., протокол № <i>1a</i> _ Зав. кафедрой Садыков С.А.
на заседании Методической комиссии <u>физического</u> факультета от « <u>29</u> _» <u>06</u> <u>2018</u> г., протокол № <u>11</u> . Председатель <u>Мурлиева</u> Ж.Х.
Рабочая программа дисциплины согласована с учебно-методическим управ-
лением « <u>02</u> » <u>07</u> <u>2018</u> г. <u></u>
(подпись)

Оглавление

Аннотация рабочей программы дисциплины	4
1. Цели и задачи изучения дисциплины	5
2. Место дисциплины в структуре ООП магистратуры	5
3. Компетенции обучающегося, формируемые в результате освоения дисциплини	Ы
(перечень планируемых результатов обучения)	5
4. Объем, структура и содержание дисциплины.	9
4.1. Объем дисциплины составляет 2 зачетных единиц, 72 академических часа.	9
4.2. Структура дисциплины	9
4.3. Содержание дисциплины, структурированное по темам (разделам)	9
4.4. Темы семинарских и практических занятий	11
5. Образовательные технологии	12
6. Учебно-методическое обеспечение самостоятельной работы студентов	13
7. Фонд оценочных средств для проведения текущего контроля успеваемости,	
промежуточной аттестации по итогам освоения дисциплины	15
7.1. Перечень компетенций с указанием этапов их формирования в процессе ос	воения
образовательной программы	15
7.3. Типовые контрольные задания	
7.4. Методические материалы, определяющие процедуру оценивания знаний, у	мений,
навыков и (или) опыта деятельности, характеризующих этапы формирования	
компетенций	19
8. Перечень основной и дополнительной учебной литературы, необходимой для	освоения
дисциплины	19
9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»,	
необходимых для освоения дисциплины	20
10. Методические указания для обучающихся по освоению дисциплины	20
11. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине, включая перечень программного обе	спечения
и информационных справочных систем.	
12. Описание материально-технической базы, необходимой для осуществления	
образовательного процесса по дисциплине	22

Аннотация рабочей программы дисциплины

Дисциплина «Элементная база современной микро и наноэлектроники» входит в вариативную часть обязательных дисциплин образовательной программы магистратуры по направлению (специальности) 11.04.04—Электроника и наноэлектроника. Дисциплина реализуется на физическом факультете кафедрой инженерной физики.

Программа «Элементная база современной микро и наноэлектроники» обеспечивает подготовку специалистов в области технологий создания новых поколений устройств микро- и наноэлектроники в научно-исследовательском коллективе, являющимся лидером в области разработки нового класса устройств электроники на основе активных диэлектриков.

Содержание дисциплины охватывает круг вопросов, связанных сэлементной базой современной микро и наноэлектроники.

Дисциплина нацелена на формирование следующих компетенций выпускника: общекультурных - ОК-2, общепрофессиональных - ОПК-1, профессиональных - ПК-7.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: *лекции, практические занятия, самостоятельная работа.*

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме: индивидуальное собеседование, тестирование, письменные контрольные задания и промежуточный контроль в форме зачета.

Объем дисциплины 2 зачетные единицы, в том числе в академических часах по видам учебных занятий

				Форма проме-					
			жуточной атте-						
тр	Контактная работа обучающихся с преподавателем СРС,								стации (зачет,
Семестр	0				в том	дифференциро-			
Ce	всего	010	Лек-	Лабора-	числе	ванный зачет,			
	ğ	всего	ции						экзамен
				занятия	занятия			мен	
9	72	30	10	-	20	-		42	зачет

1. Цели и задачи изучения дисциплины

Цель изучения дисциплины «Элементная база современной микро и наноэлектроники» является изучение физических основ и принципов работы элементов современной электронной техники, основных параметров и характеристик, режимов работы этих элементов при воздействии на них переменных и постоянных электрических сигналов, схем включения в цепях электрических схем.

2. Место дисциплины в структуре ОПОП магистратуры

Дисциплина «Элементная база современной микро и наноэлектроники» в структуре ОПОП ВО входит вариативная часть (обязательные дисциплины). Для освоения дисциплины требуются знания и умения, приобретенные обучающимися в результате освоения ряда предшествующих дисциплин (разделов дисциплин), таких как: «Наноэлектроника», «Физические основы электроники», «Основы проектирования электронной компонентной базы» и знания в области математики.

