МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет информатики и информационных технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Кафедра информационных технологий и моделирования экономических процессов

Образовательная программа 09.04.03 Прикладная информатика

Профиль подготовки Прикладная информатика в аналитической экономике

> Уровень высшего образования **магистратура**

> > Форма обучения

Очная

Статус дисциплины: базовая

Рабочая программа дисциплины составлена в 2018 году в соответствии с требованиями ФГОС ВО по направлению подготовки 09.04.03 Прикладная информатика (уровень магистратуры) от «30» октября 2014 г. №1404.

Разработчик(и): кафедра информационных технологий и моделирования экономических процессов, Адамадзиев К.Р., д.т.н., профессор, Касимова Т.М., к.э.н.

Рабочая программа дисциплины одобрена: на заседании кафедры Дамадзиев К.Р., протокол № 10 Зав. кафедрой Дамадзиев К.Р., протокол № 10 (подпись)

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Дисциплина «Математическое моделирование» входит в базовую часть образовательной программы магистерской подготовки по направлению 09.04.03 Прикладная информатика.

Дисциплина реализуется на факультете информатики и информационных технологий кафедрой информационных технологий и моделирования экономических процессов.

Содержание дисциплины охватывает круг вопросов, по выявлению связей (зависимостей) функционирования экономических объектов разного уровня; изучением методов выявления и оценки этих связей-зависимостей, построением для их изучения математических и компьютерных моделей, а также анализом получаемых результатов и формулировкой выводов и предложений.

Дисциплина нацелена на формирование следующих компетенций: общепрофессиональных - ОПК-3, ОПК-5, ОПК-6.

Преподавание дисциплины предусматривает проведение лекционных и лабораторно-практических занятий, а также самостоятельной работы.

Рабочая программа дисциплины предусматривает проведение текущего контроля в форме опроса, проверки контрольных и самостоятельных работ и промежуточный контроль в форме зачета.

Объем дисциплины 5 зачетных единиц, в т. ч. в академических часах по видам учебных занятий.

				Форма					
					В Т. Ч.				промежуточного
ф			Кон	тактная ра	бота обуча	ощихся	н с	CPC,	контроля и
ecı				препо	одавателем			В Т. Ч.	аттестации
Семестр	Всего				из них			зачет	
\mathcal{O}	Bc	Всего	Лек-	Лабора-	Практи-	КСР	Консуль		
	, ,	Вс	ции	торные	ческие		-тации		
		, ,		занятия	занятия				
1-й	72	24	8	8 16					Зачет
2-й	81	22	8	14				59	Экзамен

1. Цель изучения дисциплины

Целью изучения дисциплины является теоретическая и практическая подготовка магистров по основам анализа и синтеза прикладных и информационных процессов, структур систем и их отдельных подсистем, систем управления, систем поддержки принятия решений. Задачи изучения дисциплины: подготовка магистров для научной и практической деятельности в области разработки моделей сложных систем и проведения исследований на этих моделях.

2.Место дисциплины в структуре ООП магистра

Дисциплина «Математическое моделирование» входит в базовую часть образовательной программы магистерской подготовки по направлению 09.04.03 – Прикладная информатика.

При изучении дисциплины «Математическое моделирование» предполагается, что магистр владеет навыками самостоятельной работы с первичной информацией, нормативно-правовой документацией и навыками формирования и расчета социально-экономических показателей, характеризующие деятельность хозяйствующих субъектов в экономике. Владеть навыками методами построения аналитических и имитационных моделей и навыками их компьютерной реализации.

Данный курс подготовит магистров к прослушиванию в дальнейшем спецкурсов, связанных с эконометрикой и математические и инструментальные методы поддержки принятия решения.

3. Компетенции обучающегося, формируемые в результате освоения

дисциплины (перечень планируемых результатов обучения)

Код компетен ции из ФГОС ВО	Наименование компетенции из ФГОС ВО	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенций)
ОПК-3	способностью исследовать современные проблемы и методы прикладной информатики и научнотехнического развития ИКТ	Знает: основные направления развития ИКТ Умеет: определять перспективные направления развития ИКТ Владеет: навыками коллективной работы, ведения дискуссии и обсуждения полученных результатов
ОПК-5	способностью на практике применять новые научные принципы и методы исследований	Знает: новые научные принципы и методы исследований. Умеет: применять новые научные принципы и методы исследований. Владеет: методами применения новых научных принципов и методов исследований.
ОПК-6	способность к профессиональной эксплуатации современного электронного оборудования в соответствии с целями основной образовательной программы магистратуры	Знает: современное электронное оборудование; Умеет: эксплуатировать современное электронное оборудование; Владеет: профессиональной эксплуатацией современного электронного оборудования в соответствии с целями основной образовательной программы магистратуры.

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет 5 зачетных единиц, 180 академических часов.

4.2. Структура дисциплины

	4.2. Структура ди	СЦИПЛ	ипы							
№ п/п	Разделы и темы дисциплины	пионип пин и			включ оятель агистр	бной ра ная само ную раб ов и тру ь (в часа)- боту /до-	ная работа	Формы текущего контроля успеваемости Форма промежуточной аттестации	
		Семе	Семестр Неделя семестра		Практические занятия	Лабораторные занятия	Контроль самост. раб.	Самостоятельная работа		
	Модуль 1. МАТЕМАТИ	<u>чески</u>	<u>.</u> Е МОЛЕ	ли л	IA BPI	•	ия и с	ПЕН	⊥ КИ СВЯЗЕЙ И	
	ЗАВИСИМОСТЕЙ МЕЖ	ДУ ЭКО	ономич	ІЕСКІ ІЕСКІ	ти под	ЮКАЗА	ТЕЛЯМ	и И	an consent	
1	Модели для оценки								Опрос, тестирова-	
	связей между парами экономических	9		4	8			24	ние, контрольная работа	
2	показателей Компьютерное								Опрос, тестирова-	
2	моделирование								ние, контрольная	
	многофакторных								работа	
	связей между	9		4	8			24	puooru	
	социально-			T				27		
	экономическими									
	показателями									
	Итого по модулю 1			8	16			48	зачет	
	Модуль 2. ПОСТРОЕН	ие мс	<u> ПЕЛИ</u> Л			той і	и откі			
	ТРАНСПОРТНОГО Т		ДЕСТІ	W131 3				D 11 (711 911,711 1	
3	Методика построения модели для закрытой и открытой задач транспортного типа	10		2		2		12	Опрос, тестирование, контрольная работа	
4	Методика построения								Опрос, тестирова-	
	двухэтапной модели	10		2		4		15	ние, контрольная	
	для задачи								работа	
	Итого по модулю 2			4		6		27		
	Модуль 3. РАЗРАБОТІ	$KA \overline{MO}$	дел и д .	ля оі	ценк	и свя	ЗЕЙ И	3ABI	ІСИМОСТ <u>ЕЙ</u>	
	МЕЖДУ ПОКАЗАТЕЛ				СКИХ	х объі	ЕКТОВ	MET	ОДОМ	
	СТАТИСТИЧЕСКИХ	ГРУПП	<u>ІИРОВО</u>	К	1	Ī	T	ı		
5	Постановка задачи и								Опрос, тестирова-	
	ее информационное	10		2		4		16	ние, контрольная	
	обеспечение								работа	
6	Алгоритмы расчетов и								Опрос, тестирова-	
	формирование								ние, контрольная	
	документов при			_					работа	
	экономическом	10		2		4		16		
	анализе методом									
	статистических									
	группировок									
	Итого по модулю 3			4		8		32	экзамен	
1	ИТОГО			16	16	14		107		

4.3. Содержание дисциплины, структурированное по темам (разделам)

4.3.1. Содержание лекционных занятий по дисциплине Модуль 1. Математические модели для выявления и оценки связей и зависимостей между экономическими показателями

Tема 1. Модели для оценки связей между парами экономических показателей

Teма 2. Компьютерное моделирование многофакторных связей между социально-экономическими показателями

Модуль 2. Построение модели для закрытой и открытой задач транспортного типа

Тема 3. Методика построения модели для закрытой и открытой задач транспортного типа

Тема 4. Методика построения двухэтапной модели для задачи

Модуль 3. Разработка модели для оценки связей и зависимостей между показателями экономических объектов методом статистических группировок

Тема 5. Постановка задачи и ее информационное обеспечение

Тема 6. Алгоритмы расчетов и формирование документов при экономическом анализе методом статистических группировок

4.3.2. Содержание лабораторно-практических занятий по дисциплине Модуль 1. Математические модели для выявления и оценки связей и зависимостей между экономическими показателями

Тема 1. Модели для оценки связей между парами экономических показателей

Статистические характеристики и формулы для их расчета

Изучить сущность параметров уравнений парной регрессии и формул для их расчета.

