МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

Рабочая программа дисциплины

Вопросы наилучших приближений в области вещественных чисел

Кафедра <u>математического анализа</u> факультета <u>математики и компьютерных наук</u>

Образовательная программа 02.03.01 Математика и компьютерные науки

Профиль подготовки Математический анализ и приложения

> Уровень высшего образования бакалавриат

> > Форма обучения <u>очная</u>

Статус дисциплины: вариативная (по выбору)

Махачкала, 2018

Рабочая программа дисциплины *Вопросы наилучших приближений в области вещественных чисел* составлена в 2018 году в соответствии с требованиями ФГОС ВО по направлению подготовки <u>02.03.01 Математика и компьютерные науки (уровень бакалавриата)</u> от 07.08. 2014 г. № 949.

Разработчик<u>: кафедра математического анализа,</u> Вагабов А.И., д.ф.-м.н., профессор

Рабочая програмі	ма дисциплины од	добрена:		
На заседании кад	bедры математи	ческого ана	лиза от 25 июня 2018	З г.,
протокол № 10. Зав. кафедрой	Manky	Рамаз	анов АР.К.	
На заседании Ме компьютерных н Председатель	тодической коми наук от «26» <u>июня</u>	ессии факуль <u>1</u> 2018 г., пр Бейбал	ьтета математики і отокол № 6 . аев В.Д.	1
	,			
Рабочая програм	ма дисциплины с	огласована 2018 г	с учебно-методическ	ИМ

Аннотация рабочей программы дисциплины

Дисциплина *Вопросы наилучших приближений в области вещественных чисел* входит в вариативную часть образовательной программы бакалавриата по направлению 02.03.01 Математика и компьютерные науки и является дисциплиной по выбору.

Дисциплина реализуется на факультете *математики и компьютерных наук* кафедрой *математического анализа*.

Содержание дисциплины охватывает круг вопросов, связанных с непрерывными дробями, вопросами их сходимости, оценок скорости сходимости подходящих дробей и вопросами наилучших приближений вещественных чисел рациональными.

Дисциплина нацелена на формирование следующих компетенций выпускника: общепрофессиональных - OПК-1; профессиональных - ПК-3.

В результате освоения дисциплины обучающийся должен:

знать: основные свойства подходящих дробей, признаки сходимости обыкновенных непрерывных дробей с положительными частными знаменателями;

уметь применять: свойства подходящих дробей для оценки скорости сходимости бесконечных непрерывных дробей, а также уметь разлагать квадратичные иррациональности в правильные непрерывные дроби;

владеть: методами теории непрерывных дробей для решения задач в математике и в других областях научно-исследовательской деятельности.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия, самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение контроля успеваемости в форме *коллоквиума* и промежуточного контроля в форме *экзамена*.

Объем дисциплины 4 зачетные единицы, в том числе в академических часах по видам учебных занятий:

Семес			Форма					
тр	Bce			промежуточной				
	го		Контактная	CPC	аттестации			
			пре					
		из них						
		Лекц	Лаборатор	Практич	КСР	консульт		
		ии	ные	еские		ации		
			занятия	занятия				
8	144	30		30			48	36, экзамен

1. Цели освоения дисциплины

Освоение основных понятий, связанных с теорией непрерывных дробей, и владение основными методами исследования задач с помощью непрерывных дробей для возможности применения в дальнейшей научно-исследовательской деятельности.

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина *Вопросы наилучших приближений в области вещественных чисел* входит в вариативную часть (по выбору) образовательной программы по направлению *02.03.01 Математика и компьютерные науки* (Б1.В.ДВ.8.3).

К исходным требованиям для изучения дисциплины относятся знания, умения и виды деятельности, сформированные в процессе изучения дисциплин: математический анализ, теория чисел, комплексный анализ, функциональный анализ.

Дисциплина является основой для последующего изучения других дисциплин и прохождения практик.

