МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Биологический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Почвоведение с основами растениеводства

Кафедра почвоведения Образовательная программа 06.03.01- Биология

Профиль подготовки Общая биология

Уровень высшего образования Бакалавриат

Форма обучения очная

Статус дисциплины: вариативная

Рабочая программа дисциплины « Почвоведение с основами растениеводства» составлена в 2018 году в соответствии с требованиями ФГОС ВО по направлению подготовки 06.03.01 Биология (уровень бакалавриата)

от 12. 03. 2015г. № 213.

Аннотация рабочей программы дисциплины

Дисциплина «Почвоведение с основами растениеводства» входит в вариативную, часть образовательной программы бакалавриата, по направлению 06.03.01. Биология.

Дисциплина реализуется на биологическом факультете, кафедрой почвоведения.

Содержание дисциплины охватывает круг вопросов, морфологическими признаками почв, питанием растений, рассматриваются основные факторы почвообразования, влияние агротехники на процессы почвообразования. Изучаются вопросы, связанные процессами превращения органических остатков в гумус, с плодородием почв и методами его повышения. В содержание дисциплины также входят вопросы земледелия (методы обработки почвы, севооборот и т.д.) и растениеводства (биологические особенности, агротехника некоторых культурных растений).

Дисциплина нацелена на формирование компетенций выпускника: ОПК-2. ПК-3. Преподавание дисциплины предусматривает проведение следующих видов занятий: лекций, лабораторные занятие, самостоятельная работа. Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме контрольной работы, устного опроса,

тестирования и итоговый контроль в форме экзамена. Объем дисциплины 3 зачетных единиц, в том числе 108 в академических часах по видам учебных занятий.

			Форма					
Семес				промежуточной				
тр	К	онтактн	CPC,	аттестации (зачет,				
	Всег			из них			в том	дифференцирован
	o	Лекц Лабораторн Практиче КСР консульта					числе	ный зачет,
		ии	ии ые занятия ские ции				экзам	экзамен
		занятия						
6	108	14	28	-	-	-	30+36	экзамен

1. Цели освоения дисциплины

Целями освоения дисциплины (модуля) являются: формирование приобретение профессиональных научного мышления, навыков почвоведению, выявление специфики почвы как природного образования, возникшего и развивающегося в результате воздействия организмов на литосферу; обеспечить студентов теоретическими знаниями рациональному использованию почвенного покрова, освоение студентами

закономерностей формирования почв, их строения, их состава, режимов, плодородия.

Задачами изучения дисциплины является: отразить положение почвоведения с основами растениеводства среди других естественных наук, как результат взаимодействия геофизических оболочек Земли и живых организмов, дать характеристику основным почвообразующим минералам, породам и показать значение в почвообразовании, составе почв; дать общую схему почвообразовательного процесса, характеристику факторам почвообразования, их взаимодействие и проявление в конкретных природноклиматических условиях; охарактеризовать состав, свойства, режимы почв, теоретические основы сохранения воспроизводства плодородия ПОЧВ закономерности географического распространения почв формирования почвенного покрова, почв характеристику. сельскохозяйственном Агрономическую проблемы при оценку, использовании почв и пути их решения.

2.Место дисциплины в структуре ОПОП бакалавриата

Дисциплина «Почвоведение с основами растениеводства» входит в вариативную часть образовательной программы бакалавриата по направлению 06.03.01. - «Биология».

Данный курс является одним из важнейших при изучении дисциплин «Ботаника», « Биология растений», «Микробиология», « Земледелия» « Растениеводство» и др. В ней отражено современное представление о состоянии почвоведения и основ растениеводства.

Курс общей трудоемкость 108 часов (3 зач. ед) читается на 3 курсе обучения в 6 семестре, включает лекции 14 часов, лабораторные занятия 28 часов и самостоятельная работа 30 часов. Завершается курс экзаменом.

Весь материал сгруппирован в двух частях, которыми предшествует введение. Во введении рассмотрены основные представления о почве и ее формировании, а также приведено краткий обзор истории развития взглядов на почву и ее сельскохозяйственное использование. В первой части рассмотрены основные факторы почвообразования, повсеместные (рельеф, климат, почвообразующие породы, живые организмы, почвенные процессы (микро- и макропроцессы), почвенные свойства (морфологические признаки, водно-физические, химические и др. свойства). Во второй части освещены географические закономерности распространения основных типов почв и особенности их народнохозяйственного использования. Также изучают растениеводческий отрасль сельского хозяйства, где изучают все факторы роста, развития, плодоношения и созревания некоторых видов полевых культур, которые играют большую роль в процессе улучшения структуры и повышения плодородия почв.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения).

Код компетенции из ФГОС ВО	Наименование компетенции из ФГОС ВО	Планируемые результаты обучения
ОПК – 2	Владение теоретическими основами исследования почвенного покрова природных и антропогенных объектов, а также организации и планирования работ по изучению почв;	Знает: теоретические основы исследования почвенного покрова природных и антропогенных объектов, организации и планирования работ по изучению почв; научные основы формирования почв, о роли микроорганизмов в процессе гумусообразования, процессы роста, развития и плодоношения растений, методы повышения плодородия почв
ПК-3	Способностью применять на практике базовые общепрофессиональные знания теории и методов полевых исследований в области почвоведения, мелиорации, физики,химии, географии, биологии, экологии, эрозии почв,агрохимии и агрофизики,почвенноландшафтного проектирования, радиологии почв, охраны и рационального использования почв	повышения плодородия почв. Умеет: пользоваться теоретическими основами исследования почвенного покрова природных и антропогенных объектов, а также организации и планирования работ по изучению почв; взять почвенные образцы при вертикальном разрезе почв и проводить лабораторные исследования, охарактеризовать и определить типы почв по морфологическим признакам, пригодную для выращивания с/х культур. Владеет: теоретическими основами исследования почвенного покрова природных и антропогенных объектов, а также организации и планирования работ по изучению почв; навыками оценки состояния плодородия почв современными методами.