Параметры уравнений парной регрессии $(b;m; m_1;m_2)$ рассчитываются методом наименьших квадратов по нижеприведенным формулам:

- уравнений регрессии линейного вида

$$b = \overline{Y} - m\overline{X};$$
 $m = \frac{\overline{XY} - \overline{Y} * \overline{X}}{\overline{X}^2 - (\overline{X})^2};$

- уравнений степенного вида

$$\lg b = \overline{\lg Y} - m\overline{\lg X}; b = 10^{\lg b}; \qquad m = \frac{\overline{\lg X \cdot \lg Y} - \overline{\lg Y} \cdot \overline{\lg X}}{(\lg X)^2 - (\overline{\lg X})^2};$$

- уравнений гиперболического вида

$$b = \overline{Y} - m \cdot \left(\frac{1}{X}\right); \qquad m = \frac{\frac{1}{X} \cdot Y - \left(\frac{1}{X}\right) \cdot \overline{Y}}{\left(\frac{1}{X}\right)^2 - \left(\frac{1}{X}\right)^2};$$

- уравнений показательного вида

$$\lg b = \overline{\lg Y} - m \overline{\lg X}; b = 10^{\lg b}; \qquad \lg m = \frac{\overline{X \cdot \lg Y} - \overline{X} \cdot \overline{\lg Y}}{X^2 - (\overline{X})^2}; m = 10^{\lg m};$$

- уравнений параболического вида

$$b = \overline{y} - m_{1} \overline{x} - m_{2} \overline{x^{2}} \qquad m_{1} = \frac{(\overline{x} \cdot \overline{y} - \overline{xy}) - m_{2}(\overline{x^{2}} \cdot \overline{x} - \overline{x^{3}})}{(\overline{x})^{2} - \overline{x^{2}}};$$

$$m_{2} = \frac{(\overline{x} \cdot \overline{y} - \overline{xy})/((\overline{x})^{2} - \overline{x^{2}}) - (\overline{x}^{2} \cdot \overline{y} - \overline{x^{2}y})/(\overline{x} \cdot \overline{x^{2}} - \overline{x^{3}})}{(\overline{x} \cdot \overline{x^{2}} - \overline{x^{3}})/(\overline{x})^{2} - \overline{x^{2}}) \cdot ((\overline{x^{2}})^{2} - \overline{x^{y}})/(\overline{x} \cdot \overline{x^{2}} - \overline{x^{3}})}.$$

Решение задачи начинается с построения графиков точек рассеивания.

По расположению точек на графике можно делать предварительный вывод о возможных видах линий регрессии.

Графики точек рассеивания можно строить с помощью инструментария «Мастер диаграмм» в MS Excel, выполняя следующие действия:

- создать исходную таблицу вида

X		
Y		

- выделив созданную исходную таблицу нажать на пункт «Вставка» главного меню;
- в появившемся подменю «Диаграммы» выбрать пункт «Точечная», а затем в окне «Точечная» выбрать первый из 5-ти возможных типов диаграмм.

После выполнения указанных действий на рабочем поле MS Excel будет выведен сформированный «Мастером диаграмм» график точек рассеивания.

Затем можно перейти к расчету промежуточных показателей. При построении уравнений регрессии линейного вида необходимо рассчитать следующие показатели:

$$\sum_{x;\overline{x^2};\overline{xy}} y; \sum_{y} y^2; \sum_{x} x \cdot y; y_x; \sum_{x} (y - \overline{y})^2; \sum_{x} (y - yx)^2; \sum_{x} (y_x - \overline{y})^2; \sum_{x} (x - \overline{x})^2; \overline{y};$$

Расчеты выполняются в следующей последовательности:

- рассчитываются x^2 и $x \cdot y$ для 1-го региона путем ввода указанных формул в соответствующие ячейки этого региона, а затем скопировать эти формулы в ячейки для всех остальных регионов;
- рассчитываются $\sum x$; $\sum y$; $\sum x^2$; $\sum xy$; x^2 ; xy; x^2 ; xy путем ввода соответствующих формул в строки «Сумма» и «Ср.арифметическая»;
- рассчитываются b и m по вышеприведенным формулам для уравнения парной линейной регрессии (см. последнюю строку таблицы 4.1).
- производится математическая запись построенного уравнения регрессии, которая в нашем примере имеет вид $y_x = 60,4623 + 0,2740 \cdot x$;
- подставив в построенное уравнение значения показателя фактора (x) определяются расчетные значения (y_x) (см. столбец 7 таблицы 4.1); например, расчетное значение ВРП для Калининградской области равно $y_x = 60,4623 + 0,2740 \cdot 143 = 56,6$ млрд.руб.;
- рассчитываются $(y-y)^2$; $(y-y_x)^2$; $(y_x-y)^2$ для 1-го региона путем ввода указанных формул, а затем эти формулы копируются в ячейки остальных регионов;

- рассчитываются $\sum (y-y)^2; \sum (y-y_x)^2; \sum (y_x-y)^2; \sum (y_x-y)^2;$ Эти показатели необходимы для расчета статистических характеристик.

Аналогичные расчеты выполняются и при построении уравнений регрессии других 4-х видов, хотя имеются некоторые различия. Методика расчета параметров для уравнений степенного, показательного, гиперболического и параболического видов иллюстрируют таблицы 4.2; 4.3.

Различие для уравнения степенного вида состоит в том, что в качестве исходных показателей при определении b и m используются не величины y и x, а их логарифмов $\lg y$ и $\lg x$. В случае показательного уравнения исходными для расчета параметров

являются величины $\lg y$ и x, а в случае гиперболического уравнения – величины y и $\frac{1}{x}$.

Исходными показателями при построении уравнения параболического вида являются величины: y, x, x^2 .

Рассчитанные величины параметров целесообразно свести в таблицу 5.

Математическая записать построенных однофакторных моделей:

```
y=19,0064+0,2626x_1 - линейного вида; y=1,3092/x_1^{0,7528} - степенного вида; y=41,0*1,0027^{*1} - показательного вида; y=158,2-17026,4/x_1 - гиперболического вида; y=29,099+0,1908x_1+0,000119x_1^{-2} - параболического вида
```

Тема 2. Компьютерное моделирование многофакторных связей между социально-экономическими показателями

В общем случае многофакторные связи и зависимости в экономике описываются одним уравнением, вида

$$y = f(x_1, x_2, ..., x_n)$$
, где

y – результативный или зависимый экономический показатель (зависимая переменная);

 $x_1, x_2, ..., x_n$ - независимые экономические показатели-факторы (независимые простые переменные).

Наиболее широко в экономике применяются уравнения множественной регрессии, которые математически могут быть записаны в виде

$$y = a_0 + a_1 v_1 + a_2 v_2 + \dots + a_n v_n$$
, (1) где v_1, v_2, \dots, v_n - простые переменные или их функции,

 $a_0, a_1, a_2 \dots, a_n$ - параметры уравнения (a_0 - свободный член, остальные коэффициенты регрессии).

К числу уравнений, которые могут быть сведены к виду (1) относятся уравнения линейного, степенного, показательного, гиперболического и параболического видов, имеющие следующий вид

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n; \quad (2)$$

$$y = a_0 x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}; \quad (3)$$

$$y = a_0 a_1^{x_1} a_2^{x_2} \dots a_n^{x_n}; \quad (4)$$

$$y = a_0 + \frac{a_1}{x_1} + \frac{a_2}{x_2} + \dots + \frac{a_n}{x_n}; \quad (5)$$

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n + a_{n+1} x_1^2 + \dots + a_{2n} x_n^2. \quad (6)$$
Построить уравнение множественной регрессии означает

Построить уравнение множественной регрессии означает, в первую очередь, рассчитать его параметры $(a_0, a_1, a_2 ..., a_n)$. Существуют разные методы определения параметров. Наиболее простым и широкоприменяемым, из которых является метод наименьших квадратов (МНК).

Параметры всех пяти вышеприведенных уравнений (формулы 2-6) можно рассчитать МНК.

В соответствии с методом наименьших квадратов для определения параметров требуется составить и решить следующую систему уравнений:

$$\begin{cases} n \cdot a_0 + a_1 \sum V_1 + a_2 \sum V_2 + \dots + a_n \sum V_n = \sum y; \\ a_0 \sum V_1 + a_1 \sum V_1 V_1 + a_2 \sum V_2 V_1 + \dots + a_n \sum V_n V_1 = \sum V_1 y; \\ a_0 \sum V_2 + a_1 \sum V_1 V_2 + a_2 \sum V_2 V_2 + \dots + a_n \sum V_n V_2 = \sum V_2 y; \\ a_0 \sum V_n + a_1 \sum V_1 V_n + a_2 \sum V_2 V_n + \dots + a_n \sum V_n V_n = \sum V_n y, \end{cases}$$

где n - число наблюдений или размер статистической выборки.

Особенность многофакторных уравнений состоит в том, что их можно строить только для группы или совокупности экономических объектов (например, для предприятия, административных районов, регионов). Такая совокупность называется статистической выборкой (или выборочной совокупностью). Количество объектов в выбранной их совокупности должно быть не менее пяти.

Естественно, связи (или зависимости), выявленные и описанные с помощью уравнений множественной регрессии являются приближенными. Поэтому требуется доказать адекватность построенных уравнений и приемлемость практической реализации. Для этой цели принято рассчитывать так называемые дополнительные статистические характеристики. Наиболее значимые из статистических характеристик и формулы для их расчета приведены в таблице 1.

