МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дополнительные главы уравнений в частных производных

Кафедра дифференциальных уравнений и функционального анализа факультета математики и компьютерных наук

Образовательная программа

01.03.02 – Прикладная математика и информатика

Профиль подготовки

Математическое моделирование и вычислительная математика

Уровень высшего образования **бакалавриат**

Форма обучения очная

Статус дисциплины: вариативная

Махачкала, 2018

Рабочая программа дисциплины **«Дополнительные главы уравнений в частных производных»** составлена в 2018 году в соответствии с требованиями ФГОС ВО по направлению подготовки 01.03.02 – Прикладная математика и информатика (уровень магистратуры) от

12 марта 2015 г. № 228

Разработчик: кафедра дифференциальных уравнений и функционального анализа, Меджидов З. Г., к. ф.-м.н., доцент

Рабочая программа дисциплины одобрена: на заседании кафедры <u>ДУ и ФА</u> от 31.05.2018 г., протокол № 10.

Зав. кафедрой (подпись) Сиражудинов М.М.

на заседании Методической комиссии факультета <u>М и КН</u> от 27.06.2018 г., протокол № 6.

Председатель (подпись) Бейбалаев В.Д.

Рабочая программа дисциплины согласована с учебно-методическим управлением

«<u>29</u>» <u>июня</u> 2018 г. ______ Гасангаджиева А.Г.

Аннотация рабочей программы дисциплины

Дисциплина «Дополнительные главы уравнений в частных производных» входит в вариативную часть образовательной программы бакалавриата по направлению (специальности) 01.03.02 - прикладная математика и информатика. Дисциплина реализуется на факультете математики и компьютерных наук кафедрой дифференциальные уравнения и функциональный анализ.

Дополнительные главы уравнений в частных производных представляет собой один из трудных и важных разделов математики, имеющий приложения к физическим задачам. Этот раздел является продолжением курса обыкновенных дифференциальных уравнений, уравнений в частных производных и сознательное его освоение немыслимо без устойчивых и глубоких знаний по обыкновенным дифференциальным уравнениям и уравнениям в частных производных. Уравнения в частных производных применяются в гидродинамике, в теории упругости и т.д. Дисциплины «Уравнения в частных производных» и ее продолжение «Дополнительные главы уравнений в частных производных» нужно изучить для исследования вопросов связанных с методами математической физики. Курс «Дополнительные главы уравнений с частными производными» посвящен методам исследования вопросов корректности математических моделей естественнонаучных явлений, которые приводят к задачам для дифференциальных уравнений с частными производными.

Теоретической основой таких методов является функциональный анализ, обобщенные функции и пространства Соболева.

Дисциплина «Дополнительные главы уравнений в частных производных» нацелена на формирование следующих компетенций выпускника: профессиональных – ПК-3.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, лабораторные занятия и самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме: контрольной работы, коллоквиума, зачета и экзамена. Объем дисциплины 4 зачетных единиц, в том числе в академических часах по видам учебных занятий

		Форма						
		в том числе						промежу-
		Контактная работа обучающихся с препо-						точной ат-
Ce-	павателем						тестации	
	Bce		из них					(зачет,
местр	ГО	Лек	Лабора-	Практи-	КСР	кон-	CPC	дифферен-
		ции	торные	ческие		сульта-		цирован-
			занятия	занятия		ции		ный зачет,
								экзамен)
8	144	28	28				88	Экзамен,
								зачет

1. Цели освоения дисциплины

Целями освоения дисциплины *«Дополнительные главы уравнений в частных про-изводных»* являются:

- обеспечение более глубокого изучения студентами теории уравнений математической физики;
- теории обобщенных функций и слабых решений уравнений в частных производных;
- творческое овладение основными методами и технологиями доказательств теорем и решения задач действительного анализа, в частности, для создания базы последующим курсам.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина «Дополнительные главы уравнений в частных производных» входит в вариативную часть образовательной программы бакалавриата по направлению 01.03.02 прикладная математика и информатика. Знания по дисциплине «Дополнительные главы теории дифференциальных уравнений с частными производными» для изучения вопросов корректности математических моделей естественнонаучных явлений, которые приводят к задачам для дифференциальных уравнений с частными производными.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