- **4. Объем, структура и содержание дисциплины** 4.1. Объем дисциплины составляет 3 зачетных единиц, 108 (СРС) академических часов.
- 4.2. Структура дисциплины

№ п/ п	Разделы и темы дисциплины		Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)				Самостоятельная работа	Формы текущего контроля успеваемости (по неделям семестра) Форма	
				Лекции	Практически е занятия	Лабораторн ые занятия	Контроль самост. раб.	Самостояте	промежуточной аттестации (по семестрам)	
	Модуль 1. Почвообразо		ельный		јесс и	факто	ры поч		зования	
1.	Введение. Почвоведение- наука о почве.	6	1	2				3		
2.	Организмы и их роль в процессе почвообразования и плодородии.	6	2	2				6	Контрольная работа. Тестовые задания, устный опрос	
3.	Отбор и подготовка почв. образцов к анализу					4				
4.	Влияние агротехники на интенсивность микробиол. процессов в почве.	6	1	2				5	Контрольная работа. Тестовые задания, устный опрос	
5.	Определение гранулометр состава, структурности почвы.					4				
6.	Морфологические признаки почв.	6	2	2				6	Контрольная работа. Тестовые задания, устный опрос	
	Итого по модулю 1-36			8		8		20		
1	Модуль 2. Органическая часть почвы.							T.C.		
1.	Органическая часть почвы	6	1	2					Контрольная работа. Тестовые задания, устный опрос	

2.	Приготовление водной					4			
2.	вытяжки					_			
3.	Процессы							2	Контрольная
٥.	*							2	работа. Тестовые
	превращения органических								задания, устный
	органических остатков в почве.								
4.						4			опрос
4.	Опред кислотности					4			
	ПОЧВ								
	потенциометрическим								
_	методом					4			
5.	Определение					4			
	влагоемкости почвы и								
	гигроскопической								
	воды	_							
6.	Структура почвы.	6	2	2					
	П			2				2	TC.
7.	Плодородие почв.			2				2	Контрольная
	Особенности строения								работа. Тестовые
	и свойств каштановых								задания, устный
	почв.					4			опрос
8.		6				4		2	
	Опред гумуса в почве								
	по Тюрину.								×4
9.	Определение								Контрольная
	содержания гумуса в					4			работа. Тестовые
	черноземах								задания, устный
			_	_					опрос
10.	Основы земледелия,	6	2	2				2	
	основы								
	растениеводства.								
	Итого по модулю 2-36			8	-	20		8	
	Модуль 3		Поді	ОТОВІ	ка к эі	кзамену	y	36	Экзамен
	ВСЕГО: 42			14		28		30+36	

4.3. Содержание дисциплины, структурированное по темам (разделам) Модуль 1. Почвообразовательный процесс и факторы почвообразования.

Тема 1. Введение. Почвоведение - наука о почве.

Почва как компонент биосферы и наземных биогеоценозов. Причинноследственное значение почвы в функционировании биосферы и биогеоценозов. Почвоведение как естественно - историческая наука. Почва обладатель продукционной способности, носитель плодородия, основное средство сельскохозяйственного производства. Значение почвоведения в сельском и лесном хозяйстве. Определение почвы. Место и роль почвы в природе. Охрана и рациональное использование почвы — составная часть охраны окружающей среды в целом и рационального природопользования. Взаимосвязь почвоведения со смежными, естественными, агрономическими и экономическими науками. Свойство почвы — плодородие почвы.

Тема2. Организмы и их роль в процессе почвообразования и плодородии

Многочисленные организмы, населяющие почву – микроорганизмы актиномицеты, водоросли,) грибы, И позвоночные. беспозвоночные животные. Количество бактерий в почве зависит от ее типа и культурного состояния. С глубиной численность бактерий уменьшается. Особенно много их встречаются на поверхностном горизонте почвы, богатых органическим веществом. По способу питания бактерии делятся на автотрофные и гетеротрофные. Автотрофные бактерии усваивают углерод из углекислого газа. Гетеротрофные бактерии усваивают углерод готовых органических соединений. Для бактерий необходимы и зольные элементы питания (фосфор, калий, сера, кальций, микроэлементы и др.). Процессы питания и дыхания бактерий осуществляются различными биологическими катализаторами, называемыми ферментами, которые по характеру строения подразделяются на ферменты – протеины и ферменты протеиды.

Взаимоотношения микроорганизмов в почве.

Все взаимодействия между микроорганизмами и микроорганизмами и растениями могут быть сведены к следующим основным типам: симбиоз, метабиоз, антагонизм, паразитизм. Более распространенным типом взаимоотношений между микроорганизмами в почве является метабиоз. Быстрая минерализация органического вещества в почве идет лишь благодаря совместной жизнедеятельности различных групп микроорганизмов. Численность микроорганизмов в разных типах почв разное.

Тема 3.Влияние агротехники на интенсивность микробиологических процессов в почве

микрофлоры, Содержание И состав a также интенсивность микробиологических процессов зависят от естественного состояния почвы и производственного воздействия на нее человеком. Интенсивность микробиологических процессов в разных почвах разное. Обработка почвы, особенно вспашка, оказывает определенное влияние на водный, воздушный и тепловой режимы ее. При создании в почве благоприятных условий усиливается развитие микроорганизмов, способствующих мобилизации питательных веществ. Разные приемы обработки почвы неодинаково воздействуют на почвенную микрофлору и мобилизацию питательных При обработке почвы минерализуется веществ в пахотном слое. органическое вещество, что приводит к накоплению питательных веществ. Существенным фактором, определяющим микробиологическую активность почвы, является внесение органических и минеральных удобрений.

Тема 4. Морфологические признаки почв

Вертикальная толща всякой почвы, которая называется почвенным профилем, обладает определенным строением – она расчленяется на ряд

генетически связанных между собой горизонтов. Каждый горизонт характеризуется совокупностью внешних (морфологических) признаков. Как совокупность горизонтов. Из которых состоит профиль почвы, так и внешние признаки каждого горизонта отражают характер почвообразовательного процесса, поэтому-то различные типы почв по совокупности внешних признаков можно отличить друг от друга.

Морфологические признаки изучают во время зимних практических занятий на коробочных образцах или монолитах. Используют насыпные монолиты – ящики, разделенные несколькими перегородками, между которыми помещаются отдельные образцы из всех горизонтов профиля.

К числу морфологических признаков почвы относятся: цвет, структура, сложение, новообразования, включения, механический состав, строение и мощность. Первые шесть признаков изучают в каждом генетическом горизонте профиля; строение и мощность исследуются в пределах профиля в целом.

Модуль 2.Тема 1.Органическая часть почвы

Органическая часть почвы состоит ИЗ органических остатков (корешков и наземного опада) и гумуса. Источником гумуса являются органические остатки высших растений, микроорганизмов и животных, почве. Под травянистой растительностью основным источником образования гумуса служат корни. В почвах под лесом основным источником формирования гумуса является подстилка, количество которой зависит от зоны, состава, возраста и густоты насаждений, а также от развития травянистого и мохового покрова. Корни древесной растительности многолетние и участие их в образовании гумуса невелико. Первичным и основным источником органических веществ, из которых образуется гумус, являются остатки зеленых растений в виде наземного опада и корней. Органические остатки всегда содержат некоторое количество зольных элементов: калия. Кальция, магния, кремния, фосфора, серы, железа и многих других.