Теснота зависимости результативного показателя от показателей-факторов в случае множественной регрессии оценивается с помощью индексов множественной корреляции и детерминации.

Индекс множественной корреляции принимает значения от 0 до 1,т.е.

$$0 < R_{yx_1x_2...x_p} < 1.$$

Построение n-факторных уравнений можно, c нашей точки зрения, u на основе уравнений от одного до (n-1) факторных.

Сущность этого метода рассмотрим на примере. Пусть требуется построить многофакторные модели для одного результативного показателя, зависимого от 2-x-3-x показателей-факторов. Если результативный (у) экономический показатель (у) зависит от двух показателей-факторов ($x_1 u x_2$), то 2-х факторную модель можно построить двумя способами:

- построить уравнение зависимости $y = f(x_1, x_2)$;
- построить два однофакторных уравнения $y = f(x_1)$; $y = f(x_2)$, сложить эти уравнения и разделить на два.

Пусть зависимость является линейной. Тогда при первом способе 2-х факторное уравнение будет иметь вид $y = b + m_1 x_1 + m_2 x_2$, где

 b, m_1, m_2 - принятые в MS Excel обозначения для параметров уравнения.

При втором способе:

a)
$$y = b_1 + m_1 x_1$$
; $y = b_2 + m_2 x_2$;

$$6) 2y = (b_1 + b_2) + m_1 x_1 + m_2 x_2.$$

Откуда $y = (b_1 + b_2)/2 + m_1 x_1/2 + m_2 x_2/2$.

Если результативный показатель зависит (у) от трех показателей-факторов (x_1, x_2, x_3) , то по этим данным можно построить: три двухфакторных и одно трехфакторное уравнения:

$$y = f(x_1, x_2), y = f(x_1, x_3);$$

 $y = f(x_2, x_3), y = f(x_1, x_2, x_3).$

Такие уравнения также можно построить двумя способами:

- а) непосредственно по исходным данным;
- б) двухфакторные путем суммирования однофакторных; трехфакторные суммированием одно- и 2-х факторных:

```
y = (b_1 + b_2)/2 + m_1x_1/2 + m_2x_2/2;
y = (b_1 + b_3)/2 + m_1x_1/2 + m_3x_3/2;
y = (b_2 + b_3)/2 + m_2x_2/2 + m_3x_3/2;
y = (b_1 + b_2)/2 + [(m1_1 + m1_1)x_1]/2 + m2_2x_2/2 + m3_2x_3/2;
y = (b_1 + b_3)/2 + m1_1x_1/2 + [(m2_{1+}m2_3)x_2]/2 + m3_2x_3/2;
y = (b_1 + b_3)/2 + m1_2x_2/2 + m2_{3+}x_2/2 + [(m3_2 + m3_3)x_3]/2;
y = (b_1 + b_2 + b_3)/3 + [(m1_1 + m1_2)x_1]/3 + [(m2_{1+}m2_3)x_2]/2 + [(m3_2 + m3_3)x_3]/3.
```

Если результативный показатель зависит от 4-х факторов, то можно построить: четыре однофакторных уравнений; шесть 2-х факторных уравнений; три 3-х факторных уравнений; одно 4-х факторных уравнений.

При этом уравнения можно построить:

- а) однофакторные по исходным данным;
- б) 2-х факторные по исходным данным и на основе однофакторных;
- в) 3-х факторные по исходным данным, а также на основе одно- и двухфакторных;
- г) четырех факторные по исходным данным и на основе одно-, 2-х и 3-х факторных.

Их вышесказанного следует: чтобы при построении многофакторных уравнений регрессии (т.е. определить их параметры) возникает необходимость выполнения множества расчетов. К этому добавим и то, что требуется рассчитать не только параметры, но и ряд статистических характеристик.

Кроме того на основе многофакторных уравнений можно (и следует) рассчитать и несколько показателей, которые отсутствуют для однофакторных: изокванта, предельные нормы взаимозаменяемости факторов, изоклинал.

И, наконец, на основе многофакторных уравнений можно строить так называемые частные уравнения множественной регрессии.

Таким образом, очевидна необходимость разработки математического инструментария и компьютерной модели для автоматизации расчета параметров и характеристик, а также построения многофакторных уравнений регрессии.

Компьютерная модель для построения 2-х факторных уравнений регрессии состоит из следующих элементов:

- а) базы данных социально-экономических показателей;
- б) таблицы-шаблона с исходными данными (таблица 2)

Таблица 2 Таблица-шаблон с исходными данными

		ВРП,	Числ.,	ОΦ,	Инв.,
		млрд.руб.	тыс.чел.	млрд.руб.	млрд.руб.
		y	x_1	x_2	x_3
1	Республика Ингушетия	18,7	65,5	41	6,4
2	Республика Алтай	19,9	94,9	45	9,5
3	Республика Калмыкия	23,9	114,2	114	7,3
		•••		•••	
27	Астраханская область	132,2	446,3	530	57,0
	Сумма	1994,9	7399,7	5987	601,7
	Ср.знач	73,9	274,1	222	22,3

в) математического инструментария, состоящего из уравнений регрессии:

$$y = b + m_1 x_1 + m_2 x_2; (7)$$

$$y = b \cdot x_1^{m_1} x_2^{m_2}; (8)$$

$$y = b m_1^{x_1} m_2^{x_2}; (9)$$

$$y = b + \frac{m_1}{x_1} + \frac{m_2}{x_2}; (10)$$

$$y = b + m_1 x_1 + m_2 x_2 + m_3 x_1^2 + m_4 x_2^2 + m_5 x_1 \cdot x_2. (11)$$

г) системы уравнений, с помощью которых рассчитываются параметры, например, для уравнения (11) будет иметь вид

$$\begin{cases} nb + m_1 \sum x_1 + m_2 \sum x_2 + m_3 \sum x_1^2 + m_4 \sum x_2^2 + m_5 \sum x_1 x_2 = \sum y; \\ b \sum x_1 + m_1 \sum x_1 \cdot x_1 + m_2 \sum x_2 \cdot x_1 + m_3 \sum x_1^2 \cdot x_1 + m_4 \sum x_2^2 \cdot x_1 + m_5 \sum x_1 x_2 \cdot x_1 = \sum y x_1; \\ b \sum x_2 + m_1 \sum x_1 \cdot x_2 + m_2 \sum x_2 \cdot x_2 + m_3 \sum x_1^2 \cdot x_2 + m_4 \sum x_2^2 \cdot x_2 + m_5 \sum x_1 x_2 \cdot x_2 = \sum y x_2 y; \\ b \sum x_1^2 + m_1 \sum x_1 \cdot x_1^2 + m_2 \sum x_2 \cdot x_1^2 + m_3 \sum x_1^2 \cdot x_1^2 + m_4 \sum x_2^2 \cdot x_1^2 + m_5 \sum x_1 x_2 \cdot x_1^2 = \sum x_1^2 y; \\ b \sum x_2^2 + m_1 \sum x_1 \cdot x_2^2 + m_2 \sum x_2 \cdot x_2^2 + m_3 \sum x_1^2 \cdot x_2^2 + m_4 \sum x_2^2 \cdot x_2^2 + m_5 \sum x_1 x_2 \cdot x_2^2 = \sum x_2^2 y; \\ b \sum x_1 x_2 + m_1 \sum x_1 \cdot x_1 x_2 + m_2 \sum x_2 \cdot x_1 x_2 + m_3 \sum x_1^2 \cdot x_1 x_2 + m_4 \sum x_2^2 \cdot x_1 x_2 + m_5 \sum x_1 x_2 \cdot x_1 x_2 = \sum x_1 x_2 y. \end{cases}$$

д) таблицы-шаблона для выполнения промежуточных расчетов параметров и необходимых для определения статистических характеристик 2-х факторных уравнений регрессии (таблицы $3(a, \delta, B, \Gamma, J)$).