	(пока-
петен- тенции из ФГОС ВО затели достижения заданного уровня	я осво-
ции ения компетенций)	
ПК-3 Способность критически переосмысливать накопленный опыт, изменять при необходимости вид и характер своей профессиональной деятельности изравнениям в частных производных; обобщенных функций; обобщенных функций; обобщенных функций; обобщенные функций умеет: применять обобщенные функций уравнениям в частных производных, кающих при моделировании естествен научных задач. Владеет: разными методами доказате теорем существования решений крае задач.	ения в анали- кций; ции и к возни- енно-
ПК-3 Способность критически переосмысливать накопленный опыт, изменять при необходимости вид и характер своей профессиональной деятельности при необходимости вид и характер своей профессиональной деятельности постановки краевых задач. Умеет: применять обобщенные функции уравнениям в частных производных, кающих при моделировании естествен научных задач. Владеет: разными методами доказате	мысле ения в анали- кций; ции и к возни енно-

1. Объем, структура и содержание дисциплины.

- 4.1. Объем дисциплины составляет 4 зачетные единицы, 144 академических часов.
- 4.2. Структура дисциплины.

№ π/ π	Разделы и темы дисциплины	Семестр	Неделя семестра	ную тру тру	цы уче ючая о работ доемк	Лаборат. занятия	тоят дент	ель- гов и	Формы те- кущего контроля успеваемо- сти (по неделям се- местра) Форма про- межуточной аттестации
1	Модуль 1. Уравнени				<u> 360ОН</u>			4	T7
1	Символ уравнения. Классификация уравнений.	8	1-2	4		4		4	Устный опрос
2	Уравнения первого порядка	8	3	2		2		6	Тестирова- ние
3	Метод Фурье	8	4-5	4		4		6	Контроль- ная работа
	Итого по модулю 1	36		10		10		16	Коллоквиум
	Модуль 2. Обобщенные функции								
1	Обобщенные функции. Дифференцирование обобщенных функций	8	6-7	4		4		10	Устный опрос
2	Фундаментальное решение	8	8-9	4		4		10	Устный опрос
	Итого по модулю 2	36		8		8		20	Контроль- ная работа
	Модуль 3. Обобщенные аналитические функции								
1	Неоднородное уравнение Коши- Римана	8	10- 12	6		6		10	Устный опрос
2	Уравнение Карле- мана - Векуа	8	13- 14	4		4		6	Тестирова- ние
	Итого по модулю 3	36		10		10		16	Коллоквиум
	Модуль 3. Промежуточная аттестация								
	Экзамен							36	Экзамен
	ИТОГО за 8 се- местр	144		28		28		88	
L	Meerb			<u> </u>	I]	1

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине

Модуль 1. Уравнения в частных производных

Тема 1. Символ уравнения. Классификация уравнений.

Определение уравнения в частных производных. Основные типы уравнений в частных производных. Приведение к каноническому виду. Понятие символа оператора. Главный символ. Определение типа уравнения в частных производных по символу.

Тема 2. Уравнения первого порядка

Уравнения в частных производных первого порядка. Основные методы нахождения общих интегралов.

Корректные и некорректные задачи для уравнений в частных производных. Основные методы решения.

Тема 3. Метод Фурье

Общая схема метода Фурье. Обоснование метода Фурье.

Модуль 2. Обобщенные функции

Тема 4. Обобщенные функции. Дифференцирование обобщенных функций

Основные и обобщенные функции. Основные понятия. Обобщенные решения дифференциальных уравнений.

Тема 5. Фундаментальное решение

Фундаментальные решения уравнений в частных производных. Общее решение неоднородного уравнения. Дифференциальные уравнения в комплексных переменных. Основные задачи. Интегрирование линейных уравнений в частных производных с помощью рядов.

Модуль 3. Обобщенные аналитические функции

Тема 6. Неоднородное уравнение Коши-Римана

Неоднородное уравнение Коши-Римана и его решение. Потенциальный и сингулярный операторы и их свойства.

Тема 7. Уравнение Карлемана - Векуа

Уравнение Карлемана-Векуа и его решение. Обобщенные аналитические функции и их свойства. Понятие об обобщенных аналитических функциях многих переменных.

4.3.2. Содержание лабораторных занятий по дисциплине

Модуль 1. Уравнения в частных производных

Тема 1. Символ уравнения. Классификация уравнений.

Определение уравнения в частных производных. Основные типы уравнений в частных производных. Приведение к каноническому виду. Понятие символа оператора. Главный символ. Определение типа уравнения в частных производных по символу.

Тема 2. Уравнения первого порядка

Уравнения в частных производных первого порядка. Основные методы нахождения общих интегралов.

Корректные и некорректные задачи для уравнений в частных производных. Основные методы решения.

Тема 3. Метод Фурье

Общая схема метода Фурье. Обоснование метода Фурье.