Знания по данному курсу необходимы при работе над выпускной квалификационной работой и в дальнейшей научно-исследовательской работе по выбранному направлению.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Код компетенции из ФГОС ВО	Наименование компетенции из ФГОС ВО	Планируемые результаты обучения
ОПК-1	Обладать готовностью использовать фундаментальные знания в области математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, дискретной математики и математической логики, теории вероятностей, математической статистики и случайных процессов, численных методов теоретической механики в будущей профессиональной деятельности	Знает: основные свойства подходящих дробей, признаки сходимости обыкновенных непрерывных дробей. Умеет: применять основные свойства подходящих дробей для оценки скорости сходимости бесконечных непрерывных дробей; разлагать квадратичные иррациональности в правильные непрерывные дроби; Владеет: основными методами теории непрерывных дробей для возможности применения в будущей профессиональной деятельности.
ПК-3	Обладать способностью строго доказывать утверждение, сформулировать результат, увидеть следствия полученного результата	Знает точные определения основных понятий и строгие формулировки основных теорем теории непрерывных дробей. Умеет проводить логически точные математические рассуждения при доказательстве теорем о непрерывных дробях, строго соблюдая при этом причинно-следственные связи. Владеет классическими методами доказательства основных теорем теории непрерывных дробей.

4.Объем, структура и содержание дисциплины

4.1. Объем дисциплины составляет 4 зачетные единицы, 144 академических часа.

4.2. Структура дисциплины

Названия разделов и тем дисциплины	Семестр Неделя семестра	местра	Аудиторные занятия, в том числе			ия, в	работа	Формы текущего контроля успеваемости <i>(по</i>
		Неделя се	лекции	практ. занятия	лабор. работы	Контр. сам. раб.	Самостоят. работа	неделям семестра) Форма промежуточной аттестации (экзамен)
Модуль 1. Подходящи	іе дро	би						
1. Основные тождества			4	4			8	
2. Свойства подходящих дробей			6	6			8	
Всего по модулю 1	8		10	10			16	коллоквиум
Модуль 2. Сходимость	непр	ерывнь	іх дроб	ей				
1. Теорема Зейделя			4	4			8	
2. Непрерывные дроби общего вида			6	6			8	
Всего по модулю 2	8		10	10			16	коллоквиум
Модуль 3. Наилучшие	прибл	ижени	я чисел	7				
1.Приближение чисел			4	4			8	
2.Некоторые			6	6			8	
приложения								
Всего по модулю 3	8		10	10			16	коллоквиум
Модуль 4. Промежуточ	чная а	иттест	пация					
Экзамен	8							36
ИТОГО за семестр	8		30	30			48	36

4.3. Содержание дисциплины, структурированное по темам (разделам)

4.3.1. Содержание лекционных занятий по дисциплине

Модуль 1. Подходящие дроби

Тема 1. Основные тождества.

Непрерывные (цепные) дроби. Основные типы непрерывных дробей. Основные тождества для числителей и знаменателей подходящих дробей.

Тема 2. Свойства подходящих дробей.

Тождества для разности двух соседних подходящих дробей.

Тождества для разностей соседних подходящих дробей одинаковой четности.

Модуль 2. Сходимость непрерывных дробей

Тема 1. Теорема Зейделя.

Признаки сходимости непрерывных дробей с положительными членами звеньев.

Теорема Зейделя и ее приложения.

Тема 2. Непрерывные дроби общего вида.

Тождественные преобразования непрерывных дробей.

Достаточные условия сходимости непрерывных дробей общего вида.

Модуль 3. Наилучшие приближения чисел

Тема 1. Приближение чисел.

Правильные непрерывные дроби как аппарат приближения вещественных чисел рациональными. Наилучшие приближения вещественных чисел.

Тема 2. Некоторые приложения.

Приложения к построению календарей. Экономные системы счисления. Некоторые обобщения непрерывных дробей.

4.3.2. Содержание практических занятий по дисциплине

Модуль 1. Подходящие дроби

Тема 1. Основные тождества.

Непрерывные (цепные) дроби. Основные типы непрерывных дробей. Основные тождества для числителей и знаменателей подходящих дробей.

Тема 2. Свойства подходящих дробей.

Тождества для разности двух соседних подходящих дробей.

Тождества для разностей соседних подходящих дробей одинаковой четности.