Таблица 3 Таблица-шаблон для расчета суммарных и средних величин, необходимых для расчета параметров и статистических характеристик 2-х факторных уравнений множественной регрессии для линейного вида

			- r - r	F 1		- F1		
	у	x_1	x_2	x_1^2	x_1x_2	x_1y	x_2^2	yx_2
1	18,7	65,5	41	4290	2686	1225	1681	767
2	19,9	94,9	45	9006	4271	1889	2025	896
3	23,9	114,2	114	13042	13019	2729	12996	2725
27	132,2	446,3	530	199184	236539	59001	280900	70066
Сумма	1994,9	7399,7	5987	2607601	2094928	668240	1794703	558375
Ср.знач.	73,9	274,1	221,7	96578	77590	24750	66470	20681

Таблица 5 Системы уравнений и формулы для расчета параметров b и m уравнений парной регрессии методом наименших квадратов

Вид уравнения	Системы уравнений	Формулы для расчета параметров
линейное	$\begin{cases} n * b + m * \sum x = \sum y \\ b * \sum x + m * \sum x^2 = \sum yx \end{cases}$	$m = \frac{\overline{x}\overline{y} - \overline{x} * \overline{y}}{\overline{x}^{2} - (\overline{x})^{2}}; b = \overline{y} - m\overline{x}$
Гипербо- лическое	$\begin{cases} n * b + m * \sum \frac{1}{x} = \sum y \\ b * \sum \frac{1}{x} + m * \sum \left(\frac{1}{x}\right)^2 = \sum \frac{y}{x} \end{cases}$	$m = \frac{\overline{x/y} - \overline{y}/\overline{x}}{\overline{(1/x)^2} - \overline{(1/x)^2}}$ $b = \overline{y} - m\overline{(1/x)}$
Показа- тельное	$\begin{cases} n * lgb + lgm * \sum x = \sum lgy \\ lgb * \sum x + lgm * \sum x^2 = \sum (lgy * x) \end{cases}$	$lgm = \frac{\overline{lgy/x} - \overline{lgy/\bar{x}}}{\overline{x^2} - (\bar{x})^2}$ $lgb = \overline{lgy} - lgm^* \bar{x}$ $m = 10^{lgm}$ $b = 10^{lgb}$

Степенное	$\begin{cases} nlgb + m\sum lgx = \sum lgy \\ lgb * \sum lgx + m\sum (lgx)^2 = \sum lgy lgx \end{cases}$	$m = \frac{\overline{lgy*lgx} - \overline{lgy*lgx}}{\overline{lgx^2} - (\overline{lgx})^2}$ $\overline{lgb} = \overline{lgy} - m*\overline{lgx}$ $b = 10^{lgb}$
-----------	--	---

Модуль 2. Построение модели для закрытой и открытой задач транспортного типа Тема 3. Методика построения модели для закрытой и открытой задач транспортного типа

Построение модели транспортного типа рассмотрим на примере. Пусть в четырех хозяйствах выращен виноград в количестве 6; 11; 14 и 19 тыс.т., который подлежит отгрузке на три перерабатывающих предприятия мощностью соответственно 10; 15 и 25 тыс.т. Известно расстояние (в км.) от каждого хозяйства до каждого завода (таблицу 1).

				1 at				
		закрытая транспортная задача						
хозяйства		заводь	объем прод.					
	31	32	хоз-в, т.					
x31	2	5	7	6				
x32	1	3	6	11				
хз3	10	7	4	14				
x34	15	12	9	19				
спрос заводов, т.	10	15	25					

Таблица 1

Требуется:

- а) разработать модель оптимизации перевозок винограда, позволяющий минимизировать суммарный грузооборот в т/км.;
 - б) записать модель в табличном виде и решить на ПЭВМ

Для построения модели введем переменные $x_{11}, x_{12}, x_{13,...}, x_{43}$, обозначающие объем перевозки винограда от каждого хозяйства до каждого завода. Особенностью обозначения переменных является введение двойных индексов. Так, x_{12} читается «икс один два» и выражает объем винограда, перевозимого из первого хозяйства на второй завод.

С помощью введенных переменных и заданных по условию задачи числовых величин показателей составим математическую модель задачи оптимизации перевозок в аналитическом виде: требуется разработать план перевозок $(x_{11}, x_{12}, ..., x_{43})$, позволяющий максимизировать грузооборот, выражаемый функцией

$$F = \{2 \cdot x_{11} + 5 \cdot x_{12} + 7 \cdot x_{13} + x_{21} + 3 \cdot x_{22} + \dots + 9 \cdot x_{43}\}$$

при соблюдении следующих условий:

- а). весь виноград, выращенный в хозяйствах и отгруженный заводам
 - 1. $x_{11} + x_{12} + x_{13} = 6$
 - 2. $x_{21} + x_{22} + x_{23} = 11$
 - $3. x_{31} + x_{32} + x_{33} = 14$
 - 4. $x_{41} + x_{42} + x_{43} = 19$
- б) объем винограда, перерабатываемый каждым заводом должен быть равен его мошности:

$$5. x_{11} + x_{21} + x_{31} + x_{41} = 10$$

6.
$$x_{12} + x_{22} + x_{32} + x_{42} = 15$$

7.
$$x_{13} + x_{23} + x_{33} + x_{43} = 25$$

3.Все переменные должны быть величинами неотрицательными

$$x_{11} \ge 0; \ x_{12} \ge 0; \ ...; \ x_{43} \ge 0.$$

Методику составления рабочей матрицы моделей транспортной задачи иллюстрируют таблицы 2— 6.

Таблица 2

	5)	задача		
хозяйства		заводы	I	объем
	31	32	прод. хоз-в, т.	
x31	2	5	7	6
x32	1	3	6	11
х33	10	7	4	14
x34	15	12	9	19
спрос заводов, т.	10	15	25	

Таблица 3

	X11	X12	X13	X21	X22	X23	X31	X32
	1	2	3	4	5	6	7	8
1	1	1	1					
2				1	1	1		
3							1	1
4								
5	1			1			1	
6		1			1			1
7			1			1		
F	2	5	7	1	3	6	10	7
опт.реш.	6,0	0,0	0,0	4,0	7,0	0,0	0,0	2,3
неотр.	0	0	0	0	0	0	0	0

Продолжение таблицы 3

	X33	X41	X42	X43	расчетные формулы	величина ограничения
	9	10	11	12	13	14
1					6	6
2					11	11
3	1				14	14
4		1	1	1	19	19
5		1			10	10
6			1		15	15
7	1			1	25	25
F	4	15	12	9	288	
опт.реш.	11,7	0,0	5,7	13,3		50,0
неотр.	0	0	0	0		

Таблица 4

Учет пропускной способности в задачах транспортного типа

хозяйства	заводы				объем прод.
	31	3	3	хоз-в, т.	
			33.1	33.2	
x31	2	5	7	7	6
x32	1	3	6	6	11
х33	10	7	4	4	14

x34	15	12	9	100	19
спрос заводов, т.	10	15	8	17	
			25		

Открытая транспортная задача и ее преобразование в и в закрытую

				Таблица 5				Табли	ца 6
	открытая трансп-я задача			преобраз-е открытой задачи в зак				срытую	
хозяйства		заводы	I	объем	хозяйства		заводы		
	31	32	33	прод.хоз- в,т.		31	32	33	прод.хоз- в,т.
x31	2	5	7	6	x31	2	5	7	6
x32	1	3	6	11	x32	1	3	6	11
x33	10	7	4	14	x33	10	7	4	14
x34	15	12	9	19	x34	15	12	9	19
спрос заводов, т.	10	15	32	57/50	фиктив.х35	0	0	0	7
					заводов, т.	10	15	32	57/(50+7)

Тема 4. Методика построения двухэтапной модели для задачи транспортного типа

Пусть требуется перевезти зерно из пяти хозяйств на три элеватора, а затем на четыре мелькомбината. Объем перевозимого зерна из хозяйств, емкости элеваторов спрос мелькомбинатов, а также затраты на перевозку 1 т зерна от хозяйств до элеваторов и от последних до мелькомбинатов известны (см. таблицы 1 и 2).

Таблица 1 Объем зерна, перевозимого из хозяйств, емкость элеваторов и затраты на перевозку 1 т. зерна

на перевозку т т. зерна								
		Объем						
Хозяйства				зерна в				
Аозинства	1	2	3	хоз-вах,				
				тыс.т.				
1	5	7	8	7,0				
2	7	4	2	9,0				
3	6	8	5	5,0				
4	15	20	6	4,5				
5	25	30	18	7,5				
Емкость	15,0	9.5	16,5					
элеваторов, тыс.т.	13,0	8,5	10,3					

Таблица 2 Спрос мелькомбинатов на зерно и затраты по его перевозке от элеваторов до мелькомбинатов

Duopomoni i	Мелькомбинаты							
Элеваторы	1	2	3	4				
1	2	6	7	10				
2	7	3	15	12				
3	4	9	3	5				
Спрос мелькомбинатов,	10,0	9,0	6,5	4,5				
тыс.т.	10,0	,,,	3,5	.,0				

Требуется разработать модель транспортного типа, позволяющую составить оптимальный план перевозок зерна от хозяйств к элеваторам, от последних до мелькомбинатов, обеспечивающего минимальные транспортные затраты.

Таблица-матрица двухэтапной задачи о перевозках будет иметь вид таблицы 3.

Таблина 3

									т иолици 5
Хозяйства+	Эл	іеваторі	поры Мелькомбинаты						Наличие,
Элеваторы	1	2	3	1	2	3	1	5	тыс.т.
	1	2	3	1	2	3	4	фиктив.	
1	5	7	8	100	100	100	100	100	7,0
2	7	4	2	100	100	100	100	100	9,0
3	6	8	5	100	100	100	100	100	5,0
4	15	20	16	100	100	100	100	100	4,5
5	25	30	18	100	100	100	100	100	7,5
Фиктив. 6	0	0	0	100	100	100	100	100	7,0
1	0	100	100	2	6	7	10	0	15,0
2	100	0	100	7	3	15	12	0	8,5
3	100	100	0	4	9	3	5	0	16,5
Спрос, тыс.т.	15,0	8,5	16,5	10,0	9,0	6,5	4,5	10,0	80,0

На основе этой таблицы матрицы можно составить модель в аналитической записи: найти план перевозок $(x_{11}, x_{12}, ..., x_{18}, x_{21}, x_{22}, x_{98})$, позволяющий минимизировать суммарные транспортные затраты, т.е.