Модуль 2. Обобщенные функции

Тема 4. Обобщенные функции. Дифференцирование обобщенных функций

Основные и обобщенные функции. Основные понятия. Обобщенные решения дифференциальных уравнений.

Тема 5. Фундаментальное решение

Фундаментальные решения уравнений в частных производных. Общее решение неоднородного уравнения. Дифференциальные уравнения в комплексных переменных. Основные задачи. Интегрирование линейных уравнений в частных производных с помощью рядов.

Модуль 3. Обобщенные аналитические функции

Тема 6. Неоднородное уравнение Коши-Римана

Неоднородное уравнение Коши-Римана и его решение. Потенциальный и сингулярный операторы и их свойства.

Тема 7. Уравнение Карлемана - Векуа

Уравнение Карлемана-Векуа и его решение. Обобщенные аналитические функции и их свойства. Понятие об обобщенных аналитических функциях многих переменных.

5. Образовательные технологии

В основе преподавания дисциплины Дополнительные главы уравнений в частных производных лежит лекционно-семинарская система обучения, что связано с необходимостью активного продумывания теоретического материала, содержащего глубокие и абстрактные понятия. Индивидуальные особенности обучающихся учитываются подбором заданий разного уровня сложности для самостоятельной работы студентов.

По данной дисциплине учебным планом предусмотрено также проведение занятий в интерактивных формах. Лекции проводятся в аудиториях, оснащенных ви-

деопроекторами. В университете функционирует Центр современных образовательных технологий, в котором предусматриваются мастер-классы специалистов. Учебно-методическое обеспечение самостоятельной работы студентов.

6. Учебно-методическое обеспечение самостоятельной работы студентов

Учебно-методические пособия для самостоятельной работы:

- 1. **М.М. Карчевский**, **М**.Ф. **Павлова** Уравнения математической физики. Дополнительные главы: Учебное пособие/ Казань: Изд-во Казан. гос. ун-та, 2008 http://repository.kpfu.ru/?p_id=9371
- 2. **Михлин** С.Г. Линейные уравнения в частных производных. М.: Высшая школа, 1977
- 6.1. Примерные варианты самостоятельных работ по теме «Пространства основных и обобщенных функций»

Вариант 1

- 1. Доказать, что функция $\varphi(x) = e^{-x^2}$, $x \in R$, принадлежит основному пространству S.
- 2. Доказать, что если непрерывная функция f обращается в нуль в области G в смысле обобщенных функций, то f(x)=0 для всех $x \in G$.
- 3. Доказать, что если функция f(x) имеет производную в классическом смысле, то она совпадает с производной в смысле обобщенных функций.
- 4. Доказать, что ряд $\sum_{k=-\infty}^{\infty} a_k \, \delta(x-k)$ сходится в K' при любых $a_k \in R$.
- 5. Доказать предельное соотношение (в K') при $t \to +\infty$: $\frac{e^{ixt}}{x-i0} \to 2\pi i \delta(x)$.
- 6. Доказать равенство: $x^n \delta^{(n)}(x) = (-1)^n n! \delta(x)$.
- 7. Пусть $0 \le a \le b$. Доказать, что

$$\theta(x-a) * \theta(x-b) = (x-a-b)\theta(x-a-b).$$

Вариант 2

- 1. Верно ли, что $e^x \varphi(x) \in S(R)$ для $\forall \varphi \in S$?
- 2. Доказать равенство $\theta(x)\sin x * \theta(x)\cos x = \frac{1}{2}x_+ \cdot \sin x$.
- 3. Доказать предельное соотношение (в K') при $t \to +\infty$: $\frac{e^{-ixt}}{x-i0} \to 0$.
- 4. Пусть $|a_k| \le A|k|^m + B$ для некоторого m > 0 и $\forall k = 0 \pm 1, \pm 2, ...$ Тогда тригонометрический ряд $\sum_{k=-\infty}^{\infty} a_k e^{ikx}$ сходится в K'(R).
- 5. Доказать, что функционал $(\delta, \varphi) = \varphi(0)$ сингулярен.
- 6. Доказать равенство $\theta(x)\sin x * \theta(x)\sin x = \frac{1}{2}[\theta(x)\sin x x_+ \cdot \cos x].$

7. Доказать, что если ряд $\sum_{m=0}^{\infty} a_m \delta^{(m)}(x)$ сходится в K', то все коэффициенты a_m , начиная с некоторого номера, равны нулю.