Магистры, обучающиеся по данному курсу должны знать: современные операции микро- и нанотехнологии, базовые технологические процессы создания компонентов твердотельной электроники и интегральных микросхем, основные свойства и области применения материалов электронной техники, основы физики твердого тела. Для освоения данной дисциплины магистр должен иметь основополагающие представления об основных подходах к описанию реальных физических процессов и явлений, как на классическом, так и на квантовом уровне; иметь знания о методах решения практических задач физики конденсированного состояния на основе современных математических моделей описания физических объектов; владеть фундаментальными понятиями, законами и теориями современной физики конденсированного состояния, а также методами физического исследования.

Дисциплина «Элементная база современной микро и наноэлектроники» является основной для изучения дисциплин: «Современные методы диагностики материалов электронной техники», «Физические основы полупроводниковых наноструктур».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Компетенции	Формулировка ком-	Планируемые результаты обучения		
	петенции из ФГОС	(показатели достижения заданного		
	BO	уровня освоения компетенций)		
ОК-2	способностью ис-	Знать:		
	пользовать на прак-	• базовые понятия, используемые в		
	тике умения и	экспериментальных исследованиях		
	навыки в организа-	применительно к физике полупро-		

ции исследовательских и проектных работ, в управлении коллективом

- водников и диэлектриков;
- современные методы научноисследовательской работы;
- принципы работы современного инновационного оборудования, используемого при выполнении физического практикума

Уметь:

- организовать научноисследовательские и научнопроизводственные работы, проявлять навыки в управлении исследовательским коллективом;
- использовать в научных исследованиях информационные справочники и поисковые системы;
- формулировать и решать задачи, возникающие в ходе научноисследовательской деятельности;
- выбирать необходимые методы исследования, модифицировать существующие и разрабатывать новые методы исходя из задачконкретного исследования

Владеть:

- основами научно-исследовательской работы, методами (инструментарием) научного анализа и научного проектирования в научных исследованиях:
- компьютерной техникой и информационными технологиями в учебном процессе и научных исследованиях;

ОПК-1

способностью понимать основные проблемы в своей предметной области, выбирать методы и средства их решения

Знать:

- основные элементы микро- и наноэлектроники; основные методы расчета элементов микро- и наноэлектроники, интегральных микросхем и наносистем; режимы работы элементов; конструктивно-технологические ограничения;
- основные подходы к описанию реальных физических процессов и явлений в полупроводниках и диэлек-

триках, как на классическом, так и на квантовом уровне;

 методы вычислительной физики и математического моделирования для описания физических процессов и явлений в полупроводниках и диэлектриках.

Уметь:

- обосновывать выбор материалов и технологических методов при расчете характеристик элементов микро- и наносистем, проводить расчет топологии структур, конструкций и типовых режимов, при которых работают элементы;
- анализировать, систематизировать и обобщать научно-техническую информацию в области современного материаловедения;
- изучать и понимать специальную научную и методическую литературу, связанную с проблемами физики полупроводников и диэлектриков, физики систем пониженной размерности;

Владеть:

- методиками расчета параметров элементов микро- и наноэлектроники и технологических режимов, основами составления конструкторской документации, навыками работы со специальным программным обеспечением для ПК;
- методами количественного формулирования и решения практических задач по физике полупроводников и диэлектриков.

ПК-7

готовностью определять цели, осуществлять постановку задач проектирования электронных приборов, схем и устройств

Знать:

- основные закономерности формирования свойств полупроводников и диэлектриков с точки зрения зонной теории;
- методы теоретических подходов в описании и изучении явлений в фи-

различного функционального назначения, подготавливать технические задания на выполнение проектных работ

- зике полупроводников и диэлектриков;
- электрические, оптические и фотоэлектрические свойства полупроводников и диэлектриков; механизмы протекания тока;
- особенности электронных свойств неупорядоченных и аморфных полупроводников;
- квантоворазмерные эффекты и физические свойства систем пониженной размерности;
- квантовые основы современной наноинженерии;

Уметь:

- использовать специализированные знания в области физики конденсированного состояния вещества для обеспечения технологической реализации материалов и элементов электронной техники в приборах и устройствах электроники и наноэлектроники;
- применять модели и приближения физики конденсированного состояния вещества для описания основных физических свойств фононных и электронных состояний в полупроводниках и диэлектриках;
- по результатам теоретических и экспериментальных исследований материалов формулировать рекомендации по совершенствованию устройств и систем электроники и наноэлектроники.

Владеть:

- навыками представления итогов работы в виде научных публикаций, тезисов докладов, оформления заявок на изобретения и др.;
- опытом внедрения результатов исследований на практике.

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет 2 зачетных единиц, 72 академических часа.

4.2. Структура дисциплины.