Модуль 3. РАЗРАБОТКА МОДЕЛИ ДЛЯ ОЦЕНКИ СВЯЗЕЙ И ЗАВИСИМОСТЕЙ МЕЖДУ ПОКАЗАТЕЛЯМИ ЭКОНОМИЧЕСКИХ ОБЪЕКТОВ МЕТОДОМ СТАТИСТИЧЕСКИХ ГРУППИРОВОК

Тема 5. Постановка задачи и ее информационное обеспечение

Метод статистических группировок является одним из традиционных методов выявления связей, зависимостей и тенденций.

Группировка – это расчленение совокупности данных на группы с целью изучения ее структуры или взаимосвязей между компонентами. В процессе группировки единицы совокупности распределяются по группам в соответствии со следующим принципом: различие между единицами, отнесенными к одной группе, должно быть меньше, чем различие между единицами, отнесенными к разным группам.

Длина интервала группировки может быть одним и тем же или разным.

Выбор длины с равными интервалами предпочтительнее, так как он лишен субъективизма. В этом случае для определения длины интервала можно использовать формулы Стерджеса:

$$k = 1+3,32*lg N;$$
 $i=(Xmax - Xmin)/k,$

где Xmax, Xmin - максимальное и минимальное значения признака в изучаемой совокупности; k - число групп; N - число объектов (наблюдений) в совокупности.

В соответствии с формулами Стерджеса между количеством групп и числом наблюдений существует следующее соотношение:

Число наблюдений	2	3-5	6-11	12-21	22-46	47-87	88-175	176-350	351-702
Число групп	2	3	4	5	6	7	8	9	10

Когда объектов в статистической совокупности много применяют метод многоуровневых группировок.

Анализ методом группировок предполагает выполнение следующих шагов:

- выбирается показатель, принимаемый за групповой признак;
- объекты совокупности располагаются в порядке возрастания или убывания показателя, принятого за признак группировки;
 - определяется количество групп и длина интервала;
- определяется перечень показателей, подлежащих анализу, а также показателей, между которыми выявляется наличие связей или зависимостей;
 - разрабатывается математическая модель для расчетных показателей;
- разрабатывается компьютерная модель для выполнения всех расчетов для одной из групп объектов;
- с помощью созданной компьютерной модели выполняются расчеты для всех групп объектов;
- результаты, полученные с помощью компьютерной модели, сводятся в аналитические таблицы.

Сущность компьютерной модели, реализующей метод группировок, проиллюстрируем на примере четырех показателей (ВРП, стоимость основных фондов, численность занятых, объем инвестиций) регионов России за 2009г. В качестве признака группировки примем ВРП, а в качестве статистической совокупности - 28 средних регионов с величиной ВРП от 127,0 до 298,1 млрд. руб. Компьютерная модель реализуется в МS Excel.

Чтобы определить перечень 28 средних регионов по величине ВРП следует:

- создать исходную таблицу с данными всех регионов России по четырем рассматриваемым показателям;
- упорядочить их в порядке возрастания или убывания величины показателя, принятого за групповой признак;
 - выбрать 28 регионов, занимающие по величине ВРП 27-54-е места;
 - скопировать их и создать исходную таблицу.

Определим количество групп и длину интервала. В соответствии с формулами Стерджеса, если число объектов находится в интервале 22-46 (в рассматриваемой нами совокупности число регионов равно 28), то их следует разбить на шесть групп. При этом длина интервала будет равна i=(Xmax-Xmin)/k=(298,1-127,0)/6=28,5 млрд. руб.

Если длину интервала для каждой группы принять равной одной и той же величине, то разбиение 28 регионов на шесть групп примет вид, приведенный в таблице 1.

Группировка 28 средних по величине ВРП регионов России (признак группировки величина ВРП в млрл.руб.)

Таблица 1

(P	r	
	Диапазон группового	Кол-во регионов
	признака	•
1 группа	127,0-155,5	9
2 группа	155,6-184,0	4

3 группа	184,1-212,5	2
4 группа	212,6-241,0	4
5 группа	241,1-269,5	3
6 группа	269,6 и более	6
1-6 групп	127,0-298,1	28

Тема 6. Алгоритмы расчетов и формирование документов при экономическом анализе методом статистических группировок

Обработка информации, необходимой для анализа методом группировок, следует начинать с определения суммарных и средних арифметических значений показателей для каждой группы регионов. Для этого в таблицу 1 после перечня регионов группы добавляются по две строки «сумма» и «среднее значение». В ячейки этих строк вводятся встроенные математические функции «сумм» и «срзнач» из MS Excel. Это равнозначно вводу формул:

1) сумм =
$$\sum \Pi_{ij}$$
, 2) ср. знач = $\sum \Pi_{ij} / \sum i$,

где Π_{ii} - величина j-того показателя i-того региона;

 Π_{i} –величина j-того показателя всей группы регионов.

Зависимость ВРП от численности занятых в экономике и от объема инвестиций визуально трудно оценить. Для этого требуется проведение более детального анализа.

Выявление связей, зависимостей методом статистических группировок требуют выполнения множества однотипных операций и расчетов с использованием моделей на прямые расчеты. В частности, принято выполнять следующие расчеты: а) удельных весов каждой группы объектов в каждом объемном показателе; в) показатели эффективности и технического уровня; г) величины показателей каждой группы к показателям для всей совокупности и др.

Удельные веса каждой группы регионов в каждом объемном показателе можно рассчитать по формулам:

3)
$$U_{pj} = \Pi_{pj} / \Pi_{j}$$
; 3) $U_{pj} = \Pi_{pj} * 100 / \Pi_{j}$,

где U_{pi} – удельный вес p-й группы регионов в j-м показателе;

 Π_{pj} - величина j-го показателя для p-й группы регионов;

 Π_i – суммарная величина j–го показателя.

Формула (3) предназначена для расчета удельных весов в долях единицы, а формула (4) - для расчета удельных весов в процентах.

На основании 4-х исходных показателей можно рассчитать следующие показатели эффективности и технического уровня:

- а) эффективности производства
- фондоотдачу (*FO*), руб.;
- производительность труда (ΠT), тыс.руб.;
- инвестиционноотдачу (ИО), руб.;
- б) технического уровня
- фондовооруженность труда (ΦB), тыс.руб.;
- инвестиционновооруженность труда (ИВ), тыс.руб.;
- отношение инвестиций к ВРП или норма накопления (НН), %;
- потенциал обновления основных фондов или отношение инвестиций к стоимости основных фондов ($U\Pi$), %.

Перечисленные показатели рассчитываются по следующим формулам:

51)
$$\Phi O_i = \Pi_{i1}/\Pi_{i2};$$
 6) $\Pi T_i = \Pi_{i1}/\Pi_{i3};$ 7) $M O_i = \Pi_{i1}/\Pi_{i4};$ 8) $\Phi B_i = \Pi_{i2}/\Pi_{i3};$ 9) $M B_i = \Pi_{i4}/\Pi_{i3}.$ 10) $H H = \Pi_{i4}*100/\Pi_{i1};$ 11) $M \Pi = \Pi_{i4}*100/\Pi_{i2}.$

Для расчета показателей эффективности и технического уровня в разрезе групп регионов создается пустая таблица 2. В ячейки первой строки этой таблицы вводятся формулы (5-11), используя адресацию и данные предыдущих таблиц. Эти формулы затем копируются в ячейки всех остальных строк.

5. Образовательные технологии

Использование персональных компьютеров при выполнении лабораторных работ и сдаче итогового экзамена. Чтение лекций с использованием компьютера и проектора, проведение лабораторных работ в компьютерном классе.

При реализации учебной дисциплины используются электронные практикумы, электронные учебники, презентации средства диагностики и контроля разработанные специалистами кафедры т.д.

Удельный вес занятий, проводимых в интерактивной форме, составляет 20% аудиторных занятий.

6. Учебно-методическое обеспечение самостоятельной работы магистра

Самостоятельная работа магистров (СРС) включает контролируемую и внеаудиторную самостоятельную работу, направлена на повышение качества обучения, углубление закрепление знаний магистра, аналитических навыков по проблематике учебной дисциплины, активизацию учебно-познавательной деятельности магистров и снижение аудиторной нагрузки. Часть программного материала выносится для самостоятельного внеаудиторного изучения с последующим текущим или итоговым контролем знаний на занятиях или экзамене. Контроль СРС и оценка ее результатов организуется как самоконтроль (самооценка) магистра, а также как контроль и оценка со стороны преподавателя, например в ходе собеседования. Баллы, полученные по СРС магистром, обязательно учитываются при итоговой аттестации по курсу. Формы контроля СРС включают: тестирование; устную беседу по теме с преподавателем; выполнение индивидуального задания и др.

Роль магистра в СРС - самостоятельно организовывать свою учебную работу по предложенному преподавателем, методически обеспеченному плану. СРС по курсу учитывает индивидуальные особенности слушателей и включает не только задания, связанные с решением типовых задач, но также творческие задания, требующие самостоятельно «добывать» областей, группировать и концентрировать разных ИХ В контексте конкретной решаемой задачи. Технология обучения предусматривает выработку навыков презентации результатов выполненного индивидуального задания и создание условий для командной работы над комплексной темой с распределением функций и ответственности между членами коллектива. Оценка результатов выполнения индивидуального задания осуществляется по критериям, известным магистрам, отражающим наиболее значимые аспекты контроля за выполнением этого вида работ.