Вариант 3

- 1. Доказать предельное соотношение (в K') при $t \to +\infty$: $\frac{e^{-ixt}}{x+i0} \to -2\pi i \delta(x)$.
- 2. Доказать, что если $\varphi(x) \in S$, то функции $\varphi^{(n)}(x)$ для любого $n \ge 0$ абсолютно интегрируемы на всей прямой \mathbb{R} .
- 3. Доказать, что если последовательность $\{\varphi_m(x)\}_{l}^{\infty} \subset K(R)$ сходится в пространстве K к функции φ , то $a\varphi_n \xrightarrow{\kappa} a\varphi$ для любой бесконечно дифференцируемой функции a.
- 4. Доказать, что функция $\frac{1}{\pi x} \sin \frac{x}{\varepsilon}$ стремится к $\delta(x)$ при $\varepsilon \to +0$.
- 5. Верно ли, что $x^n \varphi(x) \in S(R)$, $n \in N$ для $\forall \varphi \in S$?
- 6. Доказать равенство $\theta(x)\cos x * \theta(x)\cos x = \frac{1}{2}[\theta(x)\sin x + x_+ \cdot \cos x].$
- 7. Доказать, что если функция f(x) имеет производную в классическом смысле, то она совпадает с производной в смысле обобщенных функций.
- 6.2. Другие виды самостоятельной работы, распределенные по темам, со ссылками на рекомендуемую литературу

Рефераты и доклады по темам для самостоятельной работы

Разделы (модули) и темы для само- стоятельного изучения	Виды и содержание самостоятельной ра- боты
Модуль 1. Обобщенные функции.	Дифференцирование обобщенных функций
1. Переход к пределу под знаком	Рефераты и доклады на тему:
интеграла.	1. Реферат на тему: Сравнение переходов к
2. Фундаментальные решения для	пределу в интегралах Римана и Лебега.
некоторых уравнений в частных	2. Медленно растущие обобщенные функ-
производных.	ции
3. Аппроксимация гладкими	Доклады и рефераты на темы:
функциями.	1.Преобразование координат.
Цепное правило.	2. Продолжение функций.
Модуль 2. Пространства Соболев	а
1. Определение интеграла Лебега.	Реферат на тему: Различные подходы к
Свойства.	определению интеграла Лебега.
2. Неравенство Пуанкаре.	Реферат на тему: Неравенство Пуанкаре.
3.Пространство Соболева перио-	Доклад на тему: Разностные отношения
дических функций.	

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

ПК-3 Знания, умения, навыки Процедура освоения ПК-3 Знает: определения производных в смысле обобщенных функций; символ уравнения в частных производных; обобщенных аналитических функций; обобщенных функций; обобщенных функций; анятиях решать задачи постановки краевых задач. Умеет: применять обобщенные функции и обобщенные аналитиче- круглый стол на тему			
смысле обобщенных функций; символ уравнения в частных производных; обобщенных аналитических функций; обобщенных функций; анятиях решать задачи постановки краевых задач. Умеет: применять обобщенные функции и обобщенные аналитических ские функции к уравнениям в частных производных, возникающих при моделировании естественнона-	Компетен-	Знания, умения, навыки	Процедура освоения
Владеет: разными методами дока- зательств теорем существования решений краевых задач.	ПК-3	смысле обобщенных функций; символ уравнения в частных производных; обобщенных аналитических функций; обобщенных функций; постановки краевых задач. Умеет: применять обобщенные функции и обобщенные аналитические функции к уравнениям в частных производных, возникающих при моделировании естественноначиных задач. Владеет: разными методами доказательств теорем существования решений	плины по лекциям, основной литературе [1] — [4], на практических занятиях решать задачи из книг [1], [2], [6]; выступления с докладами; круглый стол на тему «Обобщенные решения уравнений в частных

7.2. Типовые контрольные задания

Примерные контрольные вопросы к коллоквиуму

- 1. Эллиптические уравнения. Определения и примеры.
- 2. Эллиптические системы уравнений. Определения и примеры.
- 3. Основные и обобщенные функции. Функция Дирака.
- 4. Регулярные и сингулярные обобщенные функции.
- 5. Обобщенные производные. Примеры.
- 6. Производные в смысле Соболева.
- 7. Свойства производных в смысле Соболева.
- 8. Ядро усреднения. Усреднение функции.
- 9. Свойства усредненных функций.

Примерные вопросы к экзамену

- 10. Эллиптические уравнения. Определения и примеры.
- 11. Эллиптические системы уравнений. Определения и примеры.
- 12. Основные и обобщенные функции. Функция Дирака.
- 13. Регулярные и сингулярные обобщенные функции.