7.2.	Структура дисцип		,1.						
№ п/п	Разделы и темы дисциплины	тр	местра	Виды учебной работы, включая самостоятель- ную работу студентов и трудоемкость (в часах)				ная работа	Формы текущего контроля успеваемости (по неделям семестра) Форма промежу-
		Семестр	Неделя семестра	Лекции	Практические занятия	Лаборатор- ные занятия	Контроль самост. раб.	Самостоятельная работа	точной аттестации (по семестрам)
		Мод	VЛE	1. 3		ты на	аноси	стем	l
1	Введение. Общие сведения о микро и наносистемах.	9	<u> </u>	2	4			10	(Д3), (С)
2	Активные и пас- сивные полупро- водниковые мик- росистемы.	9		2	6			10	(ДЗ), (С), (КСР)
	Итого по моду- лю 1:			4	10			20	
	Моду.	ль 2.	Pac	счет	и пер	спект	ивы н	аноси	стем
3	Методы расчета микросистем.	9		2	4			10	(Д3), (С)
4	Основные эле- менты наноси- стем.	9		2	4			8	(ДЗ), (С), (КСР)
	Применение наносистем и их перспективы.	9		2	2			4	(Д3), (С)
	Итого по моду-			6	10			22	
	лю 2:			10	20			42	
	ИТОГО: 72			10	20			44	

4.3. Содержание дисциплины, структурированное по темам (разделам).

Модуль 1.Элементы наносистем

Тема 1.Введение. Общие сведения о микро и наносистемах (2 часа).

Определения, цели и задачи. Микро- и наносистемы. Классификация элементов микро- и наносистем. Основные параметры элементов микро- и наносистем, определяющие области их применения.

Микро-и наноразмерные атомные кластеры в полупроводниках и их свойства. Микрокластеры и их энергетическое состояние. Методы получения и применения структур с атомными кластерами.

Тема 2. Активные и пассивные полупроводниковые микросистемы (2 часа).

Резисторы ИМС. Эквивалентные схемы и математические модели диффузионных резисторов. Конденсаторы. Конденсаторы на основе барьерной емкости р-п переходов. Основные параметры и характеристики. Эквивалентные схемы. Диоды. Структура и топологии дискретных выпрямительных диодов. Математическая модель и эквивалентная схема. Биполярные транзисторы. Структуры и топология биполярных транзисторов в полупроводниковых ИМС. Эквивалентные схемы и математические модели. Полевые транзисторы. Математическая модель и эквивалентная схема.

Модуль 2.Расчет и перспективы наносистем.

*Тема 3.*Методы расчета микросистем (2 часа).

Методы расчета и проектирования резисторов. Методы расчета конденсаторов на основе барьерной емкости p-n переходов. Методы расчета параметров полупроводниковых диодов. Методы расчета топологии биполярных транзисторов. Расчет параметров полевого транзистора на основе эффекта Шоттки. Полупроводниковые микросистемы в производстве интегральных микросхем.

Тема 4. Основные элементы наносистем(2 часа).

Наноструктуры - элементы наносистем. Нуль-, одно-, дву- и трехмерные наностуктуры. Квантовые ямы. Квантовые точки. Квантовые нити. Углеродные наноструктуры: кластеры, фуллерены, нанотрубки, графен. Наноструктуры на основе кремния. Элементы наносистем на основе неупорядоченных полупроводников. Бионаноструктуры.

Тема 5. Применение наносистем и их перспективы(2 часа).

Перспективы развития наноэлектроники. Запоминающие устройства. Магнитная память. Полупроводниковая память. Оптическая память. Молекулярная память. Память с фазовым изменением. Магниторезистивная память. Новые принципы создания элементов ЗУ. Элементы памяти на основе наноструктур. Электромеханическая память. Структура наноэлектронной матрицы, основанной на двух типах молекулярных переключателей. Механотранзистор.

4.4. Темы семинарских и практических занятий

Тема 1. Введение. Общие сведения о микро и наносистемах.

Цели и задачи дисциплины, ее место в программе подготовки специалистов. Общие представления о элементной базе электронных цепей и узлов медицинской техники. Классификационные признаки структурирования электрических элементов. Классификация элементов электронных цепей и узлов: по функциональному назначению, принципам работы, характеристиками и параметрам, методам и способам управления характеристиками элементов. Пассивные и активные элементы, линейные и нелинейные, реактивные и нереактивные элементы, управляемые и неуправляемые элементы электронных цепей и узлов.

Тема 2. Активные и пассивные полупроводниковые микросистемы.