Разделы и темы для	Виды и содержание самостоятельной работы
самостоятельного изучения	
Модели для оценки связей между	-конспектирование первоисточников и другой
парами экономических показателей	учебной литературы;
	-проработка учебного материала (по конспектам
	лекций учебной и научной литературе) и подго-
	товка докладов на семинарах и практических заня-
	тиях, к участию в тематических дискуссиях;
	-поиск и обзор научных публикаций и электрон-
	ных источников информации, подготовка заклю-
	чения по обзору;
	-работа с тестами и вопросами для самопроверки;
Компьютерное моделирование	-конспектирование первоисточников и другой
многофакторных связей между	учебной литературы;
социально-экономическими	-проработка учебного материала (по конспектам
показателями	лекций учебной и научной литературе) и подго-
	товка докладов на семинарах и практических заня-
	тиях, к участию в тематических дискуссиях;
	-поиск и обзор научных публикаций и электрон-
	ных источников информации, подготовка заклю-
	чения по обзору;
	-работа с тестами и вопросами для самопроверки;
	-решение задач, упражнений;
	- решение домашних контрольных задач.
Методику построения модели для	-конспектирование первоисточников и другой
закрытой и открытой задач	учебной литературы;
транспортного типа	-проработка учебного материала (по конспектам
	лекций учебной и научной литературе) и подго-
	товка докладов на семинарах и практических заня-
	тиях, к участию в тематических дискуссиях;
	-поиск и обзор научных публикаций и электрон-
	ных источников информации, подготовка заклю-
	чения по обзору;
	-работа с тестами и вопросами для самопроверки;
	- решение домашних контрольных задач.
Методику построения двухэтапной	-конспектирование первоисточников и другой
модели для задачи	учебной литературы;
	-проработка учебного материала (по конспектам
	лекций учебной и научной литературе) и подго-
	товка докладов на семинарах и практических заня-
	тиях, к участию в тематических дискуссиях;
	-поиск и обзор научных публикаций и электрон-
	ных источников информации, подготовка заклю-
	чения по обзору;
	-работа с тестами и вопросами для самопроверки;
П	- решение домашних контрольных задач.
Постановка задачи и ее	-конспектирование первоисточников и другой
информационное обеспечение	учебной литературы;
	-проработка учебного материала (по конспектам
	лекций учебной и научной литературе) и подго-
	товка докладов на семинарах и практических заня-
	тиях, к участию в тематических дискуссиях;

	-поиск и обзор научных публикаций и электрон-
	ных источников информации, подготовка заклю-
	чения по обзору;
	-работа с тестами и вопросами для самопроверки;
	- решение домашних контрольных задач.
Алгоритмы расчетов и	-конспектирование первоисточников и другой
формирование документов при	учебной литературы;
экономическом анализе методом	-проработка учебного материала (по конспектам
статистических группировок	лекций учебной и научной литературе) и подго-
	товка докладов на семинарах и практических заня-
	тиях, к участию в тематических дискуссиях;
	-поиск и обзор научных публикаций и электрон-
	ных источников информации, подготовка заклю-
	чения по обзору;
	-работа с тестами и вопросами для самопроверки;
	- решение домашних контрольных задач.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Перечень компетенций с указанием этапов их формирования приведен в

описании образовательной программы.

Код компетенции из ФГОС ВО	Наименование компетенции из ФГОС ВО	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенций)	Процедура освоения
ОПК-3	способностью исследовать современные проблемы и методы прикладной информатики и научнотехнического развития ИКТ	Знает: основные направления развития ИКТ Умеет: определять перспективные направления развития ИКТ Владеет: навыками коллективной работы, ведения дискуссии и обсуждения полученных результатов	Устный опрос, контрольная работа, тестирование
ОПК-5	способностью на практике применять новые научные принципы и методы исследований	Знает: новые научные принципы и методы исследований. Умеет: применять новые научные принципы и методы исследований. Владеет: методами применения новых	Устный опрос, контрольная работа, тестирование

		научных принципов и методов исследований.	
ОПК-6	способность к профессиональной эксплуатации современного электронного оборудования в соответствии с целями основной образовательной программы магистратуры	Знает: современное электронное оборудование; Умеет: эксплуатировать современное электронное оборудование; Владеет: профессиональной эксплуатацией современного электронного оборудования в соответствии с целями основной образовательной программы магистратуры.	Устный опрос, контрольная работа, тестирование

7.2. Типовые контрольные задания

Примерный перечень вопросов к промежуточному контролю или экзамену по всему изучаемому курсу:

Вопросы для контроля

- 1. Основные особенности экономики как объекта моделирования
- 2. Сформулируйте задачу о смесях и назовите сферу их применения
- 3. Сформулируйте теорему об оптимальном решении
- 4. Сущность метода Гомори и его применение
- 5. Сформулировать принцип оптимальности Р. Беллмана и записать уравнения управляющего воздействия многошаговой оптимизации
- 6. Основные свойства двойственной задачи линейного программирования
 - 7. Основная теорема двойственности и её экономический смысл
- 8. Сущность понятий точная нижняя и верхняя границы функционала в теории оптимального управления
- 9. Проиллюстрировать схематически сущность динамического программирования

Тесты для контроля

1. Условия ограничения задачи оптимизации ассортимента продукции имеет a) $\sum aij*xj \le Bi$ б) $\sum xij \le Bi$ в) $\sum aij*xj \ge Bi$ г) $\sum aij*xij \le Bi$

- 2.Математический инструментарий решения экономических задач оптимизационного типа называется
 - а) методом наименьших квадратов б) теорией затраты-выпуск
 - в) линейным программированием г) методом экстраполяции
 - 3. Критерий оптимальности математически записывается в виде

a)
$$a_0 + a_1x_1 + a_2x_2 + ... + a_nx_n \rightarrow \max(\min)$$
 6) $\sum aij*xj \rightarrow \max(\min)$

B) $\sum cij*xi \rightarrow max (min)$ Γ) $\sum c_j *x_j \rightarrow max (min)$

4. Критерий оптимальности в задаче загрузки оборудования имеет вид

- a) $\sum c_j x_j \rightarrow \max \text{ (min)}$ b) $\sum \sum a_{ij} * x_{ij} \rightarrow \max \text{ (min)}$ c) $\sum \sum c_{ij} * a_{ij} * x_{ij} \rightarrow \max \text{ (min)}$ c) $\sum \sum c_{ij} * x_j \rightarrow \max \text{ (min)}$

5. Модель по оптимизации рецептуры сырья (задача о смесях) имеет вид

- а) $F = \sum cij*aij*xij \rightarrow max (min)$ при условиях $\sum aij*xij = bi$
- б) $F = \sum c_j * x_j \rightarrow max$ (min) при условиях $\sum a_i j * x_j = b_i$
- в) $F=\sum c_i *x_i \rightarrow max (min)$ при условиях $\sum a_i i *x_i = b_i$
- г) $F = \sum cij*xij \rightarrow max$ (min) при условиях $\sum aij*xj=bi$
- 6. Какое из следующих предложений относится к формулировке задачи об оптимизации ассортимента продукции
- а) на предприятии имеются различные виды машин, на которых вырабатываются различные виды продукции
- б) на предприятии имеются различные виды сырья, из которых вырабатывается различные виды готовой продукции;
- в) на предприятии имеются различные виды сырья из которых вырабатываются определенный объем одного вида готовой продукции
- г) на предприятии имеются различные виды заготовок получаемые различными способами
 - 7. Уравнение состояния системы в моделях динамического программирования имеет вид
 - a) $Z_k = F(S_0, X_k)$

б) $S_k = \varphi_K (S_{k-1}, X_k), k = 1, 2, ..., n$

B) X = f(t,x,n)

- $\Gamma) Z_k = \sum f_i(S_{k-1}, X_k)$
- 8. Условный оптимум целевой функции на п-м шаге описывается равенством

a)
$$Z_{n}^{*}(S_{n-1}) = \max f_{n}(S_{n-1}, X_{n})$$
 b) $Z_{n}^{*}(S_{n}) = \max f_{n}(S_{n}, X_{n})$ $\{X_{n}\}$ $\{X_{n}\}$ B) $Z_{n}^{*}(S_{n}) = \max f_{n-1}(S_{n-1}, X_{n})$ $\{X_{1}, X_{2}, ..., X_{n}\}$ $\{X_{1}, X_{2}, ..., X_{n}\}$

B)
$$Z_n^*(S_n) = \max f_{n-1}(S_{n-1}, X_n)$$

 $\{X_1, X_2, ..., X_n\}$

$$(X_n, X_{n-1}) = \max f_n(S_{n-1}, X_n)$$

 $\{X_1, X_2, ..., X_n\}$

- 9. Количество коэффициентов а; системы неравенств в модели общей задачи линейного программирования равно
 - a) m*n
- б) m+n
- в) m
- г) n
- 10. Если F(V) ≤ n для любого V ∈ M, то
- а) п называют точной верхней границей функционала
- б) п называют точной нижней границей функционала
- в) V называют точной нижней границей функционала
- г) V называют точной верхней границей функционала
- 11. Функционал задач оптимального управления для непрерывных систем имеет вид