- 14. Обобщенные производные. Примеры.
- 15. Производные в смысле Соболева.
- 16. Свойства производных в смысле Соболева.
- 17. Ядро усреднения. Усреднение функции.
- 18. Свойства усредненных функций.
- 19. Линейные функционалы над пространством Лебега.
- 20. Достаточное условие существования производной в смысле Соболева от произведения функций.
- 21. Определение пространства Соболева.
- 22. След элемента из пространства Соболева.
- 23. Теоремы вложения.
- 24. Неравенство Фридрихса.
- 25. Неравенство Пуанкаре.
- 26. Эквивалентные нормы в пространствах Соболева.
- 27. Эквивалентная норма для одного пространства Соболева над полем R с комплекснозначными элементами.
- 28. Обобщенное уравнение Бельтрами.
- 29. Задача Римана-Гильберта для системы Коши-Римана.
- 30. Задача Римана-Гильберта для обобщенного уравнения Бельтрами.
- 31. Неравенство острого угла для недивергентного эллиптического оператора второго порядка.
- 32. Задача Дирихле для недивергентного эллиптического оператора второго порядка.
- 33. Пространства Соболева периодических функций.
- 34. Периодическая задача для обобщенного оператора Бельтрами.

Примерные тестовые задания

Задача 1. Уравнение Лапласа – уравнение

- 1) параболического типа (0)
- 2) гиперболического типа (0)
- 3) неопределенного типа (0)
- 4) смешанного типа (0)
- 5) эллиптического типа (1)

Задача 2. Система Коши-Римана – система уравнений

- 1) параболического типа (0)
- 2) гиперболического типа (0)
- 3) неопределенного типа (0)
- 4) смешанного типа (0)
- 5) эллиптического типа (1)

Задача 3. Уравнение Бельтрами $\partial_{\bar{z}}u + (2i)^{-1}\partial_z u = f$ – уравнение

- 1) параболического типа (0)
- 2) гиперболического типа (0)
- 3) неопределенного типа (0)
- 4) смешанного типа (0)

5) эллиптического типа (1)

Задача 4. Уравнение Бельтрами $\partial_{\bar{z}}u + \mu \partial_z u = f$, $\|\mu\|_{L_{\infty(Q)}} \le k_0 < 1$, – уравнение

- 1) параболического типа (0)
- 2) гиперболического типа (0)
- 3) неопределенного типа (0)
- 4) смешанного типа (0)
- 5) эллиптического типа (1)

Задача 5. Обобщенное уравнение Бельтрами $\partial_{\bar{z}}u+\mu\partial_z u+\nu\partial_{\bar{z}}\bar{u}=f$, $\|\mu\|_{L_{\infty(Q)}}+\|\nu\|_{L_{\infty(Q)}}\leq k_0<1$, – уравнение

- 1) параболического типа (0)
- 2) гиперболического типа (0)
- 3) неопределенного типа (0)
- 4) смешанного типа (0)
- 5) эллиптического типа (1)

Задача 6. Функция $f(x) = \frac{1}{x}$

- 1) суммируема на отрезке [0; 1] (0)
- 2) суммируема с квадратом на отрезке [0; 1] (0)
- 3) суммируема с квадратом на отрезке [-1; 1] (0)
- 4) локально суммируема на полуинтервале (0; 1]
- 5) локально суммируема на $(0; +\infty)$.

Задача 7. Выберите все верные варианты ответов:

- 1) Функция Дирихле D(x), равная 1 в рациональных точках и равная 0 в иррациональных точках, на отрезке [0; 1] ...
- а) является суммируемой (интегрируемой по Лебегу) и неинтегрируемой по Риману (в собственном или несобственном смысле);
- б) является суммируемой и интегрируемой по Риману в несобственном смысле;
- в) не является ни суммируемой, ни интегрируемой по Риману.
- 2) Функция f(x), равная $\frac{1}{\sqrt{x}}$ при $x \in (0; 1]$ и нулю при x = 0, на отрезке [0; 1] ...
- а) является суммируемой (интегрируемой по Лебегу) и интегрируемой по Риману в несобственном смысле;
- б) не является суммируемой и является интегрируемой по Риману в несобственном смысле;
- в) не является суммируемой и интегрируемой по Риману.