Модуль 2. Сходимость непрерывных дробей

Тема 1. Теорема Зейделя.

Признаки сходимости непрерывных дробей с положительными членами звеньев.

Теорема Зейделя и ее приложения.

Тема 2. Непрерывные дроби общего вида.

Тождественные преобразования непрерывных дробей.

Достаточные условия сходимости непрерывных дробей общего вида.

Модуль 3. Наилучшие приближения чисел

Тема 1. Приближение чисел.

Правильные непрерывные дроби как аппарат приближения вещественных чисел рациональными. Наилучшие приближения вещественных чисел.

Тема 2. Некоторые приложения.

Приложения к построению календарей. Экономные системы счисления. Некоторые обобщения непрерывных дробей.

5. Образовательные технологии

В основе преподавания дисциплины лежит лекционно-семинарская система обучения, что связано с необходимостью активного продумывания теоретического материала, содержащего глубокие и абстрактные понятия. Индивидуальные особенности обучающихся учитываются подбором заданий разного уровня сложности для самостоятельной работы студентов.

По данной дисциплине учебным планом предусмотрено также проведение занятий в интерактивных формах. Лекции проводятся в аудиториях, оснащенных видеопроекторами. В университете функционирует Центр современных образовательных технологий, в котором предусматриваются мастер-классы специалистов.

6. Учебно-методическое обеспечение самостоятельной работы студентов

Учебно-методические пособия для самостоятельной работы

1. Вагабов А.И. Вопросы наилучших приближений в области вещественных чисел. Махачкала: ИПЦ ДГУ, 2012.

Рефераты и доклады по темам для самостоятельной работы

Разделы и темы для самостоятельного изучения	Виды и содержание самостоятельной работы				
Модуль 1. Подходящие дроби					
1. Основные тождества.	Доклад на тему: Типы непрерывных дробей.				
2. Свойства подходящих дробей.	Доклад на тему: Промежуточные дроби.				
Модуль 2. Сходимость непрерывных дробей					
1. Теорема Зейделя.	Доклад на тему: Сходимость С- дробей.				
2. Непрерывные дроби общего вида.	Доклад на тему: Дроби Паде.				
Модуль 3. Наилучшие приближения чисел					
1. Приближение чисел.	Доклад на тему: Рациональные приближения числа П.				
2. Некоторые приложения.	Доклад на тему: Экономные системы счисления.				

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в описании образовательной программы.

Код компетенции из ФГОС ВО	Наименование компетенции из ФГОС ВО	Планируемые результаты обучения	Процедура освоения
ОПК-1	Обладать готовностью использовать фундаментальные знания в области математического анализа,	Знает: основные свойства подходящих дробей, признаки сходимости обыкновенных непрерывных дробей.	Изучение тем последовательно по модулям с проведением коллоквиумов

ПК-3	комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, дискретной математики и математической логики, теории вероятностей, математической статистики и случайных процессов, численных методов теоретической механики в будущей профессиональной деятельности Обладать способностью строго доказывать утверждение,	Умеет: применять основные свойства подходящих дробей для оценки скорости сходимости бесконечных непрерывных дробей; разлагать квадратичные иррациональности в правильные непрерывные дроби. Владеет основными методами теории непрерывных дробей для возможности применения в будущей профессиональной деятельности. Знает точные определения основных понятий и строгие формулировки основных теорем теории непрерывных дробей.	Изучение последовательно модулям проведением	тем по с
	сформулировать результат, увидеть следствия полученного результата	Умеет проводить логически точные математические рассуждения при доказательстве теорем о непрерывных дробях, строго соблюдая при этом причинно-следственные связи. Владеет классическими методами доказательства основных теорем теории непрерывных дробей.	коллоквиумов	

7.2. Типовые контрольные задания

Примерные вопросы к Изучение тем последовательно по модулям с проведением коллоквиумов

Основные типы непрерывных дробей. Основные тождества для числителей и знаменателей подходящих дробей.

- 1. Свойства подходящих дробей.
- 2. Теорема Зейделя.
- 3. Непрерывные дроби общего вида.
- 4. Достаточные условия сходимости непрерывных дробей общего вида.
- 5. Наилучшие приближения вещественных чисел.