Превращение органических остатков в гумус совершается в почве при участии микроорганизмов, животных, кислорода воздуха и воды. Остатки зеленых растений, попадающие в почву или находящиеся на поверхности ее, разлагаются микроорганизмами и используются ими как источник энергии и питания. В процессе разложения эти остатки теряют анатомическое строение, а составляющие их вещества переходят в более подвижные и простые соединения. Одна часть из этих соединений полностью минерализуется микроорганизмами, и продукты распада усваиваются новыми поколениями зеленых растений, а другая часть продуктов разложения используется гетеротрофными микроорганизмами для синтеза вторичных белков, жиров, углеводов и других веществ, образующих плазму новых поколений микроорганизмов и в дальнейшем вновь разлагается. И некоторая часть промежуточных продуктов разложения превращается в специфические сложные высокомолекулярные вещества — гумусовые кислоты. Активное участие в превращении органических остатков в гумус принимают

микроскопические и макроскопические животные, которые перемащивают с почвой всю массу органических остатков и продуктов их разложения и гумификации, перерабатывают их и выбрасывают неиспользованную часть в виде экскрементов в толщу почвы. Особенно велика роль дождевых червей, развивающихся в почве. Таким образом. Превращение органических остатков в гумус (гумусообразование) является совокупностью процессов разложения исходных органических остатков, синтеза вторичных форм микробной плазмы и их гумификации.

Тема 2.Структура почвы

Отдельности (комки, агрегаты) различной величины и формы на которое распадается почва – структура почвы. Структура оказывает большое влияние на агрономические свойства и плодородие почв. Окультуренная почва – это структурная почва. Структура влияет на ряд важных в агрономическом отношении свойств почвы, что сказывается в конечном итоге на урожае сельскохозяйственных культур. В структурных почвах по сравнению с создаются более благоприятные бесструктурными условия воздушного, теплового, теплового и питательного режимов. Наиболее благоприятна агрономическом смысле комковато-зернистая макроструктура с размером агрегатов от 0,25 до 10 мм. Важным свойством структуры является ее водопрочность (способность агрегатов противостоять размывающему действию воды). Однако не всякая водопрочная структура агрономически ценной. Если водопрочные является структурные отдельности имеют рыхлую упаковку, a, следовательно, высокую воспринимают воду, а в их поры свободно пористость, то они легко проникают корневые волоски и микроорганизмы. Такая структура наиболее ценная. Если структурные отдельности имеют плотную упаковку, то пористость их очень низкая, поры тонкие, которые с трудом проникает вода и не проникают волоски и микроорганизмы. Водопрочность такой структуры определяется тем, что вода проникает внутрь их слабо, и они долго не размокают.

Тема3. Плодородие почв и методы повышения плодородия почв

Способность почвы удовлетворять потребность растений в элементах питания, воде, обеспечивать их корневые системы достаточным количеством воздуха и тепла для деятельности называют плодородием почв. Плодородие является существенным качественным свойством почвы. Плодородие почвы – результат развития природного почвообразовательного процесса. Каждой почве присуще природное, или естественное, плодородие. Оно обусловлено потенциальными запасами элементов питания, количеством легкодоступных растениям, содержанием гумуса и его составом, мощностью гумусовых горизонтов, механическим составом почвы, интенсивностью микробиологических процессов, особенностями водно-воздушного, солевого и других режимов почвы, ее реакцией и т.д. Плодородная почва содержит достаточное количество легкодоступных для растений элементов питания, обеспечивает растения в течение их роста влагой, имеет хорошие физические свойства, способствующие развитию мощной корневой

нормальному воздухообмену в корнеобитаемом слое, характеризуется благоприятной реакцией для растений и микроорганизмов, не содержит ядовитых и вредных веществ. Природное плодородие тесно связано с произрастающей растительностью. Растениям для роста развития требуются тепло, влага, кислород и питательные вещества. Почва обеспечивает потребность растения зольных элементах питания и азоте, влаге, определенном температурном режиме и кислороде воздуха для дыхания корней. Все эти факторы для жизни равнозначны для растений.

Тема 4. Основы земледелия

Растения в процессе роста, развития и создания урожая требуют постоянного, в необходимом количестве притока факторов жизни - космических и земных. К космическим факторам относятся свет и тепло, к земным — углекислый газ, кислород, воду, азот, фосфор, калий, кальций и др. зольные элементы. Космические факторы жизни растений по существу не регулируются в земледелии. В земледелии сформулированы ряд закономерностей действия факторов жизни растений в процессе создания урожая (законы земледелия):

- 1. Закон равнозначимости и незаменимости факторов жизни растений.
- 2. Закон минимума (минимума, оптимума, максимума).
- 3. Закон совокупного действия факторов жизни растений.
- 4. Закон возврата
- 5. Закон убывающего плодородия почвы.

Основы растениеводства

Растениеводство — учение о культурных растениях и их возделывании. Научное растениеводство строится на принципах современной биологической науки, изучающей особенности развития растений, их требованиям к условиям среды. Широко используются в растениеводстве и данные многих смежных дисциплин (почвоведения, агрохимии, физиологии растений, земледелия, химии, физики и др.).

Биологической основой растениеводства является познание:

- 1) особенностей культурных растений и их потребностей в факторах, среды;
- 2) условий среды, использование и изменение их в нужном направлении;
- 3) наследственных особенностей растений и разработка на их основе соответствующей агротехники.

Задачи растениеводства — изучение закономерностей формирования урожая, выявление резервов увеличения производства продуктов полеводства, разработка теории и технологии получения высоких урожаев наилучшего качества при наименьших затратах труда и средств.

Полевые культуры в растениеводстве отличаются по ботаническим, биологическим и хозяйственным признакам, по виду продукции, особенностям возделывания, а размещения в севооборотах, по степени механизации, способам уборки и другими показателями. Для удобства изучения большого числа разнообразных полевых культур их

разделяют по производственному принципу на 4 большие группы – зерновые, технические, кормовые и бахчевые.

4.3.1. Содержание лабораторных занятий

Модуль1. Тема1. Отбор и подготовка почвенных образцов к анализу.

Образцы, доставленные в лабораторию, должны быть немедленно доведены до воздушно-сухого состояния. Хранение сырых образцов не под влиянием микробиологических процессов допускается, так как изменяются свойства почвы. Большинство анализов проводят с воздушносухими образцами, растертыми и просеянными через сито с отверстиями в 1 мм. Агрегатный анализ необходимо проводит в нерастертых образцах (некоторые виды анализов, например, определение нитратов, проводят на свежих образцах). В этом случае, образец рассыпают на бумаге, отбирают корни и каменистые частицы пинцетом и после тщательного перемешивания немедленно берут навеску на определение влажности и на соответствующий анализ). Для просушки образец рассыпают тонким слоем на большом листе плотной бумаги, пинцетом удаляют корни и другие растительные остатки и, прикрыв сверху другим листом бумаги, оставляют на 2-3 дня. Помещение для сушки образцов должно быть сухим и защищенным от доступа аммиака, паров кислот и других газов. Высушенный образец делят по диагоналям на четыре части. Две противоположные части берут для растирания, а две другие сохраняют в неизменном состоянии. Почву растирают в ступке пестиком и просеивают через сито с отверстиями в 1мм.