Примерные варианты контрольных работ по теме «Пространства основных и обобщенных функций»

Вариант 1

- 1. Доказать, что функция $\varphi(x) = \begin{cases} e^{-\frac{|ab|}{(x-a)(b-x)}} & \text{при } x \in (a,b), \\ 0 & \text{при } x \notin (a,b) \end{cases}$ странству $K(\mathbb{R})$.
- 2. Доказать, что если последовательность $\{\varphi_m(x)\}_1^{\infty} \subset K(R)$ сходится в пространстве K к функции φ , то $a\varphi_n \xrightarrow{K} a\varphi$ для любой бесконечно дифференцируемой функции a.
- 3. Доказать, что функционал $(\delta, \varphi) = \varphi(0)$ сингулярен.
- 4. Доказать, что функционалы $\left(P\frac{1}{x}, \varphi\right) = Vp \int_{-\infty}^{\infty} \frac{\varphi(x)}{x} dx$ и $\left(P\frac{1}{x^2}, \varphi\right) = Vp \int_{-\infty}^{\infty} \frac{\varphi(x) \varphi(0)}{x^2} dx$ являются обобщенными функциями. Показать, что $P\frac{1}{x} \cdot x = 1$, $P\frac{1}{x^2} \cdot x^2 = 1$, $\left(P\frac{1}{x}\right)' = -\left(P\frac{1}{x^2}\right)$.
- 5. Показать, что функционал $(y', \varphi) = \int_{0}^{\infty} \lambda x^{\lambda-1} [\varphi(x) \varphi(0)] dx$ является производной обобщенной функции $y = x_{+}^{\lambda} = \begin{cases} x^{\lambda} & npu \ x > 0, \\ 0 & npu \ x < 0 \end{cases}$.
- 6. Показать, что: $\theta'(x) = \delta(x)$, $\theta'(x-h) = \delta(x-h)$, supp $\delta(x-h) = \{h\}$.
- 7. Доказать, что если ряд $\sum_{m=0}^{\infty} a_m \delta^{(m)}(x)$ сходится в K', то все коэффициенты a_m , начиная с некоторого номера, равны нулю.

Вариант 2

- 1. Доказать, что функция $\varphi(x) = \begin{cases} \sin^{m+1} \frac{x-a}{b-a} & \text{при } x \in [a,b], \\ 0 & \text{при } x \notin [a,b] \end{cases}$ принадлежит основному пространству $K^m[a,b]$.
- 2. Доказать, что если последовательность $\{\varphi_m(x)\}_1^\infty \subset K(R)$ сходится в пространстве K к функции φ , то $a\varphi_n \xrightarrow{K} a\varphi$ для любой бесконечно дифференцируемой функции a.
- 3. Доказать, что следующие функции стремятся к $\delta(x)$ при $\varepsilon \to +0$:

a)
$$\frac{1}{2\sqrt{\pi\varepsilon}}e^{-\frac{x^2}{4\varepsilon}}$$
, 6) $\frac{1}{\pi x}\sin\frac{x}{\varepsilon}$.

- 4. Показать, что функционал $(y', \varphi) = \int_{0}^{\infty} \frac{1}{x} [\varphi(x) \varphi(0)\theta(1-x)] dx$ является производной обобщенной функции $y = \ln x_+ = \begin{cases} \ln x & npu & x > 0, \\ 0 & npu & x < 0 \end{cases}$.
- 5. Вычислить $\frac{d^3}{dt^3}|t|$.
- 6. Пусть g(x) локально интегрируемая функция, α_i =const. Доказать, что равенство (в K') $g(x) + \sum_{k=1}^{n} \alpha_k \, \delta(x x_k) = 0$ имеет место тогда и только тогда, когда g(x) = 0 и $\alpha_k = 0$, k = 1, ..., n..
- 7. Доказать равенство: $x^n \delta^{(n+k)}(x) = (-1)^n \frac{(n+k)!}{k!} \delta^{(k)}(x)$

Вариант 3

- 1. Доказать, что если $\varphi(x) \in S$, то функции $\varphi^{(n)}(x)$ для любого $n \ge 0$ абсолютно интегрируемы на всей прямой R.
- 2. Доказать, что для того чтобы для функции $\varphi \in K$ существовала $\psi \in K$ такая, что $\varphi = \psi'$ необходимо и достаточно, чтобы $\int\limits_{-\infty}^{\infty} \varphi(t) dt = 0$.
- 3. Доказать, что следующие функции стремятся к $\delta(x)$ при $\varepsilon \to +0$:

a)
$$\frac{1}{\pi} \frac{\varepsilon}{x^2 + \varepsilon^2}$$
, 6) $\frac{1}{\pi \varepsilon x^2} \sin^2 \frac{x}{\varepsilon}$.