Электромеханические коммутационные элементы: выключатели, переключатели, (слаботочные и сильноточные, низковольтные и высоковольтные). Электрические и другие параметры коммутационных элементов. Расчет и определение основных электрических характеристик и параметров коммутационных элементов. Отечественные и импортные промышленные модификации и маркировки электромеханических коммутационных элементов.

Резисторы и потенциометры: принципы работы; вольт-амперные, температурные, временные и др. электрические характеристики; особенности управления характеристиками резисторов, конденсаторов и индуктивных элементов. Расчет основных электрических характеристик и параметров резисторов, конденсаторов и индуктивных элементов. Практический тренинг на базе демонстрационных материалов с представлением промышленных образцов пассивных элементов электронных цепей и узлов

Тема 3. Методы расчета микросистем.

Методы расчета параметров полупроводниковых диодов. Методы расчета топологии биполярных транзисторов. Расчет параметров полевого транзистора на основе эффекта Шоттки. Полупроводниковые микросистемы в производстве интегральных микросхем. Биполярные транзисторы, устройство и принцип работы, транзистор как четырехполюсник, статические и динамические характеристики и параметры, работа транзисторов в различных режимах, включение транзистора с общей базой, с общим эмиттером, с общим коллектором. Влияние температуры на статические характеристики транзистора, дифференциальные параметры, особенности биполярных транзисторов различного назначения. Эквивалентные схемы на транзисторах. Конструктивные особенности биполярных транзисторов Фототранзисторы (общие сведения). Полевые транзисторы, с управляющим переходом, полевые транзисторы с изолированным затвором. МДП транзисторы с индуцированным каналом и со встроенным каналом. Влияние температуры на характеристики полевых транзисторов. Дифференциальные параметры полевых транзисторов. Эквивалентные схемы и частотные свойства полевых транзисторов. Работа полевых транзисторов в режиме нагрузки. Конструктивные особенности и разновидности полевых транзисторов

Тема 4. Основные элементы наносистем.

Атомные кластеры; углеродные структуры: фуллерены, графен, нанотрубки; квантовые точки. Конденсат Бозе-Эйнштейна. Оптические решетки. Квантовый транспорт. Наноструктуры на поверхности, гетероструктуры. Прогресс в лазерной физике и квантовой оптике. Наноструктуры в медицине

Атомные кластеры: от атома к конденсированной материи. Получение атомных кластеров. Аналогия с атомными ядрами. Квантовые оболочки и супероболочки. Деформация, spill-out. Динамика, дипольный плазмон. Эффекты температуры. Многообразие атомных кластеров (гелиевые, полупроводниковые, ...).

Тема 5. Применение наносистем и их перспективы.

Наноструктуры на поверхности, гетероструктуры. Прогресс в лазерной физике и квантовой оптике. Наноструктуры в медицине. Практические приложения.

Контрольные вопросы.

- 1. Провести расчет и определение основных электрических характеристик и параметров коммутационных элементов.
- 2. Расскажите об отечественных и импортных промышленных модификациях и маркировках электромеханических коммутационных элементов.
- 3. В чем принципиальная разница между резисторами и потенциометрами: рассказать о принципах работы; привести вольт- амперные, температурные, временные и др. электрические характеристики;
- 4. Рассказать про особенности управления характеристиками резисторов.
- 5. Провести расчет основных электрических характеристик и параметров резисторов и провести подбор из существующих аналогов

5. Образовательные технологии

Основными видами образовательных технологий с применением, как правило, компьютерных и технических средств, учебного и научного оборудования являются:

- Информационные технологии.
- Проблемное обучение.
- Индивидуальное обучение.
- Междисциплинарное обучение.
- Опережающая самостоятельная работа.

Для достижения определенных компетенций используются следующие формы организации учебного процесса: лекция(информационная, проблемная, лекция-визуализация, лекция-консультация и др.), практическое занятие, лабораторные занятия, семинарские занятия, самостоятельная работа, консультация. Допускаются комбинированные формы проведения занятий, такие как лекционно-практические занятия.

Преподаватель самостоятельно выбирает наиболее подходящие методы и формы проведения занятий из числа рекомендованных и согласуют выбор с кафедрой.

Реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий и организации внеаудиторной работы (компьютерных симуляций, деловых и ролевых игр, разбора конкретных ситуаций, психологических и иных тренингов) с целью формирования и развития профессиональных навыков обучающихся. Интерактивное обучение — метод, в котором реализуется постоянный мониторинг освоения образовательной программы, целенаправленный текущий контроль и взаимодействие (интерактивность) преподавателя и студента в течение всего процесса обучения.