Растирание и просеивание повторяют до тех пор, пока на сите не останутся лишь твердые каменистые частицы крупнее 1 мм (скелет почвы). Просеянную через сито почву помещают в банку с притертой крышкой или в коробку. Весь скелет почвы завертывают в бумагу и помещают в ту же банку или коробку. Если необходимо определить количество скелета, нужно взвесить на технических весах почву, предназначенную для растирания, а затем взвесит скелет почвы и вычислить его количество в процентах к навеске почвы.

Для определения гумуса и азота почву подвергают особой подготовке, которая заключается в тщательном удалении всех корешков и дополнительном растирании. Для этого почву, просеянную через сито с отверстиями в 1мм, высыпают на бумагу, разравнивают тонким слоем и делят на ряд квадратиков площадью около 4х4см. Из каждого квадратика берут небольшое количество почвы, составляя среднюю пробу около 5г. Отобранный образец вновь расстилают тонким слоем на листе бумаги и пинцетом тщательно (с помощью лупы) отбирают крупные корешки. Мелкие корешки отбирают стеклянной палочкой, наэлектризованной кусочком шерстяной ткани; для этого палочкой многократно проводят над слоем почвы на высоте 3-5см. Все корешки притягиваются к палочке. Эту операцию нужно проводить осторожно, так как на слишком близком

расстоянии к палочке могут притягиваться и прилипать не только корешки, но и мелкие частицы почвы.

В процессе отбора корешков почву несколько раз перемешивают и вновь расстилают тонким слоем. Чистоту отбора корешков следует проверить с лупой. По окончании отбора корешков почву растирают в фарфоровой или агатовой ступке и просеивают через сито с отверстиями 0,25 мм. Отставшую на сите почву вновь растирают в ступке и просеивают, повторяя эту операцию до полного просеивания всей пробы. Оставлять часть пробы непросеянной нельзя, так как это может исказить показатели содержания гумуса в почве. Подготовленную таким путем пробу следует хранить в маленьком пакете из плотной бумаги или в баночке с притертой пробкой.

Лесные подстилки и образцы торфа благодаря высокой влагоемкости содержат большое количество воды и требуют высушивания в течение нескольких суток. Для этой цели образцы раскладывают тонким слоем на листе в хорошо вентилируемых помещениях, большом ежедневно образцы многократно перемешивая. По окончании просушивания измельчают сначала растиранием в фарфоровых ступках, затем на мельнице и просеивают через сито с отверстиями диаметром 2-3мм. Затем берут средний образец в 50-200 г, вновь измельчают и просеивают через сито с отверстиями диаметром 1мм. Частицы, оставшиеся на сите, снова растирают и просеивают до тех пор, пока не будет просеян весь образец. Готовые образцы хранят так же, как и образца почв.

Тема2. Определение гранулометрического состава почв

Механическим составом называют относительное содержание в почве механических элементов различного диаметра. Масса почвы всегда состоит, из частиц различной величины — от нескольких микрометров до нескольких миллиметров.

Элементарные частицы объединяются в группы или фракции: частицы крупнее 3 мм - камни, 3 - 1 - гравий, 1 - 0.5 - крупный песок, 0.5 - 0.25 - средний песок, 0.25 - 0.05 - мелкий песок, 0.05 - 0.01 - крупная пыль, 0.01 - 0.005 - средняя пыль, 0.005 - 0.001 - мелкая пыль, 0.001 - 0.0005 - грубый ил, 0.0005 - 0.0001 - тонкий ил, 0.0001 мм (0.0005 - коллоиды.

Каждая фракция характеризуется суммой физических свойств, отличающих ее от других фракций. Для классификационных целей часто все частицы крупнее 0,01 мм объединяют во фракцию физического песка, а все частицы мельче 0,01 мм - во фракцию физической глины.

Термин «физический» обозначает наличие в той или другой фракции физических свойств песка или глины, не предопределяя химического состава фракции. Кроме того, обычно все частицы мельче 1 мм называются мелкоземом почв, а крупнее 1 мм - почвенным скелетом.

Для характеристики механического состава почв предложено несколько классификаций (В. Р. Вильямс, Н. М. Сибирцев, Г. М. Тумин,

С. А. Захаров, В. В. Охотин). Наибольшее соответствие физическим свойствам почвы дает классификация Н. А. Качинского, основанная на соотношении количеств физического песка и физической глины в почве. Эта классификация получила в настоящее время широкое применение в Советском Союзе.

Дополнительное название почве дается по соотношению между гравелистой (3-1 мм), песчаной (1- 0,05 мм), крупнопылеватой (0,05—0,01 мм), пылеватой (0,01 - 0,001 мм) и иловатой (мельче 0,001 км) фракциями. Если среди выделенных фракций две содержатся в больших количествах, то дополнительное название будет двойным, причем название преобладающей фракции ставится на последнее место; например, название суглинок средний пылевато-иловатый означает, что количество ила преобладает над фракцией пыли. В наименьших количествах содержится, как правило, фракция песка.

Каменистость почвы (частицы крупнее 3 мм) отмечается по следующей шкале: меньше 0,5% камней и гравия - некаменистая, 0,5 - 5% - слабо каменистая, 5 - 10% - среднекаменистая, больше 10% - сильно каменистая. Тип каменистости устанавливается по характеру скелета: валунная, галечниковая, щебенчатая.

Задача механического анализа почв сводится к разделению почвы на ряд фракций, охватывающих ту или иную группировку механических элементов.

Тема 3. Определение кислотности почв потенциометрическим методом

На технохимических весах берут 8г воздушно-сухой почвы в стаканчик вместимостью 50 мл, приливают 20мл свежей дистиллированной воды или 20мл 1н. раствора КСL. В торфе и лесных подстилках берут соотношение 1:25. 1 г воздушно-сухого, тщательно измельченного торфа заливают 25 мл раствора. Вода должна иметь реакцию, близкую к нейтральной, раствор КСL – рН около 5,6. содержимое стаканчиков перемещивают и приступают к измерению величины рН.

Перед работой потенциометр (рН-метр) должен быть настроен по серии буферных растворов с известными значениями рН. Приступая к работе, электроды промывают дистиллированной водой, избыток воды удаляется фильтровальной бумагой. Затем, взяв стакан с испытуемым раствором в правую руку, левой отводят столик датчика в левую сторону. Подставляют стакан под электроды (надо следить за тем, чтобы электроды не касались дна и стенок стакана), подводят столик на прежнее место и закрепляют задним зажимом. Устанавливают переключатель «виды работ» и «пределы измерений» в соответствующее положение рН - 2, +14. Включают прибор в сеть и прогревают прибор в течение 10-15мин.