- 4. Доказать, что если $f_n(x) = \cos nx$, то $f_n^{(k)} \xrightarrow{K'} 0$, $\forall k \ge 0$.
- 5. Вычислить: а) $\frac{d}{dx}\{x\}$, где $\{x\}$ дробная часть x; б) $\frac{d}{dx}[x]$, где [x] целая часть x; в) $\frac{d}{dx}\theta(1-|x|)$.
- 6. Разложив функцию $f(x) = \frac{x}{2} \frac{x^2}{4\pi}$ в ряд Фурье на отрезке $[0,2\pi]$ и дважды продифференцировав полученный ряд, доказать формулу

$$\frac{1}{2\pi} \sum_{k=-\infty}^{\infty} e^{ikx} = \sum_{k=-\infty}^{\infty} \delta(x - 2k\pi).$$

- 7. Пусть $|a_k| \le A |k|^m + B$ для некоторого m > 0 и $\forall k = 0 \pm 1, \pm 2, ...$ Доказать, что тогда тригонометрический ряд $\sum_{k=-\infty}^{\infty} a_k e^{ikx}$ сходится в K'(R).
- 7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего

контроля -50% и промежуточного контроля -50%.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях 10 баллов,
- коллоквиум 40 баллов,
- выполнение аудиторных контрольных работ 40 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос 50 баллов,
- письменная контрольная работа 50 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) основная литература:

1) Владимиров, Василий Сергеевич.

Уравнения математической физики: учебник для физ.-техн. спец. вузов. / Владимиров, Василий Сергеевич. - 5-е доп. - М: Наука, 1988. - 512 с.: ил.; 22 см. - с.509-512. - ISBN 5-02-013769-X: 1-30.

Местонахождение: Научная библиотека ДГУ

2) Владимиров, Василий Сергеевич.

Обобщенные функции в матетатической физике. / Владимиров, Василий Сергеевич. - 2-е испр, доп. - М : Наука, 1979. - 318 с. : ил. ; 22 см. - (Соврем. физ.-техн. проблемы.). - с.310-314.

Местонахождение: Научная библиотека ДГУ

3) Владимиров В.С. и др. Сборник задач по уравнениям математической физики. М.: Наука, 1982.

Местонахождение: Научная библиотека ДГУ

4) Михлин С.Г.

Линейные уравнения в частных производных. М.: Высшая школа, 1977

Местонахождение: Научная библиотека ДГУ

- 5) **Пичугин Б.Ю.** Уравнения математической физики [Электронный ресурс]: курс лекций/ Пичугин Б.Ю., Пичугина А.Н. Электрон. текстовые данные. Омск: Омский государственный университет им. Ф.М. Достоевского, 2016. 180 с. Режим доступа: http://www.iprbookshop.ru/59669.html. ЭБС «IPRbooks»
- 6) Субботин А.И. Обобщенные решения уравнений в частных производных первого порядка. Перспективы динамической оптимизации [Электронный ресурс]/ Субботин А.И.— Электрон. текстовые данные.— Москва, Ижевск: Регулярная и хаотическая динамика, Ижевский институт компьютерных исследований, 2003.— 336 с.— Режим доступа: http://www.iprbookshop.ru/16578.html. ЭБС «IPRbooks»

б) дополнительная литература:

7) Бицадзе А.В., Калиниченко Д.Ф.

Сборник задач по уравнениям математической физики, М. Наука, 1977.

Местонахождение: Научная библиотека ДГУ

- 8) **Алексеев А.Д**. Уравнения с частными производными в примерах и задачах [Электронный ресурс]: учебное пособие/ Алексеев А.Д., Кудряшов С.Н., Радченко Т.Н.— Электрон. текстовые данные.— Ростов-на-Дону: Южный федеральный университет, 2009.— 80 с.— Режим доступа: http://www.iprbookshop.ru/47167.html. ЭБС «IPRbooks»
- 9) М.М. Карчевский, М.Ф. Павлова

Уравнения математической физики. Дополнительные главы: Учебное пособие/ Казань: Изд-во Казан. гос. ун-та, 2008 http://repository.kpfu.ru/?p_id=9371

10) **Петровский И.Г**., Лекции об уравнениях с частными производными, М. Физматгиз, 1961.

Местонахождение: Научная библиотека ДГУ

11) **Тихонов А.Н., Самарский А.А.,** Уравнения математической физики, М. Наука, 1972.