12. Модель дискретной управляемой системы записывается в виде

a)
$$x^{i}(t+1) = f^{i}(t, x(t), u(t)), i = \overline{1, n}$$
 $\delta = \int_{0}^{T} f^{0}(t, x, u)dt + F(x(T))$

- в) $F(V)^0 = \min f(v)$ Γ) $x^{i}(t+1) = f^{i}(t, x(t+1), u(t+1), i=\overline{1, n})$
- 13. Если каждому элементу V є M ставится в соответствие определенное действительное число F(V), то F называют
 - а) функционалом

- б) проекцией множества М
- в) сечением множества
- г) ограничивающим условием
- Свойство экономики, в соответствии 14. с которым законы, закономерности, тенденции и зависимости, имеющие место в прошлом, продолжают действовать некоторое время в будущем, называют
 - а) неопределенностью
- б) эмерджентностью

в) инерцией

- г) экстраполяцией
- 15. Теорема «если линейная функция принимает max (min) значение более чем в одной угловой точке, то она принимает его в любой точке, являющейся выпуклой линейной комбинацией этих точек» называется теоремой
 - а) о допустимых базисных решениях
- в) об оптимальном решении
- б) о допустимых решениях оптимальности
- г) о достаточном признаке
- 16. Экстраполяция в экономике позволяет
- а) выявлять связи И зависимости c помощью методов математического моделирования
- б) выявлять наиболее важные свойства экономических объектов, процессов и явлений
- в) переносить на будущее сложившиеся в прошлом, закономерности, тенденции, связи и зависимости
- г) по состоянию экономики в прошлом прогнозировать ее развитие в будущем
- 17. Критерий оптимальности в задаче ассортимента продукции имеет вид
 - a) $\sum \sum a_{ij} *x_{ij} \rightarrow \max (\min)$ 6) $\sum \sum c_{ij} *x_{j} \rightarrow \max (\min)$ B) $\sum \sum c_{ij} *a_{ij} *x_{j} \rightarrow \max (\min)$ Γ) $\sum c_{j} x_{j} \rightarrow \max (\min)$
- В условиях-ограничениях модели по оптимизации загрузки 18. оборудования

∑аіј* хіј=Ај; хіј и Ај означают соответственно:

- а) содержание полезных компонентов в единице каждого вида сырья и единице готовой продукции
- б) производительность каждого вида машин и фонд времени их работы
- в) время работы машины по производству продукции и потребность в продукции

- г) нормы расхода сырья и объём сырья
- 19. К экономическим задачам оптимизационного типа относятся задачи, в которых, требуется:
 - а) найти наилучшее решение при заданных условиях
- б) найти совокупность решений, удовлетворяющая заданным условиям производства
 - в) выразить связи и зависимости системами уравнений
 - г) найти наилучшее решение при минимальных затратах ресурсов
- 20. Какое из следующих предложений относится к формулировке задачи о рецептуре сырья
- а) на предприятии имеются различные виды машин, на которых вырабатываются различные виды продукции
- б) на предприятии имеются различные виды сырья, из которых вырабатывается различные виды готовой продукции;
- в) на предприятии имеются различные виды сырья, из которых вырабатываются определенный объем одного вида готовой продукции
- г) на предприятии имеются различные виды заготовок, получаемые различными способами
- 21.Показатель эффективности управления в моделях динамического программирования записывается в виде

a)
$$Z = \sum_{n=1}^{N} (S_{n-1}, X_n)$$
 6) $Z = F(S_0, X)$ B) $Z = \sum_{t=1}^{T-1} (I(t) + K(t))$ Γ $Z = F(t, x, u)$

22. Уравнение условного оптимального управления имеет вид

a)
$$Z_k = F(S_o, X_k)$$

б)
$$Z_k = \sum f_i (S_{r-1}, X_k)$$

$$δ) S_k = φ_k(S_{k-1}, X_k)$$

- 23. Если $F(V) \ge m$ для любого $V \in M$, то
- а) т называют точной верхней границей функционала
- б) т называют точной нижней границей функционала
- в) V называют точной нижней границей функционала
- г) V называют точной верхней границей функционала
- 24. Пространство состояния системы в модели оптимального управления

имеет вид

a)
$$u = (u^1, u^2, ..., u^r)$$

B) $X = (x', x^2, ..., x^n)$

$$δ) X (t) = (x_1(t), x_2(t), ..., x_n(t))$$
 $γ)V = (t,x,u)$

B)
$$X = (x', x^2, ..., x^{\Pi})$$

$$\Gamma$$
)V = (t,x,u)

25. Модель дискретной управляемой системы имеет вид a) $x^i(t+1) = f^i(t, x^1(t), x^2(t), \dots, x^n(t), u^l(t), \dots, u^r(t))$

a)
$$x^{i}(t+1) = f^{i}(t, x^{1}(t), x^{2}(t), ..., x^{n}(t), u^{i}(t), ..., u^{r}(t))$$

6)
$$\int_{0}^{T} f^{0}(t, x, u)dt + F(x(T))$$
B)
$$\sum_{t=0}^{T-1} f^{0}(t, x, u) + F(x(T))$$

B)
$$\sum_{t=0}^{T-1} f^{0}(t, x, u) + F(x(T))$$

$$\Gamma(x^{i}(t+1)) = f^{i}(t, x^{1}(t), ..., x^{n}(t), u^{1}(t), ..., u^{r}(t))$$

26. Уравнение Беллмана записывается следующим образом

- 27. В уравнении динамического программирования $Z = F(S_0, X)$ S_0 и X называются
 - а) состоянием системы и управлением
 - б) состоянием системы и показателем эффективности
 - в) управленческим решением и показателем эффективности
 - г) начальным состоянием системы и управленческим решением
 - 28. Моделирование в экономике представляет собой процесс
 - а) многошаговый б) циклический в) динамический г) непрерывный
- 29. Количество переменных модели общей задачи линейного программирования с коэффициентами системы неравенств a_{ij} равно
 - a) m δ) n B) m+n Γ) m*n
- 30. Особенность экономических объектов, означающих, что эти объекты обладают свойствами, которыми не обладает ни один из элементов, называют
 - а) экстраполяцией
- б) неопределенностью
- в) эмерджентностью
- г) инерцией
- 31. Теорема «если линейная функция принимает max (min) значение более чем в одной угловой точке, то она принимает его в любой точке, являющейся выпуклой линейной комбинацией этих точек» называется теоремой
- а) об оптимальном решении
- в) о допустимых базисных решениях
- б) о допустимых решениях
- г) о достаточном признаке оптимальности
- 32. Вероятностный характер протекания экономических явлений и процессов означает, что
 - а) они обладают инерцией и их свойства можно экстраполировать
- б) их невозможно изучить без применения методов моделирования
- в) на них оказывают влияние случайные факторы, учесть которых в ходе принятия управленческих решений невозможно
- г) на них оказывают влияние случайные факторы, которые должны быть учтены при принятии управленческих решений
 - 33. Инерция в экономике позволяет
- а) выявлять сложившиеся экономические закономерности, тенденции, связи и зависимости
- б) экстраполировать сложившиеся экономические закономерности, тенденции, связи и зависимости
- в) изучать экономические законы и закономерности с применением методов математического моделирования

- г) изучать связи и зависимости в экономике с помощью методов экономико-математического моделирования и выявлять свойства экономических объектов, процессов и явлений
- 34. Условия-ограничения задачи оптимизации рецептуры сырья имеет вид

a)
$$\sum a_{ij} * x_{ij} \le B_i$$
 f) $\sum x_{ij} \le B_i$ b) $\sum a_{ij} * x_j = B_i$ f) $\sum a_{ij} * x_j \le B_i$