Затем по нижней шкале -2,+14 производят отсчеты рН. Для более точного измерения рН ставят переключатель «пределы измерений» на рН +2, +8 или +6, +10 (в зависимости от рН измеряемого раствора). Стрелка

гальванометра не должна выходить за пределы шкалы для подсчета полного значения рН к +2 или +6 прибавляют то значение,которое показывает стрелка по верхней шкале. Аналогично можно вести определение по шкале ЭДС (милливольты). По окончании работы электроды вновь промывают дистиллированной водой и погружают их в стакан с дистиллированной водой.

Тема 4.Приготовление водной вытяжки

На технохимических весах отвешивают в фарфоровой чашке 100 г воздушно-сухой почвы, просеянной через сито с отверстиями в 1 мм. Навеску осторожно через воронку с широкой и короткой трубкой пересыпают в стеклянную банку с притертой пробкой. В банку приливают 500 мл дистиллированной воды, все содержимое банки встряхивают в течение 3 мин и немедленно фильтруют через плотный складчатый фильтр, перенося на него всю почву (водные вытяжки из торфа и лесных подстилок приготавливают при отношении 1:20, т е. берут 25г воздушно-сухого торфа и 500мл дистиллированной воды). Для фильтрации употребляются воронки диаметром 12 - 15 см. Первые мутные порции фильтрата переносят обратно на фильтр; фильтрат собирают в колбу вместимостью 500—700 мл. Во время фильтрации записывают скорость фильтрации, цвет и прозрачность вытяжки. Анализ водной вытяжки необходимо производить тотчас после окончания фильтрации, так как водные вытяжки через 1 - 2 дня после приготовления легко загнивают.

Тема 5. Определение элементов питания в почве (определение кальция и магния)

Для определения берут пипеткой 25-50 мл водной вытяжки (в зависимости от величины осадка) в химический стакан вместимостью 100 мл (ведут определение Са комплексометрическим методом) нагревают до появления паров (до70-80° С), прибавляют 2 мл раствора сульфида натрия для связывания ионов меди, мешающих определению, и 5 капель гидроксиламина для устранения вредного вляиния ионов марганца. Затем 5мл хлоридно-аммиачного буферного раствора подщелачивания до рН 10 и 12-15 капель компексона индикатора хромогена черного. При этом раствор окрашивается в винно-красный цвет за счет образующихся комплексов Са и Мд.раствор титруют трилоном Б до перехода окраски из вино-красной в сине-голубую или синюю. Следует иметь в виду, что комплексообразование при титровании трилоном б происходит не мгновенно, поэтому при приближении титрования к концу (фиолетовая окраска) следует титровать медленно, прибавляя раствор трилона Б по каплям и тщательно перемешивая пробу после каждого прибавления его. Содержание Са и Мд в титруемом растворе не должно превышать 0,5м-экв., т.е. на титрование не должно затрачиваться более 10 мл 0,05 н. или 5 мл 0,1 н. раствора трилона Б. требуемое содержание Ca и Mg в растворе можно регулировать уменьшением

объема раствора, подлежащего титрованию (от 100 до 5 мл), и изменением концентрации раствора трилона Б от 0,01 н.

Количество обменных катионов Ca^{2+} и Mg^{2+} вычисляют в миллиэквивалентах по формуле

$$\chi = \frac{anb \cdot 100K}{c} \,,$$

где a — количество раствора трилона b, затраченное на титрование, мл;

n - нормальность раствора трилона Б;

b - коэффициент для перевода, взятого для анализа раствора на весь объем (если взято 50 мл из 250, b=5)

Количество Mg^{2+} вычисляют по разности между вторым ($\mathrm{Ca}^2 + \mathrm{Mg}^{2+}$) и первым (Ca^{2+}) определениями.

Все данные анализа водной вытяжки записывают в сводную таблицу.

Тема 1. Определение содержания гумуса в почве

Из образца почвы, просеянной через сито с отверстиями 0,25мм, берут на аналитических весах навеску от 0,1 до 0,5 г в зависимости от количества гумуса в почве. Навеску осторожно переносят в коническую колбу вместимостью 100мл и приливают из бюретки 10 мл 0,4 н. раствора K_2 Сг $_2$ О $_7$, приготовленного в разведенной 1:1 серной кислоте.

В горло колбы вставляют маленькую воронку, служащую холодильником, и ставят ее на этернитовую плитку, газовую горелку или песочную баню. Содержимое колбы кипятят точно 5 мин, не допуская сильного кипения и перегрева. При нагревании начинается окисление гумуса, заметное по мелким пузырькам выделяющегося CO_2 Часть двухромовокислого калия при этом затрачивается на окисление гумуса по схеме:

$$2K_2Cr_2O_7 + 8H_2SO_4 = 2K_2SO_4 + 2Cr_2(SO_4)_3 + 8H_2O + 3O_2;$$

 $3O_2 + 3C$ (rymyca) = $3CO_2$.

Затем содержимое колбы охлаждают, прибавляют 5-8 капель фенилантраниловой кислоты в качестве индикатора и титруют 0,2 н. раствором соли Мора FeSO₄.(NH₄)₂.SO₄ .6HO до изменения темно-бурой окраски раствора через фиолетовую и синюю в грязнозеленоватую. Когда раствор окрасится в синий цвет, титровать необходимо очень осторожно, прибавляя раствор соли Мора по 1 капле и тщательно размешивая титруемую жидкость (для титрования можно использовать 0,1н.раствор соли Мора). Реакция между двухромовокислым калием, оставшимся после окисления гумуса, и солью Мора заключается в восстановлении двухромовокислого калия в окись хрома и идет по уравнению

$$K_2Cr_2O_7 + 6FeSO_4 + 7H_2SO_4 = Cr_2(SO_4)_3 + K_2SO_4 + 3Fe_2(SO_4)_3 + 7H_2O_4 = Cr_2(SO_4)_3 + 7H_2O_5 = Cr_2$$

Одновременно устанавливают соотношение между $K_2Cr_2O_7$ и солью Мора, для чего берут бюреткой 10мл 0,4н. раствора $K_2Cr_2O_7$ в коническую колбу вместимостью 100мл, содержимое колбы титруют так же как описано выше (без кипячения).

Экспериментально установлено, что 1мл 0,2 н. раствора соли Мора соответствует такому количеству хромовой кислоты, которое окисляет 0,0010362 г гумуса или 0,0006 г углерода. Поэтому количество гумуса вычисляют по формуле

$$X = \frac{(a-b) \cdot 0,0010362 \cdot 100K}{c}$$

где X – количество гумуса, % к сухой почве;

а – число миллилитров раствора соли Мора при холостом определении;

b – то же, при обратном титровании после окисления гумуса;

r - поправка на нормальность раствора соли Мора, если он не точно 0,2 н.; 100 – коэффициент перевода на 100г почвы; К – коэффициент для пересчета на сухую почву (поправка на содержание гигроскопической воды);

с – навеска почвы, взятая для анализа, г.