7.4. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 50% и промежуточного контроля - 50%.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях 20 баллов,
- Изучение тем последовательно по модулям с проведением коллоквиумов 30 баллов,
- выполнение аудиторных контрольных работ 40 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос (экзамен) - 100 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) основная литература:

- 1. Хинчин, А.Я. Цепные дроби / А.Я. Хинчин ; ред. Л.Ю. Чернышевой. Изд. 3-е. Москва : Государственное издательство физико-математической литературы, 1960. 112 с. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=449480 ().
- 2. Сизый, С.В. Лекции по теории чисел: учебное пособие / С.В. Сизый. 2-е изд., испр. Москва: Физматлит, 2008. 191 с. ISBN 978-5-9221-0741-9; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=68386 ().

б) дополнительная литература:

- 1. Хованский, А.Н. Приложение цепных дробей и их обобщений к вопросам приближенного анализа / А.Н. Хованский ; ред. А.Ф. Лапко. Москва : Гос. изд-во техн.теорет. лит., 1956. 204 с. (Библиотека прикладного анализа и вычислительной техники). ISBN 978-5-4458-4959-9 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=220538 ().
- 2. Математический анализ (функции, пределы, ряды, цепные дроби) / ред. Л.А. Люстерник,, А.Р. Янпольского, А.Ф. Лапко и др. Москва : Гос. изд-во физикоматематической лит., 1961. 442 с. (Справочная математическа библиотека). ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=112182 ().

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. http://elibrary.ru eLIBRARY Научная электронная библиотека
- 2. http://window.edu.ru/window/catalog?p_rubr=2.2.74.12 Единое окно доступа к электронным ресурсам
- 3. http://springerlink.com/mathematics-and-statistics/ платформа ресурсов издательства Springer
- 4. http://edu.dgu.ru/ Образовательный сервер ДГУ

5. Moodle[Электронный ресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. – Махачкала, г. – Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. – URL: http://moodle.dgu.ru/().

10. Методические указания для обучающихся по освоению дисциплины

Учебная программа по дисциплине распределена по темам и по часам на лекции и практические занятия; предусмотрена также самостоятельная учебная работа студентов. По каждой теме преподаватель указывает студентам необходимую литературу (учебники, учебные пособия, сборники задач и упражнений), а также соответствующие темам параграфы и номера упражнений и задач.

Самостоятельная работа студентов складывается из работы над лекциями, с учебниками, решения рекомендуемых задач, подготовки к докладу или реферату, а также из подготовки к контрольным работам. Изучение тем последовательно по модулям с проведением коллоквиумов и сдаче экзаменов.

При работе с лекциями и учебниками особое внимание следует уделить изучению основных понятий и определений по данному разделу, а также особенностям примененных методов и технологий доказательства теорем. Решение достаточного количества задач по данной теме поможет творческому овладению методами доказательства математических утверждений.

После изучения каждой темы рекомендуется самостоятельно воспроизвести основные определения, формулировки и доказательства теорем. Для самопроверки рекомендуется также использовать контрольные вопросы, приводимые в учебниках после каждой темы.

Основная цель практических занятий – подготовка студентов к самостоятельной работе над теоретическим материалом и к решению задач и упражнений.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

При осуществлении образовательного процесса по дисциплине рекомендуются компьютерные технологии, основанные на операционных системах Windows, Ubuntu, Linux, прикладные программы Mathcad, Matlab, Mathematica, а также сайты образовательных учреждений и журналов, информационно-справочные системы, электронные учебники.

При проведении занятий рекомендуется использовать компьютеры, мультимедийные проекторы, интерактивные экраны.

12.Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Университет обладает достаточной базой оснащенных аудиторий для проведения всех видов занятий, предусмотренных образовательной программой дисциплины. Кроме того, на факультете 4 компьютерных класса и 4 учебных класса, оснащенных компьютерами с соответствующим программным обеспечением и мультимедиа-проекторами.

В университете имеется необходимый комплект лицензионного программного обеспечения.