Самостоятельная работа организована в соответствие с технологией проблемного обучения и предполагает следующие формы активности:

- самостоятельная проработка учебно-проблемных задач, выполняемая с привлечением основной и дополнительной литературы;
- поиск научно-технической информации в открытых источниках с целью анализа и выявления ключевых особенностей.

Основные аспекты применяемой технологии проблемного обучения:

- постановка проблемных задач отвечает целям освоения дисциплины «Физика конденсированного состояния» и формирует необходимые компетенции;
- решаемые проблемные задачи стимулируют познавательную деятельность и научно-исследовательскую активность студентов.

По лекционному материалу подготовлено учебное пособие, конспекты лекций в электронной форме и на бумажном носителе, большая часть теоретического материала излагается с применением слайдов (презентаций) в программе **PowerPoint**, а также с использованием интерактивных досок.

Обучающие и контролирующие модули внедрены в учебный процесс и размещены на Образовательном сервере Даггосуниверситета (http://edu.icc.dgu.ru), к которым студенты имеют свободный доступ.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов предусматривает 42 часа

Разделы и темы		Норма вре-
для самостоя-	Виды работ	мени на вы-
тельного изуче-	виды расот	полнение (в
К ИН		часах)
Модуль 1	Классификация элементов электронных цепей и	20
Элементы нано-	узлов: по функциональному назначению, принципам	
систем	работы, характеристикам и параметрам, методам и	
	способам управления характеристиками элементов.	
	Пассивные и активные элементы, линейные и не-	
	линейные, реактивные и нереактивные элементы.	
	Физические явления при контактах твердых тел,	

	электрические переходы, электронно-дырочный пере-	
	ход при подключении внешнего напряжения.	
	Полупроводниковые диоды, назначение устрой-	
	ство и классификаци. Разновидности диодов: фоторе-	
	зисторы, фотодиоды, излучающие диоды (основные	
	понятия), тиристоры, оптопары.	
	Биполярные транзисторы, устройство и принцип	
	работы, транзистор как четырехполюсник, статиче-	
	ские и динамические характеристики и параметры,	
	Работа транзисторов в различных режи-	
	мах. Эквивалентные схемы на транзисторах.	
	Полевые транзисторы, с управляющим перехо-	
	дом, полевые транзисторы с изолированным затво-	
	ром. МДП транзисторы с индуцированным каналом и	
	со встроенным каналом.	
	Операционные усилители. Базовая структура	
	операционного усилителя. Схемы включения.	
Модуль 2	Основы цифровой техники. Логические элемен-	22
Расчет и перспек-	ты. Комбинационные и последовательностные схемы.	
тивы наносистем	Счетчики. Дешифраторы. Линейные, матричные и пи-	
	рамидальные дешифраторы.	
	Селекторы-мультиплексоры. Мультиплексоры	
	без и с стробированием.	
	Сумматоры. Запоминающие устройства. Посто-	
	янные и оперативные запоминающие устройства.	
	Статические и динамические ОЗУ.	
	Электрически однократно программируемы и	
	перепрограммируемые постоянные запоминающие	
	устройства. Основные характеристики. Перспективы	
	развития элементов аналоговой и цифровой техники.	
	Показатель интеграции элементов.	
	Перспективы развития элементов аналоговой и	
	цифровой техники. Тенденции изменения электриче-	
	ских характеристик: потребляемая мощность, напря-	
	жение питания, загрузочной способности, быстродей-	
	ствия. Основные тенденции и направления развития	
	аналоговых и цифровых устройств. Проблемы улуч-	
	шения частотных характеристик, чувствительности и	
	помехоустойчивости, снижения энергопотребления.	
	Итого	42
	<u>.</u>	

Промежсуточный контроль.

В течение семестра студенты выполняют:

- домашние задания, выполнение которых контролируется и при необходимости обсуждается на практических занятиях;
- промежуточные контрольные работы во время практических занятий для выявления степени усвоения пройденного материала;
- выполнение итоговой контрольной работы по решению задач, охватывающих базовые вопросы курса: в конце семестра.

Итоговый контроль.

Зачетв конце 9 семестра, включающий проверку теоретических знаний и умение решения по всему пройденному материалу.