5. Образовательные технологии

Средства обеспечения освоения дисциплины: классическая лекция, интерактивная лекция с использованием профессионального комплекса компьютерной системы обработки материала.

Приборы и оборудование учебного назначения: плакаты, образцы почв, фотографии, таблицы; Видео - и аудиовизуальные средства;

Компьютерное оборудование с использованием Интернет ресурсов и обучающих программ.

6. Учебно-методическое обеспечение самостоятельной работы студентов

Самостоятельная работа студента выполняется в виде реферата на тему, выданная преподавателем в начале учебного года. На основании темы составляется план выполнения работы, в результате выполненная работа проверяется преподавателем. Итоговый контроль над выполнением самостоятельной работы — проверка реферата и устный опрос каждого студента. Для проверки самостоятельной работы выделяется специальный день.

Темы самостоятельной работы:

1	Распространение микроорганизмов в почве						
2	Животные, населяющие в почву, их роль в процессах	2					
	почвообразования.						
3	Поглотительная способность почв	2					
4	Физические свойства почв	2					
5	Почвообразующие породы как фактор почвообразования						
6	Болотные почвы						
7	Засоленные почвы, солоди						
8	С/х. использование солончаков, солодей						
9	Пески и песчаные почвы						
	Почвы пойм						

10	Эрозия почв и меры борьбы с ним.						
11	Системы земледелия	2					
12	Классификация севооборотов	2					
13	Обработка почвы	2					
14	Озимые хлеба. Агротехника озимых хлебов						
15	Народнохозяйственное значение, биологические	2					
	особенности, агротехника кукурузы.						
	Народнохозяйственное значение, биологические						
	особенности, агротехника.						
	Итого	30					

Рекомендуемая литература для выполнения самостоятельной работы.

Для выполнения самостоятельной работы в билиотеке ДГУ имеются некоторые источники, авторами которых являются сотрудники кафедры почвоведения ДГУ.

- 1.Почвоведение земледелие с основами почвоведения Вильямс В.Р. огиз сельхозгиз-1989
- 2.Почвоведение. З.М.Баламирзоева . Методическое пособие по лабораторным занятиям часть 1
- 3. Почвоведение. З.М.Баламирзоева. Методическое пособие по лабораторнопрактическим занятиям. Часть 2.
- 4. Почвоведение: Учебн.: В 2 т. / под ред. В.А.Ковды, Б.Г.Розанова. - М.: Высш. шк., 1989.
- 5.В.И.Бабаев, А.А.Абдуразманов, З.М.Баламирзоева Основы сельскохозяйственных пользований, М.ИПЦ ДГУ 2004, часть 2.
- 6. Растениеводство
- 7. Почвоведение. Журнал № 10.Издательство «Наука», 2000 г.
- 8. Агрохимические методы исследований почв. Всесоюзная а Акдемия С/X наук. Изд. «Наука». Москва.1975г.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код	Наименование		
компетенции	компетенций		Процедура
из ФГОС ВО	из ФГОС ВО	Планируемые результаты обучения	освоения
	Владением	Знает: приемы составления	Устный
	теоретическими	научно-технических отчетов,	опрос,
ОПК -2	основами исследования	обзоров, аналитических карт и	контрольная
	почвенного покрова	положительных записок;	работа
	природных и	научные представления о почве и	
	антропогенных	ее генезисе; факторы	
	объектов, а также	почвообразования и общую схему	

почвообразовательного процесса; организации планирования работ по происхождение, состав и свойства изучению почв. органической и минеральной части почвы; водно-воздушные, Способностью тепловые, окислительноприменять на практике восстановительные, свойства и ПК-3 базовые режимы почвы; экологические общепрофессиональные функции почвы и показатели теории почвенного плодородия; основы знания современной классификации методов полевых исследований в области почв; современные методы почвоведения, исследования в почвоведении и мелиорации, растениеводстве. физики,химии, Умеет: использовать полученные географии, биологии, знания и навыки для решения профессиональных задач; экологии, эрозии почв,агрохимии на профессиональном уровне агрофизики,почвеннопроводить морфологическое ландшафтного описание почв; диагностировать проектирования, основные типы почв; определять видовую принадлежность радиологии почв, охраны сельскохозяйственных культур. рационального Владеет: методами лабораторных и полевых использования почв исследований почв, методами наблюдения и экспериментальной работы с растениями в условиях культуры. методами почвенных исследований и наблюдений за агрофитоценозами

7.2. Типовые контрольные задания

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Для внеаудиторной самостоятельной работы также используются задания по составлению тестов, конспектирование современных научных статьей по теме с последующим их анализом, решение деловых задач.

Вопросы для проведения текущего контроля успеваемости.

- 1. Распространение микроорганизмов в почве.
- 2. Животные, населяющие в почву, их роль в процессах почвообразования
- 3.Поглотительная способность почв
- 4. Физические свойства почв
- 5. Почвообразующие породы как фактор почвообразования
- 6. Болотные почвы
- 7. Факторы жизни растений
- 8. Основы земледелия.

- 9. Засоленные почвы, солоди.
- 10. Использование солончаков, солодей.
- 11. Пески и песчаные почвы.
- 12. Почвы пойм.
- 13. Эрозия почв и меры борьбы с ним.
- 14. Органическая часть почвы.
- 15. Системы земледелия.
- 16. Классификация севооборотов.
- 17. Обработка почвы.
- 18. Озимые хлеба. Агротехника озимых хлебов.
- 19. Народнохозяйственное значение, биологические особенности, гротехники кукурузы.
- 20. Народнохозяйственное значение, биологические особенности, гротехника картофеля и кукурузы.
- 1. Горбылева А.И. Почвоведение: Учебное пособие. -2; перераб. –М.; Минск: ООО "Научно-издательский центр ИНФРА-М": ООО "Новоезнание", 2012. -400 с.-ISBN 978-5-16-005677-7 http://znanium.com/bookread.php?book=306102
- 2. Геннадиев А.Н. География почв с основами почвоведения: учеб. для студентов вузов, обучающихся по геогр. специальностям / А. Н. Геннадиев, М. А. Глазовская; Моск. гос. ун-т им. М. В. Ломоносова. -Москва: Высшая школа, 2005. -460, [1] с.: ил., табл. -(Классический университетский учебнник). -Библиогр.: с. 457-459. -ISBN 5-06-004792-X: 220.00.
- 3.Вальков В.Ф. Почвоведение: учеб. для студентов вузов / В. Ф. Вальков, К. Ш. Казеев, С. И. Колесников; [отв. ред. В. Ф. Вальков]. Москва; Ростов н/Д: МарТ, 2004. -493 с.: табл. -(Учебный курс). -Библиогр.: с.491 -493. -ISBN 5-241-00405-X: 125.00.
- 4.Белобров В.П.География почв с основами почвоведения: учебник для студентов учреждений высшего профессионального образования, обучающихся по направлению подготовки "Педагогическое образование" профиль "География" / под ред. В. П. Белоброва. -2-е изд., перераб. и доп. Москва: Асаdemia, 2012. -376, [1] с., [4] л. цв. к.: ил., табл., карты. (Высшее профессионалшьное образование) (Бакалавриат) (Педагогическое образование). -Библиогр.: с. 309-310. -ISBN 978-5-7695-8800-6.
- 5. Сиухина М.С. Почвоведение [Электронный ресурс]
– Новосибирск: изд-во НГАУ, 2009. –110 с.
- 6. Галеева Л.П. Почвоведение [Электронный ресурс] Новосибирск: изд-во НГАУ, 2012. —95.