Местонахождение: Научная библиотека ДГУ

- 12) **Паршев Л.П.** Уравнения в частных производных первого порядка [Электронный ресурс]: методические указания к выполнению типового расчета/ Паршев Л.П., Калинкин А.В. Электрон. текстовые данные. М.: Московский государственный технический университет имени Н.Э. Баумана, 2011. 28 с.— Режим доступа: http://www.iprbookshop.ru/31307.html. ЭБС «IPRbooks»
- 9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

№	Название	Электрон- ный адрес	Содержание
1.	Math.ru	www.math.ru	Сайт посвящён математике (и математикам. Этот сайт — для школьников, студентов, учителей и для всех, кто интересуется математикой. Тех, кого интересует зона роста современной науки математика.
2.	Exponenta.ru	www.exponent a.ru	Студентам: - запустить установленный у Вас математический пакет, выбрать в списке примеров, решенных в среде этого пакета, подходящий и решит свою задачу по аналогии; Преподавателям:

			- использовать математические пакеты для поддержки курса лекций. Всем заинтересованным пользователям: 1. можно ознакомиться с примерами применения математических пакетов в образовательном процессе. 2. найти демо-версии популярных математических пакетов, электронные книги и свободно распространяемые программы.
3.	Математика	www.mathema tics.ru	учебный материал по различным разделам математики — алгебра, планиметрия, стереометрия, функции, графики и другие.
4.	Российское образование.	www.edu.ru	федеральный образовательный портал: учреждения, программы, стандарты, ВУЗы, тесты ЕГЭ.
5.	Электронные каталоги Научной биб-лиотеки ДГУ	http://elib.dgu.r u, http://edu.icc.d gu.ru	
6.	Общероссий- ский матема- тический портал (Math- Net. Ru)	www.mathnet.r u	Портал, предоставляет различные возможности в поиске информации о математической жизни в России Портал содержит разделы: журналы, видеотека, библиотека, персоналии, организации, конференции.

10. Методические указания для обучающихся по освоению дисциплины.

Язык обобщенных функций (или распределений, как их еще называют в литературе) является основным языком многих современных направлений математики. Дисциплина «Дополнительные главы уравнений в частных производных» способствует выработке навыков применения этого языка у будущих бакалавров бакалавров. Поэтому творческое овладение этой дисциплиной особенно важно для тех, кто собирается продолжить учебу в магистратуре и аспирантуре по различным направлениям. Обобщение понятия решения уравнений не только расширяет круг решаемых задач, но и значительно упрощает решение этих задач, автоматизируя многие математические операции.

Систематическое изложение научных материалов, освещение главных тем данной дисциплины проводится в ходе лекционного курса. Изучение теоретического курса выполняется самостоятельно каждым студентом по итогам каждой из лекций, используя конспект (электронный) лекций, учебники, представленные в разделе 8 «Перечень основной и дополнительной учебной литературы, необходимой для

освоения дисциплины», результаты контролируются преподавателем на практических занятиях.

Если возникают вопросы, следует обратиться на кафедру к преподавателю, согласно графику консультаций ведущего преподавателя. Обращаясь за консультацией, необходимо указать, каким учебником пользовались и какой раздел, глава, параграф вам не понятен.

Решения задач и самостоятельные работы по заданию (индивидуальному, где требуется) преподавателя сдаются в конце каждой зачетной единицы.

Для сдачи зачетной единицы «Дифференциальные уравнения в пространстве обобщенных функций» необходимо проанализировать лекционный материал с использованием источников литературы, предварительно повторить темы «Фундаментальное решение» и «Преобразование Фурье».

Для подготовки к практическим занятиям нужно изучить соответствующий теоретический материал из следующих литературных источников, рекомендованных в п. 8: [1], [2], [4], [5].

Решать задачи и упражнения из учебных пособий и задачников: [1], [5], [6].

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Для осуществления образовательного процесса по дисциплине: «Дополнительные главы уравнений в частных производных» необходимы:

Системное программное обеспечение: OC Windows 7/8/10;

Прикладное программное обеспечение: MSOffice 2007/2010/2013;

Сетевые приложения: электронная почта, поисковые системы Google, Yandex.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Для проведения лекционных и практических занятий по дисциплине необходима аудитория на 20-25 мест, оборудованная ноутбуком, экраном и цифровым проектором.

Университет обладает достаточной базой аудиторий для проведения всех видов занятий, предусмотренных образовательной программой дисциплины «Обобщенные функции». Кроме того, на факультете 4 компьютерных класса и 4 учебных класса, оснащенных компьютерами с соответствующим программным обеспечением и мультимедиа-проекторами.

В университете имеется необходимый комплект лицензионного программного обеспечения.