Изучать дисциплину рекомендуется по темам, предварительно ознакомившись с содержанием каждой из них по программе учебной дисциплины. При первом чтении следует стремиться к получению общего представления об изучаемых вопросах, а также отметить трудные и неясные моменты. При повторном изучении темы необходимо освоить все теоретические положения, математические зависимости и выводы. Для более эффективного запоминания и усвоения изучаемого материала, полезно иметь рабочую тетрадь (можно использовать лекционный конспект) и заносить в нее формулировки законов и основных понятий, новые незнакомые термины и названия, формулы, уравнения, математические зависимости и их выводы, так как при записи материал значительно лучше усваивается и запоминается.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

Компетенция		Знания, умения, навыки	Процедура
			освоения
ОК-2	способностью	Знать:	
OK-2	спосооностью использовать на практике умения и навыки в организации исследовательских и проектных работ, в управлении коллективом	 • современные методы научно-исследовательской работы; • требования к оформлению результатов выполненной работы; Уметь: • формулировать цели и задачи научных исследований в соответствии с тенденциями и перспектива- 	Устный опрос
		ми развития твердотельной электроники и наноэлектроники; Владеть: • методами (инструментарием) научного анализа и научного проектирования в научных исследованиях;	

ОПК-1	способностью	31	нать:	
ОПК-1	способностью понимать основные проблемы в своей предметной области, выбирать методы и средства их решения	•	методы статистической обработки и определения погрешности измерений физических величин; программы по графическому представлению результатов выполненной работы; Уметь: выбирать необходимые методы исследования, модифицировать существующие и разрабатывать новые методы исходя из задачконкретного исследования; падеть: методиками расчета параметров элементов микро- и наноэлектроники и технологических режимов, основами составления конструкторской документации, навыками работы со специальным программным обеспечением для ПК; методами количественного	Устный опрос, письменный опрос,
			формулирования и решения практических задач по	
пи л	DOTO DI LO COTI LO	n .	физике полупроводников и	
ПК-7	готовностью	3H	нать: основные закономерности	Устный
	определять цели, осуществлять по-		основные закономерности формирования свойств по-	опрос,
	становку задач		лупроводников и диэлек-	письмен-
	проектирования		триков с точки зрения	ный опрос,
	электронных		зонной теории;	выступле-
	приборов, схем и	•	особенности электронных	ние на се-
	устройств раз-		свойств неупорядоченных	минарах,
	личного функци-		и аморфных полупровод-	мини-
	онального назна-		ников;	конферен-
	чения, подготав-	•	квантоворазмерные эф-	ция.
	ливать техниче-		фекты и физические свой-	
	ские задания на		ства систем пониженной	
	выполнение про-		размерности;	
				16

ектных работ квантовые основы современной наноинженерии; Уметь: использовать специализированные знания в области физики конденсированного состояния вещества для обеспечения технологической реализации материалов и элементов электронной техники в приборах и устройствах электроники и наноэлектроники; применять модели и приближения физики конденсированного состояния вещества для описания основных физических свойств фононных и электронных состояний в полупроводниках и диэлектриках; Владеть: навыками представления работы итогов В виде научных публикаций, тезисов докладов, оформления заявок на изобретения и др.; опытом внедрения резульисследований татов практике.

7.3. Типовые контрольные задания

Вопросы для самоподготовки к зачету

- 1. Проводники, полупроводники, диэлектрики. Основы зонной теории.
- 2. Зонная диаграмма. Генерация и рекомбинация носителей заряда.
- 3. Доноры и акцепторы. Закон действующих масс. Диффузия и дрейф носителей заряда.
- 4. Температурная зависимость удельной проводимости и концентрации носителей заряда в полупроводниках.
- 5. Температурная зависимость подвижности и удельной проводимости носителей заряда в полупроводнике.

- 6. р n переход. Контактная разность потенциалов. Инжекция и экстракция. Емкость р - n перехода.
- 7. ВАХ диода и ее зависимость от температуры, ширины запрещенной зоны и примеси.
- 8. Ток насыщения и его зависимость от температуры, ширины запрещенной зоны и примеси.
- 9. Диод с толстой и тонкой базой.
- 10. Генерация и рекомбинация в р п переходе. Их влияние на прямой и обратный ток.
- 11. Виды пробоя р п перехода. Зависимость ВАХ при пробое от температуры, ширины запрещенной зоны, примеси и дефектов.
- 12. Влияние поверхности на ВАХ диода. Канал поверхностной проводимости. Поверхностный пробой.
- 13. Прямая ветвь ВАХ диода в полулогарифмических координатах.
- 14. Переходные процессы в диоде. Барьерная емкость.
- 15. Принцип работы интегрального биполярного транзистора.
- 16. Режимы работы и схемы включения биполярного транзистора. Дрейфовый транзистор.
- 17. Работа биполярного транзистора в режиме инвертора и в режиме усилителя тока.
- 18. Процессы при включении и выключении биполярного транзистора. Схема замещения на высокой частоте.
- 19. Представление биполярного транзистора в виде четырехполюсника. Параметры и характеристики транзистора.
- 20. Схема замещения биполярного транзистора в h параметрах. Коэффициент усиления.
- 21. Полевые транзисторы с изолированным затвором. Передаточные и выходные характеристики.
- 22. Полевые транзисторы с управляющим р n переходом и переходом Шоттки. Передаточные и выходные характеристики.
- 23. Уравнения полевого транзистора в Y параметрах. Динамические характеристики полевого транзистора.
- 24. Переходные процессы при ключевом режиме работы полевого транзистора.
- 25. Динистор. Условие включения и ВАХ.
- 26. Тиристор. Структура и ВАХ тиристора. Включение и выключение тиристора.
- 27. Симистор. Структура и ВАХ симистора.
- 28. Фототиристоры и фотосимисторы. Фотосимистор СИТАК фирмы Сименс.
- 29. Полевой транзистор с барьером Шотки.
- 30. Фоторезисторы. ВАХ и световая характеристики фоторезистора.