Перечень примерных контрольных вопросов

- 1. Понятие о почве. Основные этапы развития почвоведения.
- 2. Что называют почвообразовательным процессом?
- 3. Материнская порода, каково ее значение для почвообразования.
- 4. Роль живых организмов в почвообразовании.
- 5. Факторы почвообразования.
- 6. Растительность, как фактор почвообразования.
- 7. Значение почвы для биосферы земли и хозяйственной деятельности человека.
- 8. Суть подзолообразовательного процесса.
- 9. Суть черноземного дернового процесса почвообразования.
- 10. Развитие солонцового (галогенной) процесса почвообразования.
- 11. Выветривание. Типы выветривания.
- 12. Почвенный раствор, его значение для жизни растений и почвообразовательного процесса.
- 13. Основные водные свойства почвы и их зависимость от физических свойств почвы.
- 14. Водный режим почв и водный баланс.
- 15. Типы водного режима.
- 16. Приемы регулирования водного режима почв.
- 17. Понятие о почвенном профиле.
- 18. Вертикальный разрез почвы.
- 19.Описание почвенных горизонтов почвы.
- 20. Морфологические признаки каждого горизонта почвы.
- 21. Классификация почв.
- 22.Типы почв.
- 23. Морфологические признаки почв.
- 24. Сложение, структура почв.
- 25. Агрономическое значение структуры.
- 26.Образование структуры.
- 27. Образование гумуса в почве.
- 28. Роль микроорганизмов в процессе почвообразовании.
- 29.Влияние агротехники на интенсивность микробиологических процессов в почве.
- 30. Новообразования.
- 31. Органическая часть почвы.
- 32. Разложение гумусовых веществ микроорганизмами.

Роль гумуса в почвообразовании, плодородии и питании растений

Перечень вопросов к экзамену по дисциплине «Почвоведение с основами растениеводства»

Роль бактерии в почвообразовании и плодородии почв.

Влияние агротехники на интенсивность микробиологических процессов в почве.

Процессы превращения органических остатков в гумус.

Влияние условий почвообразования на характер и скорость гумусообразования.

Биология озимых хлебов.

Плодородие почв. Способы повышения плодородия почв.

Эффективное плодородие почв.

Водопроницаемость почв.

Плодородие почв.

Роль почвы в жизни растений.

Классификация почв.

Разложение гумусовых веществ микроорганизмами.

Морфологические признаки почв.

Почвообразующие породы как фактор почвообразования

Распространение микроорганизмов в почве

Животные, населяющие в почву, их роль в процессах почвообразования.

Поглотительная способность почв.

Физические свойства почв.

Болотные почвы.

Пески и песчаные почвы

Почвы пойм

Эрозия почв и меры борьбы с ним.

Системы земледелия

Обработка почвы

Классификация севооборотов.

Народнохозяйственное значение, биологические особенности, агротехника кукурузы.

Народнохозяйственное значение, биологические особенности, агротехника картофеля.

Понятие о почве. Основные этапы развития почвоведения.

Что называют почвообразовательным процессом?

Материнская порода, ее значение для почвообразования.

Роль живых организмов в почвообразовании.

Факторы почвообразования.

Растительность, как фактор почвообразования.

Значение почвы для биосферы земли и хозяйственной деятельности человека.

Выветривание. Типы выветривания.

Почвенный раствор, его значение для жизни растений и почвообразовательного процесса.

Свойства почв.

Водный режим почв и водный баланс.

Типы водного режима.

Приемы регулирования водного режима почв.

Понятие о почвенном профиле.

Вертикальный разрез почвы.

Морфологические признаки почв.

Классификация почв.

Типы почв.

Структура почв.

Сложение, структура почв.

Агрономическое значение структуры.

Образование гумуса в почве.

Роль микроорганизмов в процессе почвообразовании.

Влияние агротехники на интенсивность микробиологических процессов в почве.

Новообразования.

Органическая часть почвы.

Роль гумуса в почвообразовании, плодородии и питании растений.

Факторы жизни растений и законы земледелия.

Севооборот. Причины использования севооборота в сельском хозяйстве.

Рост и развитие хлебных злаков.

Агротехника озимых хлебов.

7.3. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля - 70% и промежуточного контроля - 30%.

Текущий контроль по дисциплине включает:

- посещение занятий 5 баллов,
- участие на практических занятиях 25 баллов,
- выполнение лабораторных заданий 30баллов,
- выполнение домашних (аудиторных) контрольных работ 10 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос 10 баллов,
- письменная контрольная работа 10 баллов,
- тестирование 10 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) основная литература:

1.Вальков В.Ф. Почвоведение (почвы Северного Кавказа) [Электронный ресурс]: Учеб. для студентов вузов, обучающихся по специальностям: почвоведение, агрохимия, агрономия, защита растений, землеустройство, вод. хоз-во и мелиорация, биология и экология, плодоводство и виноградарство, физ. география / В. Ф. Вальков; В. Ф. Вальков, Ю. А. Штомпель, В. И. Тюльпанов. - Краснодар — Электрон. текстовые данные: Совет. Кубань, 2002. - 723 с., 1 л. ил. - ISBN 5-7221-0504-X.

Режим доступа - http://нэб. pф/catalog/000199_00009_000973525/ (Дата обращения: 12.05.18).