- 35. Математический инструментарий решения экономических задач оптимизационного типа называется
- а) линейным программированием
- б) методом экстраполяции
- г) методом наименьших квадратов в) теорией затраты-выпуск
- 36. Критерий оптимальности общей задачи линейного программирования имеет вид
 - a) $\sum c_{ij} *x_i \rightarrow \max (\min)$ b) $\sum a_{ij} *x_i \rightarrow \max (\min)$ c) $\sum c_{ij} *x_i \rightarrow \max (\min)$ c) $\sum c_{ij} *x_i \rightarrow \max (\min)$ c) $\sum c_{ij} *x_i \rightarrow \max (\min)$
 - 6) $c_1x_1 + c_2x_2 + ... + c_nx_n \to max (min)$
- 37 Критерий оптимальности в задаче о перевозках (транспортная задача) имеет вид
- Модель по оптимизации рецептуры сырья (задача о смесях) 38. имеет вид
 - а) $F = \sum c_j *x_j \longrightarrow max (min)$ при условиях $\sum a_{ij} *x_j = b_i$
 - б) $F = \sum \sum c_{ii} *a_{ii} * x_{ii} \rightarrow max (min)$ при условиях $\sum a_{ii} *x_{ii} = B_i$
 - в) $F = \sum c_{ij} x_{ij} \rightarrow max (min)$ при условиях $\sum a_{ij} x_{ij} \le b_i$
 - г) $F = \overline{\sum} c_i * x_i \rightarrow \max (\min)$ при условиях $\sum \overline{\sum} a_{ii} * x_i \leq b_i$
- В условиях-ограничениях модели по оптимизации загрузки оборудования $\sum a_{ij} * x_{ij} = A_i; x_{ij}$ и A_i означают соответственно:
- а) время работы каждого вида машин по производству каждой продукции и спрос на продукцию
- б) производительность каждого вида машин и фонд времени их работы
- в) содержание полезных компонентов в единице каждого вида сырья и единице готовой продукции
 - г) нормы расхода сырья и объём сырья
- 40. Какое из следующих предложений относится к формулировке задачи раскроя материалов
- а) на предприятии имеются различные виды сырья из которых вырабатываются определенный объем одного вида готовой продукции
- б) на предприятии имеются различные виды машин, на которых вырабатываются различные виды продукции
- имеются предприятии в) на различные виды заготовок, получаемые различными способами
- г) на предприятии имеются различные виды сырья, из которых вырабатывается различные виды готовой продукции

41. Уравнение	состояния	системы	В	моделях	динамич-го
программирования им					

a)
$$S_k = \varphi_k(S_{k-1}, X_k), k=1,2, ..., n$$
 6) $Z_k = \sum f_i(S_{k-1}, X_k)$
B) $Z_k = F(S_o, X_k)$ Γ $X = f(t,x,n)$

42.Условный оптимум целевой функции на n-м шаге описывается равенством

43. Функционал задач оптимального управления для непрерывных систем имеет вид

a)
$$F(\overline{V}) = \sum_{t=1}^{T} \sum_{j=1}^{N} a_t c_{tj} a_{tj} x_{tj}$$
 вб) $F(\overline{V}) = \sum_{t=0}^{T-1} f^0(t,x,u) + F(x(T))$
в) $F(\overline{V}) = \int_{0}^{T} f^0(t,x,u) dt + F(x(T))$ Γ) $F(\overline{V}) = 2 \sum_{t=0}^{T-1} I(t) + \beta k(t)$

- 44. Если F(V) ≤ n для любого V ∈ M, то
 - а) V называют точной верхней границей функционала
 - б) п называют точной верхней границей функционала
 - в) V называют точной нижней границей функционала
 - г) n называют точной нижней границей функционала
- 45. Целевая функция в моделях многошаговой оптимизации записывается в виде

a)
$$Z=\sum f_k (S_{k-1},X)$$
 B) $f_k (S_{k-1},X_k)+Z_{k+1}*(S_k)$
6) $S_k=\varphi_k(S_{k-1},X_k)$ Γ) $F(\overline{V})=\int\limits_0^T f^0(t,x,u)dt+F(x(T))$

- 46. Целью моделирования в экономике является
- а) упрощение сложных экономических процессов и их математическая запись
- б) количественное выражение экономических законов, закономерностей и тенденций
- в) изучение экономических процессов с помощью математических моделей
- г) получение информации, необходимой для принятия управленческих решений
- 47. Количество ограничений в модели общей задачи линейного программирования с коэффициентами системы неравенств a_{ij} равно
- 7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы

формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля – 60 % и промежуточного контроля - 40%.

Текущий контроль по дисциплине включает:

- посещение занятий 20 баллов,
- участие на практических занятиях 40 баллов,
- выполнение лабораторных заданий 40 баллов,
- выполнение домашних (аудиторных) контрольных работ ___ баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос 20 баллов,
- письменная контрольная работа 40 баллов,
- тестирование 40 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а)основная литература:

- 1. Экономико-математическое моделирование: учебник / [Л.В.Албанская и др.]; под общ. ред. И.Н. Дрогобыцкого. 2-е изд., стереотип. М. : Экзамен, 2006. 798,[2] с. (Серия "Учебник для вузов"). Рекомендовано УМО. ISBN 5-472-01573-1 : 250-69. (Количество экз. 14)
- 2. Масягин В.Б. Математическое моделирование и информационные технологии при проектировании [Электронный ресурс]: учебное пособие / В.Б. Масягин, Н.В. Волгина. Электрон. текстовые данные. Омск: Омский государственный технический университет, 2017. 167 с. 978-5-8149-2436-0. Режим доступа: http://www.iprbookshop.ru/78442.html (дата обращения: 07.06.2018)
- 3. Тупик Н.В. Компьютерное моделирование [Электронный ресурс] : учебное пособие / Н.В. Тупик. Электрон. текстовые данные. Саратов: Вузовское образование, 2013. 230 с. 2227-8397.— Режим доступа: http://www.iprbookshop.ru/13016.html (дата обращения: 07.06.2018)

б) дополнительная литература:

- 4. Математическая экономика: учеб. для вузов / Колемаев, Владимир Алексеевич. 3-е изд., стер. М.: ЮНИТИ, 2005. 399 с.: ил. Допущено МО РФ. ISBN 5-238-00794-9: 242-00. (Количество экз. 7)
- 5. Силич В.А. Моделирование и анализ бизнес-процессов [Электронный ресурс] : учебное пособие / В.А. Силич, М.П. Силич. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2011. 212 с. 978-5-86889-511-1.— Режим доступа: http://www.iprbookshop.ru/13890.html (дата обращения: 07.06.2018)
- 6. Ашихмин В.Н. Введение в математическое моделирование [Электронный ресурс]: учебное пособие / В.Н. Ашихмин, М.Б. Гитман, И.Э.

- Келлер. Электрон. текстовые данные. М. : Логос, 2004. 439 с. 5-94010-272-7.— Режим доступа: http://www.iprbookshop.ru/9063.html (дата обращения: 07.06.2018)
- 7. Катаргин Н.В. Экономико-математическое моделирование в Excel [Электронный ресурс] / Н.В. Катаргин. Электрон. текстовые данные. Саратов: Вузовское образование, 2013. 83 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/17777.html (дата обращения: 07.06.2018)
- 8. Яроцкая Е.В. Экономико-математические методы и моделирование [Электронный ресурс] : учебное пособие / Е.В. Яроцкая. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2018. 227 с. 978-5-4486-0074-6— Режим доступа: http://www.iprbookshop.ru/16295.html (дата обращения: 07.06.2018)
- 9. Алексеев Г.В. Численное экономико-математическое моделирование и оптимизация [Электронный ресурс] : учебное пособие / Г.В. Алексеев, И.И. Холявин. Электрон. текстовые данные. Саратов: Вузовское образование, 2013. 195 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/16905.html (дата обращения: 07.06.2018)

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1)eLIBRARY.RU[Электронный ресурс]: электронная библиотека / Науч. электрон. б-ка. Москва, 1999 . Режим доступа: http://elibrary.ru/defaultx.asp (дата обращения: 01.04.2017). Яз. рус., англ.
- 2) Moodle [Электронный ресурс]: система виртуального обучением: [база данных] / Даг. гос. ун-т. Махачкала, г. Доступ из сети ДГУ или, после регистрации из сети ун-та, из любой точки, имеющей доступ в интернет. URL: http://moodle.dgu.ru/(датаобращения: 22.03.2018).
- 3) Электронный каталог НБ ДГУ[Электронный ресурс]: база данных содержит сведения овсех видах лит, поступающих в фонд НБ ДГУ/Дагестанский гос. ун-т. Махачкала, 2010 Режим доступа: http://elib.dgu.ru, свободный (дата обращения: 21.03.2018).

10. Методические указания для обучающихся по освоению дисциплины

Для изучения теоретического курса магистрам необходимо использовать лекционный материал, учебники и учебные пособия из списка основной и дополнительной литературы, интернет источники.

По дисциплине «Математическое моделирование» в конце каждого модуля проводится контрольная работа.

В контрольную работу включаются теоретические вопросы и задачи тех типов, которые были разобраны на предшествующих практических занятиях.

Рабочей программой дисциплины «Информационное общество и проблемы прикладной информатики» предусмотрена самостоятельная

работа магистров в объеме 107 часа. Самостоятельная работа проводится с целью углубления знаний по дисциплине и предусматривает:

- чтение магистрами рекомендованной литературы и усвоение теоретического материала дисциплины;
 - подготовку к практическим занятиям;
 - выполнение индивидуальных заданий;
 - подготовку к контрольным работам, зачету и экзаменам.

С самого начала изучения дисциплины магистр должен четко уяснить, что без систематической самостоятельной работы успех невозможен. Эта работа должна регулярно начинаться сразу после лекционных и практических занятий, для закрепления только что пройденного материала.

После усвоение теоретического материала можно приступить к самостоятельному решению задач из учебников и пособий, входящих в список основной литературы.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Интернет-ресурсы, мульти-медиа, электронная почта для коммуникации с магистрами, Excel Microsoft, Power Point.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Компьютерный класс, оборудованный для проведения лекционных и практических занятий средствами оргтехники, персональными компьютерами, объединенными в сеть с выходом в Интернет; установленное лицензионное и свободное программное обеспечение.