7.4. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля -60 % и промежуточного контроля -40 %.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях 15 баллов,
- выполнение лабораторных заданий 25 баллов,
- выполнение домашних (аудиторных) контрольных работ 10 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос 5 баллов,
- письменная контрольная работа 15 баллов,
- тестирование 20 баллов.

Шкала диапазона для перевода рейтингового балла в «5»-бальную систему:

<0-50> баллов – неудовлетворительно

«51 – 65» баллов – удовлетворительно

«66 - 85» баллов – хорошо

«86 - 100» баллов – отлично

«51 и выше» баллов – зачет

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

No	Библиографическое описание (авто-	Количество экзем-
П.П	ры/составители, заглавие, вид издания, изда-	пляров и наличие в
	тельство, год издания, кол-во страниц)	библиотеке/ в ката-
		логе ЭБС
OCH	ЮВНАЯ ЛИТЕРАТУРА	
1	Гуртов, В. А. Твердотельная электроника:	1
	учеб.пособие для вузов: [по направлению	(в научной библио-
	010700 "Физика" и специальности 010701	теке ДГУ)
	"Физика"] / Гуртов, Валерий Алексеевич 2-е	
	изд., доп. изд М.: Техносфера, 2005 406 с.	
2	Пасынков, В. В. Полупроводниковые прибо-	24
	ры: учеб.пособие / Пасынков, В. В., Чир-	(в научной библио-
	кинЛ. К Изд. 8-е, испр СПб. [и др.]:	теке ДГУ)
	Лань, 2009, 2006, 2001 479 с.	
3	Барыбин А. А., Томилин В. И., Шаповалов В.	http://biblioclub.ru/ind
	И. Физико-технологические основы макро-,	ex.php?page=book&id
	микро, и наноэлектроники: учебное пособие -	<u>=457643</u> (дата обра-
	Москва: Физматлит, 2011 783 с. : ил., схем.,	щения 15.06.2018)
	табл.	

ДОГ	ЮЛНИТЕЛЬНАЯ ЛИТЕРАТУРА	
4	Физико-химия наночастиц, наноматериалов и	http://biblioclub.ru/ind
	наноструктур: учебное пособие /	ex.php?page=book&id
	А.А. Барыбин, В.А. Бахтина, В.И. Томилин,	<u>=229593</u> (дата обра-
	Н.П. Томилина Красноярск: Сибирский	щения 15.06.2018)
	федеральный университет, 2011 236 с.	
5	Лисицына Л. И. Расчет и конструирование	http://www.ciu.nstu.ru
	приборов отображения информации. Ч. 1:	/fulltext/textbooks/201
	[учебное пособие] / Л. И. Лисицына; Ново-	<u>1/2011_lisitch.pdf</u> (дат
	сиб. гос. техн. ун-т Новосибирск, 2011 70,	а обращения
	[1] с. : ил., табл	15.06.2018)
6		

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. Электронная библиотечная система «Университетская библиотека online» -www.biblioclub.ru
- 2. Федеральный портал «Российское образование» http://www.edu.ru/(единое окно доступа к образовательным ресурсам).
- 3. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
- 4. Российский портал «Открытого образования» http://www.openet.edu.ru
- 5. Сайт образовательных ресурсов Даггосуниверситетаhttp://edu.icc.dgu.ru
- 6. Информационные ресурсы научной библиотеки Даггосуниверситетаhttp://elib.dgu.ru (доступ через платформу Научной электронной библиотеки elibrary.ru).
- 7. http://www.phys.msu.ru/rus/library/resources-online/ электронные учебные пособия, изданные преподавателями физического факультета МГУ.
- 8. http://www.phys.spbu.ru/library/ электронные учебные пособия, изданные преподавателями физического факультета Санкт-Петербургского госуниверситета.