2.Вальков В.Ф. Почвоведение : учеб. для вузов / Вальков, Владимир Фёдорович, К. Ш. Казеев. - Изд. 2-е, испр. и доп. - М.; Ростов н/Д : МарТ, 2006,

- 2004. 495 с. (Учебный курс). Рекомендовано МО РФ. ISBN 5-241-00405-X : 150-00.
- 3. Кауричева И.С. и И.П. Гречина Почвоведение [Текст] : учеб. для сельскохоз. вузов / [под ред. М. : Колос, 1975, 1969. 543 с. 1-42.
- 4. Лухменев В.П. Система защиты озимой пшеницы от болезней, вредителей и сорняков на Южном Урале [Электронный ресурс]: монография / В. П. Лухменев; В. П. Лухменев; Министерство сельского хозяйства Российской Федерации, ФГБОУ ВПО «Оренбургский государственный аграрный университет». Москва Оренбург. Электрон. текстовые данные.: Омега-Л#Издательский центр ОГАУ, 2013. 340 с. ISBN 978-5-370-03 158-8 (ООО «Издательство «Омега-Л»)#.

Режим доступа: http://нэб.pф/catalog/000199_000009_02000021458/(Дата обращения: 12.05.18).

5.Хабаров А.В. Почвоведение: учебник / Хабаров, Александр Владимирович, А. А. Яскин, В. А. Хабаров. - М.: Колос С, 2007. - 311 с. : ил. - (Учебники и учебные пособия для студентов высших учебных заведений). - Рекомендовано МС/Х РФ. - ISBN 978-5-9532-0452-1: 253-00.

б) Дополнительная литература:

- 1. Баздырев Г. И. Защита сельскохозяйственных культур от сорных растений: [Электронный ресурс] : учеб. пособие для студентов вузов, обучающихся по агроном. специальностям / ; Г. И. Баздырев. Москва Электрон. текстовые данные.: Колос .С. 2004. 327, 1 с. ISBN 5-9532-0150-8 (в пер.). Режим доступа: http://нэб.pф/catalog/000199_000009_002585576/_ (Дата обращения: 12.05.18).
 - 2.Безуглова О.С. . Классификация почв [Электронный ресурс] : учебное пособие / О. С. Безуглова. Ростов-на-Дону.- Электрон. текстовые данные : Южный федеральный университет, 2009. 128 с. Режим доступа: http://www.iprbookshop.ru/46978.html (Дата обращения: 12.05.18).
 - 3. Гатаулина Г. Г.. Практикум по растениеводству: учеб. пособие / Гатаулина Г. Г., М. Г. Объедков. М.: Колос, 2000. 216 с.: ил. (Учебники и учебные пособия для студентов средних специальных учебных заведений). Допущено М-во с.-х. РФ. ISBN 5-10-003255-3: 120-00.
 - 4.Залибеков З.Г.. Почвы Дагестана: [монография] / Залибеков З. Г.; М-во образования и науки РФ, Прикасп. ин-т биол. ресурсов ДНЦ РАН, Дагест. гос. ун-т, Биол. фак. Махачкала: [Изд.-полигр. фирма "Наука" ДНЦ РАН], 2010. 241 с.: ил. Библиогр.: с. 234-239. ISBN 978-5-94434-172-3: 400-00.

- 5. Коренев Г.В. и др. Растениеводство с основами селекции и семеноводства : Учебник для вузов / Коренев, Григорий Васильевич и др. ; П.И.Подгорный, С.Н.Щербак. М.: Агропромиздат, 1990. 574 с.: ил. (Поэтическая библиотечка школьника). 16-00.
- 6.Тесля А.В. Физика почв [Электронный ресурс] : учеб. пособие / А. В. Тесля ; Тесля А. В., Оренбургский государственный университет. Оренбург— Электрон. текстовые данные : Оренбургский государственный университет, 2012. 115 с.

Режим доступа: http://нэб.ph/catalog/000199 000009 02000015675/(Дата обращения: 12.05.18).

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

На факультете функционирует компьютерный класс. Для интернет пользователей при ДГУ работает электронная библиотека с лекционным курсом по почвоведению, растениеводству, включая в базу тестовых заданий для проверки знаний студентов.

- 1) <u>www.eef.eu.int.www.priroda.ru</u>.Электронные образовательные ресурсы образовательного сервера ДГУ dgu.ru. (учебно-методические комплексы, контрольно-измерительные материалы, электронные учебники, учебные пособия).
- 2) электронные образовательные ресурсы образовательного сервера ДГУ edu.dgu.ru.(учебно-методические комплексы. Контрольно-измерительные материалы,электронные учебники, учебные пособия и др.).
- 3) Электронные образовательные ресурсы регионального ресурсного центра (учебно-методические комплексы, контрольно-измерительные материалы, электронные учебники, учебные пособия идр.).
- 4) Электронные образовательные ресурсы научной библиотеки ДГУ (East View Information, Bibliophika, Книгафорд, eliibrary -20; Электронная библиотека Российской научной библиотеки, Российская РФФИ;
- 5) Электронные образовательные ресурсы компьютерного класса биологического факультета (учебно-методические комплексы, курсы лекций, учебные пособия, контрольно-измерительные материалы, программы дисциплин и пр.).
- 10. Методические указания для обучающихся по освоению дисциплины Перечень учебно-методических изданий, рекомендуемых студентам для подготовки к занятиям и выполнению самостоятельной работы: -рабочие тетради студентов; наглядные пособия; словарь терминов по тематике дисциплины; тезисы лекций; почвенные образцы. Каждый обучающийся в течении всего периода обучении должен пользоваться индивидуальным доступом к электронно-библиотечным системам и электронной

информационной средой Даггогсуниверситета. В методическом плане процесс обучения осуществляется выполнением заданий самостоятельной работы, пользуясь доступом к учебным планам, рабочим программам по данной дисциплине, используя вышеперечисленные электронные образовательные ресурсы.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

При выполнении учебных нагрузок И образовательных программ применяются технологии: классическая лекция, интерактивная лекция с использованием профессионального комплекса компьютерной системы обработки материала. Для проверки знаний студентов устный опрос, тестирование, контрольные работы, демонстрация таблиц и рисунков. по пройденной теме, мультимедийные технологии, Используются тесты составление и анализ таблиц, схем, обычное тестирование и др.Важными составляющими элементами информационных справочных систем являются:

- 1. Электронные образовательные ресурсы образовательного сервера ДГУ edu.dgu.ru (электронные учебники, учебные пособия по биологии, почвоведению, экологии).
- 2. Электронные образовательные ресурсы регионального центра rrt.dgu.ru (контрольно измерительные материалы, электронные учебники, учебные пособия по биологии, почвоведению, экологии).
- **3.** Электронные образовательные ресурсы Научной библиотеки ДГУ (elibrary.ru), электронная библиотека Российской национальной библиотеки, российская ассоциация электронных библиотек.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Обучение студентов проводится в специальных помещениях кафедры почвоведения, где отведены аудитории для проведения всех видов занятий. Для осуществления образовательного процесса по дисциплине

- « Почвоведение с основами растениеводства» используются:
- -ноутбук, медиа-проектор, экран;
- программное обеспечение для демонстрации слайд-презентации;
- интернет материалы;
- почвенные образцы;
- -аналитическая лаборатория.