10. Методические указания для обучающихся по освоению дисциплины.

Изучение дисциплины «Элементная база современной микро и наноэлектроники» предусматривает осуществление учебной деятельности состоящей из двух частей: обучения студентов преподавателем и самостоятельной учебной деятельности студентов по изучению дисциплины.

В учебном процессе используются следующие образовательные технологии. По образовательным формам: лекции; индивидуальные занятия. По

преобладающим методам и приемам обучения: объяснительно-иллюстративные (объяснение, показ-демонстрация учебного материала и др.); активные (анализ учебной и научной литературы, составление схем и др.) и интерактивные, в том числе и групповые (взаимное обучение в форме подготовки и обсуждения докладов); информационные; компьютерные; мультимедийные (работа с сайтами академических структур, научно-исследовательских организаций, электронных библиотек и др., разработка презентаций, сообщений и докладов, работа с электронными обучающими программами и т.п.).

Студент в процессе обучения должен не только освоить учебную программу, но и приобрести навыки самостоятельной работы. Студент должен уметь планировать и выполнять свою работу. Удельный вес самостоятельной работы составляет по времени 30% от всего времени изучаемого цикла. Это отражено в учебных планах и графиках учебного процесса, с которым каждый студент может ознакомиться у преподавателя дисциплины.

Главное в период обучения своей специальности - это научиться методам самостоятельного умственного труда, сознательно развивать свои творческие способности и овладевать навыками творческой работы. Для этого необходимо строго соблюдать дисциплину учебы и поведения.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что-то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Вид учебных занятий	Организация деятельности студента
Лекция	Написание конспекта лекций: кратко, схематично, по- следовательно фиксировать основные положения, выво- ды, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочни- ков с выписыванием толкований в тетрадь. Обозначить вопросы, термины, материал, который вызывает трудно- сти, пометить и попытаться найти ответ в рекоменду- емой литературе. Если самостоятельно не удается разо- браться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на практиче- ских работах.
Практиче-	Проработка рабочей программы, уделяя особое внимание

ские занятия	целям и задачам структуре и содержанию дисциплины. Конспектирование источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы, работа с текстом. Решение расчетно-графических заданий, решение задач по алгоритму и др.
Реферат	Поиск литературы и составление библиографии, использование от 3 до 5 научных работ, изложение мнения авторов и своего суждения по выбранному вопросу; изложение основных аспектов проблемы. Кроме того, приветствуется поиск информации по теме реферата в Интернете, но с обязательной ссылкой на источник, и подразумевается не простая компиляция материала, а самостоятельная, творческая, аналитическая работа, с выражением собственного мнения по рассматриваемой теме и грамотно сделанными выводами и заключением. Ознакомиться со структурой и оформлением реферата.
Подготовка к зачету	При подготовке к зачету необходимо ориентироваться на конспекты лекций, рекомендуемую литературу и др.

Результат обучения и самостоятельной работы студента предполагает наличие следующих составляющих:

- понимание методологических основ построения изучаемых знаний;
- выделение главных структур учебного курса;
- формирование средств выражения в данной области;
- построение методик решения задач и ориентации в проблемах (ситуациях).

Самостоятельная работа студента-магистра при изучении «Элементная база современной микро и наноэлектроники» включает в себя: подготовку и участие в изучении теоретической части курса, подготовку к зачету.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Чтение лекций с использованием мультимедийных презентаций. Использование анимированных интерактивных компьютерных демонстраций и практикумов-тренингов по ряду разделов дисциплины.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Материально – техническая база кафедры экспериментальной физики, которая осуществляет подготовку по направлению 11.03.04 «Электроника и наноэлектроника», позволяет готовить бакалавров, отвечающих требовани-

ям ФГОС. На кафедре имеются 3 учебных и 5 научных лабораторий, оснащенных современной технологической, измерительной и диагностической аппаратурой; в том числе функционирует проблемная НИЛ «Твердотельная электроника». Функционируют специализированные учебные и научные лаборатории: Физика и технология керамических материалов для твердотельной электроники, Физика и технология тонкопленочных структур, Электрически активные диэлектрики в электронике, Физическая химия полупроводников и диэлектриков.

Лекционные занятия проводятся в аудитории, оснащенной мультимедийным проекционным оборудованием и интерактивной доской.